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Introduction
(or, Why | Wrote This Book)

The short version of “Why I wrote this book™ is that I found that trying to learn
functional programming in Scala was really hard, and I want to try to improve that
situation.

The longer answer goes like this ...

My programming background

My degree is in aerospace engineering, so the only programming class I took in
college was a FORTRAN class I was forced to take. After college I was one of the
youngest people at the aerospace company I worked at, which meant that I'd have to
maintain the software applications our group used. As a result, I became interested
in programming, and then became interested in (a) “How can I write code faster?”,

and then (b) “How can I write maintainable code?”

After that I taught myself how to program in C by reading the classic book, The
C Programming Language by Kernighan and Ritchie, quickly followed by learning
Object-Oriented Programming (OOP) with C++ and Java. That was followed by
investigating other programming languages, including Perl, PHP, Ruby, Python, and

more.


http://amzn.to/2aeEAZa
http://amzn.to/2aeEAZa

2 Introduction (o1, Why I Whote This Book)

Despite having exposure to all of these languages, I didn’t know anything about
Functional Programming (FP) until I came across Google’s Guava project, which
includes FP libraries for Java collections. Then, when I learned Scala and came to
understand the methods in the Scala collections’ classes, I saw that immutable values
and pure functions had some really nice benefits, so I set out to learn more about
this thing called Functional Programming.

Trying to learn FP with Scala

As I tried to learn about FP in Scala, I found that there weren’t any FP books or
blogs that I liked — certainly nothing that catered to my “I've never heard of P
until recently” background. Everything I read was either (a) dry and theoretical, or
(b) quickly jumped into topics I couldn’t understand. It seemed like people enjoyed
writing words “monad” and “functor” and then watching me break out in a cold

sweat.

As I googled “scala fp” like a madman, I found a few useful blog posts here and there
about functional programming in Scala — what I’ll call “Scala/FP” in this book —
but those were too disconnected. One article covered Topic A, another covered
Topic Z, and they were written by different authors with different experiences, so
it was hard to find my way from A to Z. Besides being disjointed, they were often
incomplete, or maybe they just assumed that I had some piece of knowledge that I
didn’t really have.

Another stumbling block is that experienced FP developers use generic types a /lof.
They also use the word “easy” when describing their code, as though saying “easy”
1s some sort of Jedi mind trick. For instance, this code — which I’ll break down as
you go through this book — was introduced with the text, “it’s very easy to access
and modify state™:


https://github.com/google/guava/wiki
http://scala-lang.org/

def updateHealth(delta: Int): Game[Int] =
StateT[I0, GameState, Int] { (s: GameState) =>

val newHealth = s.player.health + delta
I0((s.copy(player = s.player.copy(Chealth = newHealth)), newHealth))

I don’t know about you, but the first time I saw that code, the word easy is not what
came to mind. What came to my mind were things like, “PHP is easy. Using setter
methods to modify state is easy. Whatever that is ... that’s not easy.”

Another problem with almost all of the Scala/FP resources is that they don’t discuss
functional input/output (I/0O), or how to work with user interfaces. In this book I
don’t shy away from those topics: I write what I know about both of them.

Learning Haskell to learn FP

In the end, the only way I could learn FP was to buy four Haskell books, take a
few weeks off from my regular work, and teach myself Haskell. Because Haskell is
a “pure” FP language — and because most experienced Scala/FP developers spoke

glowingly about Haskell — I assumed that by learning Haskell I could learn FP.

That turned out to be true. In Haskell the only way you can write code is by using FP
concepts, so you can’t bail out and take shortcuts when things get difficult. Because
everything in Haskell is immutable, I was forced to learn about topics like recursion
that I had avoided for most of my programming life. In the beginning this made things
more difficult, but in the end I learned about the benefits of the new approaches I

was forced to learn.

Once I understood Haskell, I went back to the Scala resources that I didn’t like
before and they suddenly made sense(!). But again, this only happened afler I took the
time to learn Haskell, a language I didn’t plan on using in my work.


https://www.haskell.org
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The purpose of this book

Therefore, my reasons for writing this book are:

* To save you the time of having to try to understand many different, unorga-
nized, inconsistent Scala/FP blog posts

* To save you the time of “having to learn Haskell to learn FP,” and then having
to translate that Haskell knowledge back to Scala

* To try to make learning Scala/FP as simple as possible

Don’t get my statements about Haskell wrong: In the end, Haskell turned out to be a
really interesting and even fun programming language. If | knew more about its libraries
— orifit ran on the JVM and | could use the wealth of existing JVM libraries out there
(most of which are not written in an FP style) — I'd be interested in trying to use it. That
being said, | hope | can teach you what | learned about FP using only Scala.

As a potential benefit of this book, if you already know Scala/OOP and are interested
in learning Haskell, you can learn Scala/FP from this book, and then you'll find it much
easier to understand Haskell.



Who This Book is For

I kept several audiences in mind as I wrote this book:

1. Developers who want a simple introduction to functional programming in

Scala
Developers who are interested in writing “better” code
Parallel/concurrent application developers

“Big data” application developers

AN

(Possibly) Upperclass college students

Here’s a quick look at why I say that I wrote this book for these people.

1) Developers who want a simple introduction to FP

First, because this book started as a series of small notes I made for myself as I learned
about functional programming in Scala, it’s safe to say that I wrote it for someone
like me who has worked with OOP in Java, but has only a limited FP background.
Specifically, this is someone who became interested in Scala because of its clean,
modern syntax, and now wants a “simple but thorough” introduction to functional

programming in Scala.
Because I've also written programs in C, G++, Perl, Python, Ruby, and a few other

5



6 Who This Book is For

rogramming languages, it’s safe to say that this book is written with these program-
prog g languag y prog

mers in mind as well.

2) Those interested in writing “better” code

At specific points in this book — such as (a) when writing about pure functions, (b)
using val and not var, and (c) avoiding the use of null values — I also wrote this
book for any developer that wants to write better code, where I define “better” as
safer, easier to test, and more error-free. Even if you decide not to write 100% pure
FP code, many FP techniques in this book demonstrate how you can make your

functions and methods safer from bugs.

As a personal note, an ongoing theme in my programming life is that I want to be able
to write applications faster, without sacrifing quality and maintainability. A selling
point of P is that it enables you to write safe functions — pure functions that rely
only on their inputs to produce their outputs — that you can then combine together
to create applications.

3) Parallel/concurrent developers

Quiz: How many cores are in your smartphone? (This question is a tip of the cap to
Derek Wyatt, who wrote about CPU cores and smartphones in his book, Akka Concur-
rency).

In addition to writing safer code, the “killer app” for FP since about 2005 is that
CPUs aren’t constantly doubling in speed any more. (See Herb Sutter’s 2005 article,
The Free Lunch is Over.) Because of this, CPU designers are adding more cores to
CPUs to get more overall CPU cycles/second. Therefore, if you want your apps to
run as fast as possible, you need to use concurrent programming techniques to put all of
those cores to use, and the best way we know how to do that today is to use FP.

Two of my favorite ways of writing parallel/concurrent applications involve using

Scala futures and the Akka messaging/actors framework. Not surprisingly, FP works


http://amzn.to/29KHrcn
http://amzn.to/29KHrcn
http://www.gotw.ca/publications/concurrency-ddj.htm
http://akka.io/

extremely well with both of these approaches.

Note that if quantum computers were available tomorrow, performance might no longer
be an issue, but even in that world we'll still need to write concurrent applications, and
as mentioned, FP is the best way to write parallel and concurrent applications today.
I'll provide more support for that statement within this book, but one simple thing | can
say now is that because there are no mutable variables in FP code, it's not possible to
modify the same variable in different threads simultaneously.

4) “Big data” app developers

More recently, Dean Wampler gave a presentation titled, “Copious Data: The
‘Killer App’ for Functional Programming”. My experience with Big Data appli-
cations 1s limited to processing large Apache access log records with Spark, but I
can confirm that the code I wrote was a lot like algebra, where I passed data into
pure functions and then used only the results from those functions. My code had no

dependence on “side effects,” such as using mutable variables or managing state.

5) Upperclass college students

As I'wrote in the Scala Cookbook, because of its “power user” features, I don’t think
Scala is a good first language for a programmer to learn, and as a result of that, a

book about Scala/FP is also not a good first programming book to read.

That being said, I hope this will be a good first I'P book to read affer a college student
has experience with languages like C, Java, and Scala. When I started writing this
book, my nephew was a senior in college and had some experience with C and Java,
and as I reviewed the chapters I'd ask myself, “Would Tyler be able to understand
this?”


https://en.wikipedia.org/wiki/Quantum_computing
https://www.infoq.com/presentations/big-data-functional-programming
https://www.infoq.com/presentations/big-data-functional-programming
http://alvinalexander.com/scala/analyzing-apache-access-logs-files-spark-scala
http://amzn.to/24ivK4G
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Caution: Not for FP experts

Finally, as a result of the people I Aave written this book for, it should come as no
surprise that this book is not written for FP experts and theorists. I offer no new
theory in this book; I just try to explain functional programming using the Scala

programming language in the simplest way I can.



Goals, Part 1: “Soft” Goals of This Book

Going through the thought process of “Why do I want to write a book about
Scala/FP?” led me to develop my goals for this book. They are:

1. To introduce functional programming in Scala in a simple, thorough way, as

though you and I are having a conversation.

2. To present the solutions in a systematic way. I want to introduce the material
in the order in which I think you’ll run into problems as you learn Scala/FP.
In doing this, I break down complex code into smaller pieces so you can see

how the larger solution is built from the smaller pieces.

3. 'To discuss the motivation and benefits of FP features. For me it wasn’t always
clear why certain things in FP are better, so I'll keep coming back to these two

points.

4. Because it helps to see the big picture, I provide several small-but-complete
Scala/FP example applications. Showing complete applications helps demon-
strate how you can organize your FP applications, and work with issues like
handling state, I/O, and user interfaces.

5. Thope to save you the time and effort of having to learn Haskell (or some other
language) in order to learn FP.

6. I want to help you learn to “Think in FP.” (More on this shortly.)

In general, I want to help you start writing FP code without having to learn a lot of

mathematics, background theory, and technical jargon like that shown in Figure 3.1.

9



10 Goals, Part 1: “Soft” Goals of T his Book

A A0d 120

SV

Figure 3.1: Examples of the “FP terminology barrier”

I refer to this as the “FP Terminology Barrier,” and I'll discuss it more in an upcom-

ing lesson.

While I generally avoid using technical jargon unless it’s necessary, I do discuss many
of these terms in the appendices, and I also provide references to resources where

you can dive deeper into FP theory.

A word of caution: “The Learning Cliff’

When I took my first thermodynamics class in college, I learned the quote I shared

at the beginning of this chapter:

For me, this means that sometimes the only way you can learn something is to work
on it with your hands. Until that first thermodynamics class I never really had to do

the thing — work all of the exercises — to learn the material, but in that class I found
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out the hard way that there are times when I really have to dig in and “do the thing
to learn the thing.”

Another time when I had this same feeling was around the year 2009, when I started
learning a content management system (CMS) named Drupal. During that time I
came across the following image, where someone (whose name I can’t find) made
the point that Drupal didn’t have a learning curve, but instead it had a learning cliff,
which they depicted as shown in Figure 3.2.

Learning curve for popular CMS

Skills & Knowledge

Drupal’'s

“Learning CIliff”
e —
__.-—'-"'"-_-'__ e —
__,.-""r o = _-._._'_'_'_,___.
— Learning curves
T for other CMS
— tool
— ools
Time
B Modx H roomial
B wordpress W Dupal

Figure 3.2: The Drupal “learning cliff” (original image source unknown).
There are two things to say about Drupal’s learning cliff:

1. I found the diagram to be accurate.

2. Looking back on it, learning Drupal was one of the most beneficial things
I’'ve done for myself since that time. While getting started with Drupal was
difficult, it ended up being a great investment of my time. The rewards were
significant, and I have no regrets about spending the time it took to learn it. (If
you’re reading this text on a website, the page you’re looking at was generated

with Drupal.)


https://www.drupal.org/
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Just like P, the problem with trying to learn Drupal is that when you get to a certain
point (a) it feels like there are many things you need to learn simultaneously, and (b)
it’s easy to take accidental detours on the learning path. As the image depicts, you

either keep learning, or you fall off the cliff.

I hope that by breaking the Scala/FP learning process down into small, manageable
pleces, this book can help you stay on the path, and make the Scala/FP learning

curve more like other, normal learning curves.

Aside: Working hard to learn something new

If you'’ve read the book, Einstein: His Life and Universe, by Walter Isaacson, you
know that Albert Einstein had to essentially go back to school and learn a /ot of
math so he could turn the Theory of Special Relativity into the Theory of General
Relativity.

He published the “Einstein field equations” (shown in Figure 3.3) in 1915, and other
than trying to describe his theories to an advanced mathematician who could under-
stand what he was talking about, there’s no way that Einstein could have developed
these equations without buckling down and taking the time to learn the necessary
math. (Even one of the smartest people in the history of Earth had to work hard to
learn something new.)

8nG

R, — %ng + Aguy = 7Tﬁw

Figure 3.3: The Emstein field equations.

More on Point #7: “Thinking in FP”

In this book I hope to change the way you think about programming problems. As

at least one functional developer has said, when you “Think in FP” you see an ap-


http://amzn.to/2a2DmAp
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plication as (a) data flowing into the application, (b) being transformed by a series of
transformer functions, and (c) producing an output.

The first lessons in this book are aimed at helping you to “Think in FP” — to see

your applications in this way, as a series of data flows and transformers.

As an example of this, when you get to the “FP is Like Writing Unix Pipelines” lesson,
I'll share diagrams like Figure 3.4.

(o) — G ) — Gra D — s

Ba— data flows —_—

Figure 3.4: How data flows in a Unix pipeline.

As this image shows, a Unix pipeline starts with a source of data — the who command
— and then transforms that data with one or more functions. Data flows through
the pipeline in only one direction, from one function to the next, and data is never

modified, it’s only transformed from one format to another.

Another important part of “Thinking in FP” is that you’ll find that FP function sig-
natures are very important — much more important than they are in OOP code. I
cover this in depth in the lesson, “Pure Function Signatures Tell All.”

Summary

In summary, my goals for this book are:

1. To introduce functional programming in Scala in a simple, thorough way.
To present the solutions in a systematic way.

To discuss the motivation and benefits of FP features.

Il

To share several small-but-complete Scala/FP applications to show you how
they are organized.

5. To save you the time and effort of having to learn another programming lan-

guage in order to understand Scala/FP.
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6. In general, to help you “Think in FP.”

An important part of the learning process is having a “Question Everything” spirit,

and I’ll cover that next.



Goals, Part 2: Concrete Goals

After I released Version 0.1.2 of this book, I realized that I should state my goals
for it more clearly. I don’t want you to buy or read a book that doesn’t match what
you’re looking for. More accurately, I don’t want you to be disappointed in the book
because your expectations are different than what I deliver. Therefore, I want to
state some very clear and measurable goals by which you can judge whether or not
you want to buy this book.

A first concrete goal is this: If you have a hard time understanding the book, Func-
tional Programming in Scala, I want to provide the background material that can
help make that book easier to understand. That book is very good, but it’s also a
thin, densely-packed book, so if there are a few Scala features you don’t know, it can

be hard to keep up with it at times.

Second, the Introduction to Functional Game Programming talk at the 2014 Lamb-
daConf was a big influence on me. I remember going to that talk and thinking,
“Wow, I thought I knew Scala and a little bit about functional programming, but I
have no idea what this guy is talking about.” Therefore, a second concrete goal 1s
to make all of that talk and its associated code understandable to someone who has
zero to little background in functional programming. (That talk covers the I0, State,
and StateT monads, and other FP features like lenses, so this is actually a pretty big
goal.)

A third, slightly-less concrete goal is that if you have no background in FP, I want
to make Scala/FP libraries like Cats and Scalaz more understandable. That is, if
you were to look at those libraries without any sort of FP background, I suspect
you’d be as lost as I was at that 2014 LambdaConf talk. But if you read this book,
I think you’ll understand enough Scala/FP concepts that you’ll be able to further

understand what those libraries are trying to achieve.

15
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https://github.com/scalaz/scalaz

16 Goals, Part 2: Concrete Goals

A fourth concrete goal is to provide you with all of the background knowledge you
need — anonymous functions, type signatures, for expressions, classes that imple-
ment map and flatMap, etc. — so you can better understand the 128,000 monad
tutorials that Google currently lists in their search results.

As one more point to further understand my goals, please read the “disclaimer” in
the next chapter.


https://www.google.com/search?q=monad+tutorial&ie=utf-8&oe=utf-8

Goals, Part 3: A Disclaimer

As a bit of a warning, I want to be clear that this book is very different than the Scala
Cookbook. The essence of the Cookbook is, “Here’s a common problem, and here’s

a solution to that problem,” i.e., a series of recipes.

This book is completely different.

The “reporter” metaphor

I liken this book to being a reporter who goes to a foreign country that very few
people seem to know about. Out of curiosity about what he has read and seen, the
intrepid reporter goes to this foreign land to learn more about it. Nobody knows
how the story is going to end, but the reporter promises to report the truth as he sees

and understands it.

On his journey through this new land the reporter jots down many notes, especially
as he has a few “Aha!” moments when he really grasps new concepts. Over time he
tries to organize his notes so he can present them in a logical order, trying to translate
what he has seen into English (and Scala) as simply and accurately as he can. In the
end there’s no promise that the reporter is going to ke what he sees, but he promises
to report everything as clearly as he can.

A reporter is not a salesman
To be clear, there’s no promise of a happy ending in this story. The reporter isn’t
trying to sell you on moving to this new land. (For all he knows, this new territory is

full of Romulans or The Borg, and he may end up having to flee for his life.)

Instead of trying to sell you, the reporter aims to report what he sees as accurately as

17
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possible, hoping that — armed with this new knowledge — in the end you’ll decide
what’s in your own best interests. Maybe you’ll decide to move to this land, maybe

you won’t, but at least you’ll be well-armed in making your decision.

A personal experience

As an example of how I think about this, many years ago I came close to moving to
Santa Fe, New Mexico. As soon as I visited the town, I immediately fell in love with
the plaza area, the food, and the architecture of the homes. But after thinking about
the pros and cons more seriously, I decided not to move there. Instead, I decided to
just vacation there from time to time, and also take home some nice souvenirs as I

found them.

The same is true about this book: you may decide to move to this new land, or you
may decide that you just like a few souvenirs. That choice is yours. My goal is to

report what I find, as simply and accurately as I can.



Question Everything

A Golden Rule of this book is to always ask, “Why?” By this I mean that you should
question everything I present. Ask yourself, “Why is this FP approach better than
what I do in my OOP code?” To help develop this spirit, let’s take a little look at
what FP is, and then see what questions we might have about it.

What is FP?

I'll describe FP more completely in the “What is Functional Programming?” lesson,
but for the moment let’s use the following function of FP:

 IP applications consist of only immutable values and pure functions.

 Pure function means that (a) a function’s output depends only on its input pa-
rameters, and (b) functions have no side effects, such as reading user input or

writing output to a screen, disk, web service, etc.

While I'm intentionally keeping that definition short, it’s a way that people com-
monly describe P, essentially the FP elevator pitch.

What questions come to mind?
Given that description, what questions come to mind about FP?
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Some of my first questions were:

* How can you possibly write an application without reading input or writing
output?
* Regarding I/0:

— How do I write database code?
— How do I write RESTful code?
— How do I write GUI code?

« Ifall variables are immutable, how do I handle changes in my code?

— For instance, if I'm writing an order-entry system for a pizza store, what
do I do when the customer wants to change their pizza crust or toppings
in the middle of entering an order?

If you have a little more exposure to FP than I did, you might ask:

* Why is recursion better? Is it really better? Why can’t I just use var fields inside
my functions, as long as I don’t share those vars outside the function scope?

¢ Is “Functional I/O” really better than “Iraditional I/0O?
A little later you might ask:

* Are there certain applications where the FP approach is better? Or worse?

Decide for yourself what's better

Critical thinking 1s an important part of being a scientist or engineer, and I always

encourage you to think that way:

Is the approach I'm looking at better or worse than other options? If so,

why?

When doing this I encourage you not to make any snap judgments. Just because you

don’t like something itially doesn’t mean that thing is bad or wrong.
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“The best idea wins”

With critical thinking you also need to tune out the people who yell the loudest. Just
because they’re loud, that doesn’t mean they’re right. Just focus on which ideas are
the best.

In my book, A Survival Guide for New Consultants, I share this quote from famed

physicist Richard Feynman:

He wrote this in one of his books, where he shared an experience of how Neils Bohr
would seek out a very young Feynman during the building of the first atomic bomb.
Bohr felt that the other scientists on the project were “Yes men” who would agree
with anything he said, while Feynman was young, curious, and unintimidated. Be-
cause Feynman was only interested in learning and in trying to come up with the
best solutions, he would tell Bohr exactly what he thought about each idea, and Bohr
sought him out as a sounding board.

Feynman meant that you have to be able to have good, honest conversations with
people about your ideas, and at the end of the day you have to put your ego aside,
and the team should go forward with the best idea, no matter where it came from.

This goes back to my point: Don’t blindly listen to people, especially the people who
yell the loudest or those who can profit from selling you an idea. Put your critical

thinking hat on, and make your own decisions.

A quick aside: Imperative programming

In the next sections I'll use the term “Imperative programming,” so I first want to

give you a definition of what it means.

With a few minor changes, Wikipedia offers this description: “Imperative programming
1s a programming paradigm that uses statements that change a program’s state. It
consists of a series of commands for the computer to perform. It focuses on describ-

ing the details of 0w a program operates.”


http://amzn.to/2aiZaOd
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This Quora page adds: “Imperative programming involves writing your program as
a series of instructions (statements) that actively modify memory (variables, arrays).
It focuses on ‘how,’ in the sense that you express the logic of your program based on

how the computer would execute it.”
If you've ever disassembled a JVM .class file with javap -c to see code like this:

public void main(java.lang.String[]);
Code:
@: aload_0
1: aload_1
2: invokestatic #60
5

. return

That’s the extreme of what they’re referring to: imperative programming at a very
low level. This code tells the JVM exactly how it needs to solve the problem at hand.

A critical thinking exercise

To start putting your critical thinking skill to work, I'm going to show you two ver-
sions of the same algorithm. As you see the two algorithms, I want you to jot down

any questions you have about the two.
First, here’s an imperative version of a sum method:
def sum(ints: List[Int]): Int = {

var sum = @

for (i <- ints) {

sum += i

sum

This code modifies a var field within a for loop — a very common pattern in imper-

ative programming,


https://www.quora.com/What-is-the-difference-between-functional-and-imperative-programming

23

Next, here’s a Scala/FP version of that same method:

def sum(xs: List[Int]): Int = xs match {
case Nil => 0

case X :: tail => x + sum(tail)

Notice that this method uses a match expression, has no var fields, and it makes a
recursive call to sum in the last line of the method body.

Given those two versions of the same algorithm, what questions come to your mind?

My questions

The questions you have will depend heavily on your experience. If you’re very new to
Scala/FP your first question might be, “How does that second method even work?”

(Don’t worry, I'll explain it more in the lessons on writing recursive functions.)

I remember that some of my first questions were:

* What’s wrong with the imperative approach? Who cares if I use a var field in
a for loop inside a function? How does that affect anything else?

* Will the recursive function blow the stack with large lists?
* Is one approach faster or slower than the other?

 Thinking in the long term, is one approach more maintainable than the other?

What if I want to write a “parallel” version of a sum algorithm (to take advan-

tage of multiple cores); is one approach better than the other?

That’s the sort of thinking I want you to have when you’re reading this book: Ques-
tion everything. If you think something is better, be honest, w/y do you think it’s
better? If you think it’s worse, why 1s it worse?

In the pragmatic world I live in, if you can’t convince yourself that a feature is better

than what you already know, the solution is simple: Don’t use it.
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As I learned FP, some of it was so different from what I was used to, I found that

questioning everything was the only way I could come to accept it.

“We write what we want, not how to do it”

As another example of having a questioning attitude, early in my FP learning process

I read quotes from experienced FP developers like this:

“In FP we don’t tell the computer /ow to do things, we just tell it what

we want.”

When I read this my first thought was pretty close to, “What does that mean? You
talk to the computer?”

I couldn’t figure out what they meant, so I kept questioning that statement. Were
they being serious, or was this just some sort of I'P koan, trying to get you interested
in the topic with a mysterious statement? It felt like they were trying to sell me

something, but I was open to trying to understand their point.

After digging into the subject, I finally decided that the main thing they were refer-
ring to is that they don’t write imperative code with for loops. That is, they don’t
write code like this:

def double(ints: List[Int]): List[Int] = {
val buffer = new scala.collection.mutable.ListBuffer[Int]()
for (i <- ints) {
buffer += 1 * 2

}
buffer.tolList

val newNumbers = double(oldNumbers)
Instead, they they write code like this:

val newNumbers = oldNumbers.map(_ * 2)


https://en.wikipedia.org/wiki/K%C5%8Dan
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With a for loop you tell the compiler the exact steps you want it to follow to create
the new list, but with FP you say, “I don’t care how map is implemented, I trust that
it’s implemented well, and what I want is a new list with the doubled value of every
element in the original list.”

In this example, questioning the “We write what we want” statement is a relatively
minor point, but (a) I want to encourage a curious, questioning attitude, and (b) I
know that you’ll eventually see that statement somewhere, and I wanted to explain
what it means.

In his book Programming Erlang, Joe Armstrong notes that when he was first taught
object-oriented programming (OOP), he felt that there was something wrong with it,
but because everyone else was “Going OOP,” he felt compelled to go with the crowd.
Paraphrasing his words, if you’re going to work as a professional programmer and put
your heart and soul into your work, make sure you believe in the tools you use.

What's next?

In the next lesson I'm going to provide a few programming rules that I'll follow in
this book. While I’'m generally not much of a “rules” person, I've found that in this
case, having a few simple rules makes it easier to learning functional programming
in Scala.


http://amzn.to/2aab4HF
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Rules for Programming in this Book

Alright, that’s enough of the “preface” material, let’s get on with the book!

As I wrote earlier, I want to spare you the route I took of, “You Have to Learn Haskell
to Learn Scala/FP,” but, I need to say that I did learn a valuable lesson by taking that
route:

It’s extremely helpful to completely forget about several pieces of the

Scala programming language as you learn FP in Scala.

Assuming that you come from an “imperative” and OOP background as I did, your
attempts to learn Scala/FP will be hindered because it is possible to write both imper-
ative code and FP code in Scala. Because you can write in both styles, what happens
is that when things in FP start to get more difficult, it’s easy for an OOP developer to

turn back to what they already know, rather than to try to navigate the “FP Learning
Chft.”

(I was a Boy Scout, if only briefly.)

To learn Scala/FP the best thing you can do 1s forget that the imperative options even
exist. I promise you, Scout’s Honor, this will accelerate your Scala/FP learning

process.

Therefore, to help accelerate your understanding of how to write FP code in Scala,

this book uses only the following subset of the Scala programming language.
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The rules

To accelerate your Scala/FP learning process, this book uses the following program-

ming “rules”:

1. There will be no null values in this book. We’ll intentionally forget that there

is even a null keyword in Scala.

2. Only pure functions will be used in this book. I’ll define pure functions more
thoroughly soon, but simply stated, (a) a pure function must always return the
same output given the same input, and (b) calling the function must not have
any side effects, including reading input, writing output, or modifying any sort
of hidden state.

3. This book will only use immutable values (val) for all fields. There are no var
fields in pure FP code, so I won’t use any variables (var) in this book, unless
I'm trying to explain a point.

4. Whenever you use an if, you must always also use an else. Functional pro-

gramming uses only expressions, not statements.

5. We won’t create “classes” that encapsulate data and behavior. Instead we’ll
create data structures and write pure functions that operate on those data struc-

tures.

The rules are for your benefit (really)

These rules are inspired by what I learned from working with Haskell. In Haskell the
only way you can possibly write code is by writing pure functions and using immutable
values, and when those really are your only choices, your brain quits fighting the system.
Instead of going back to things you’re already comfortable with, you think, “Hmm,
somehow other people have solved this problem using only immutable values. How
can I solve this problem using pure FP?” When your thinking gets to that point, your
understanding of FP will rapidly progress.

If you’re new to FP those rules may feel limiting — and you may be wondering how
you can possibly get anything done — but 1if you follow these rules you’ll find that
they lead you to a different way of thinking about programming problems. Because

of these rules your mind will naturally gravitate towards FP solutions to problems.
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For instance, because you can’t use a var field to initialize a mutable variable before
a for loop, your mind will naturally think, “Hmm, what can I do here? Ah, yes, I
can use recursion, or maybe a built-in collections method to solve this problem.” By
contrast, if you let yourself reach for that var field, youw’ll never come to this other
way of thinking.

Not a rule, but a note: using ??7?

While I'm writing about what aspects of the Scala language I won’t use in this book,
it’s also worth noting that I will often use the Scala ??? syntax when I first sketch
a function’s signature. For example, when I first start writing a function named

createWorldPeace, I'll start to sketch the signature like this:
def createWorldPeace = 777

I mention this because if you haven’t seen this syntax before you may wonder why
I'm using it. The reason I use it is because it’s perfectly legal Scala code; that line of
code will compile just fine. Go ahead and paste that code into the REPL and you’ll
see that it compiles just like this:

scala> def createWorldPeace = ?777?

createWorldPeace: Nothing

However, while that code does compile, you’ll see a long error message that begins

like this if you try to call the createWorldPeace function:
scala.NotImplementedError: an implementation is missing

I wrote about the ??7? syntax in a blog post titled, What does ‘???” mean in Scala?,
but in short, Martin Odersky, creator of the Scala language, added it to Scala for
teaching cases just like this. The ??? syntax just means, “The definition of this
function 1s TBD.”


http://alvinalexander.com/scala/what-does-three-question-marks-in-scala-mean
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If you're interested in how language designers add features to a programming language,
that blog post has a link to a really interesting discussion started by Mr. Odersky. He
begins the thread by stating, “If people don'’t hold me back I'm going to add this (???)
to Predef,” and then the rest of the thread is an interesting back-and-forth discussion
about the pros and cons of adding this feature to the Scala language, and possibly using
other names for this feature, such as using TODO instead of ???.

Summary

In summary, the rules we’ll follow in this book are:

There will be no null values.
Only pure_functions will be used.
Immutable values will be used for all fields.

Whenever you use an if, you must always also use an else.

A

We won’t create “classes” that encapsulate data and behavior.

What's next

Given these rules, let’s jump into a formal definition of “functional programming.”



One Rule for Reading this Book

In addition to the rules for programming in this book, there’s one rule for reading this
book:

If you already understand the material in a lesson, move on to the next

lesson.

Because I try to thoroughly cover everything you might possible need to know lead-
ing up to advanced topics like monads, there will probably be some lessons you don’t
need to read. For instance, you may already know that you can use functions as vari-

ables, how to write functions that have multiple parameter groups, etc.
Therefore, there’s one simple rule for reading this book: If you already understand a

topic — move on! (You can always come back and read it later if you feel like there’s

something you missed.)
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What is “Functional Programming”?

Defining “Functional Programming”

It’s surprisingly hard to find a consistent definition of functional programming. As just
one example, some people say that functional programming (FP) is about writing
pure_functions — which is a good start — but then they add something else like, “The
programming language must be lazy.” Really? Does a programming language really
have to be lazy (non-strict) to be FP? (The correct answer is “no.”)

I share links to many definitions at the end of this lesson, but I think you can define

FP with just two statements:

1. FP is about writing software applications using only pure functions.

2. When writing FP code you only use immutable values — val fields in Scala.

And when I say “only” in those sentences, I mean only.

You can combine those two statements into this simple definition:
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Functional programming is a way of writing software applications using

only pure functions and immutable values.

Of course that definition includes the term “pure functions,” which I haven’t defined
yet, so let me fix that.

A working definition of “pure function”

I provide a complete description of pure functions in the “Pure Functions” lesson,

but for now, I just want to provide a simple working definition of the term.

A pure function can be defined like this:

* The output of a pure function depends only on (a) its input parameters and
(b) its internal algorithm.

— This is unlike an OOP method, which can depend on other fields in the

same class as the method.

* A pure function has no side effects, meaning that it does not read anything
from the outside world or write anything to the outside world.

— It does not read from a file, web service, Ul or database, and does not
write anything either.

* As a result of those first two statements, if a pure function is called with an
input parameter x an infinite number of times, it will always return the same

result y.

— Tor instance, any time a “string length” function is called with the string

“Alvin”, the result will always be 5.
As a few examples, Java and Scala functions like these are pure functions:

* String uppercase and lowercase methods

* List methods like max, min



35
* Math.sin(a), Math.cos(a)

In fact, because the Java String class and Scala List class are both immutable, all
of their methods act just like pure functions.

Even complex algorithms like checksums, encodings, and encryption algorithms fol-
low these principles: given the same inputs an infinite number of times, they always

return the same result.

Conversely, functions like these are not pure functions:

* System.currentTimeMillis
* Random class methods like next, nextInt

e I/0 methods in classes like File and HttpURLConnection that read and write
data

The first two examples yield different results almost every time they are called, and
I/0 functions are impure because they have side ¢ffects — they communicate with

the outside world to send and receive data.

Note 1: Higher-Order Functions are a great FP language feature

If you’re not familiar with the term Higher-Order Function (HOF), it basically
means that (a) you can treat a function as a value (val) — just like you can treat a

String as a value — and (b) you can pass that value into other functions.

In writing good FP code, you pass one function to another so often that I’'m tempted
to add HOFs as a requirement to my definition. But in the end, you can write P
code in languages that don’t support HOJFs, including Java. Of course that will be

painful and probably very verbose, but you can do it.

Therefore, I don’t include HOFs in my definition of functional programming. In the
end, HOF's are a terrific FP language feature, and they make Scala a much better I'P
language than Java, but it’s still just a language feature, not a part of the core definition
of functional programming.
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Note: I provide a more complete HOF definition in the glossary at the
end of this book.

Note 2: Recursion is a by-product

Sometimes you’ll see a definition of FP that states, “Recursion is a requirement of
functional programming.” While it’s true that pure FP languages use recursion, the

need for recursion is a by-product of my FP definition.

Once you dig into FP, you’ll see that if you only use pure functions and immutable
values, the only way you can do things like “calculate the sum of a list” is by using
recursion. Therefore, it’s a by-product of my definition, not a part of the definition.

(I discuss this more in the recursion lessons.)

Proof: Wikipedia’s FP definition

When you google “functional programming definition,” the first link that currently
shows up 1s from Wikipedia, and their definition of FP backs up my statements. The
first line of their definition begins like this:

“In computer science, functional programming is a programming
paradigm — a style of building the structure and elements of computer
programs — that treats computation as the evaluation of mathematical

functions and avoids changing-state and mutable data.”

So, yes, FP is made of (a) pure functions and (b) immutable data. (Their “mathemat-

ical functions” are equivalent to my pure functions.)

As proof for another assertion I made earlier, that Wikipedia page also elaborates
on features that make an FP language easier to use — such as being able to treat
functions as values — where they state, “Programming in a functional style can also
be accomplished in languages that are not specifically designed for functional pro-

gramming.” (Think Java.)


https://en.wikipedia.org/wiki/Functional_programming

37

Proof: A wonderful quote from Mary Rose Cook

When I first started learning FP, I was aware that pure functions were important, but
this point was really driven home when I came across an article titled A Practical

Introduction to Functional Programming by Mary Rose Cook.

Ms. Cook used to work at the Recurse Center (formerly known as “Hacker School”)
and now works at Makers Academy, and in her “Practical Introduction to FP” essay,
she refers to using only pure functions as a Guide Rope to learning IF'P:

“When people talk about functional programming, they mention
a dizzying number of ‘functional’ characteristics. ~They mention
immutable data, first class functions, and tail call optimisation. These

are language features that aid functional programming.”

“They mention mapping, reducing, pipelining, recursing, currying and
the use of higher order functions. These are programming techniques used

to write functional code.”

“They mention parallelization, lazy evaluation, and determinism.

These are advantageous properties of functional programs.”

“Ignore all that. Functional code is characterised by one thing: e ab-
sence of side effects. 1t (a pure function) doesn’t rely on data outside the
current function, and it doesn’t change data that exists outside the cur-
rent function. Every other ‘functional’ thing can be derived from this
property. Use it as a guide rope as you learn.”

When she writes about the “absence of side effects,” she’s referring to building ap-

plications from pure functions.

Her guide rope statement 1s so good, it bears repeating:


http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://maryrosecook.com/
https://www.recurse.com/
http://www.makersacademy.com/
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“Functional code is characterised by one thing: the absence of side ef-

fects.”

When I first read this quote, the little light bulb went on over my head and I began

focusing even more on writing only pure functions.

If you think about it, this statement means exactly what I wrote at the beginning of

this lesson:

Functional programming is a way of writing software applications using

only pure functions and immutable values.

That's great ... but why immutable values?

At this point you might be saying, “Okay, I buy the ‘pure functions’ portion of your
definition, but what does immutable values have to do with this? Why can’t my variables

be mutable, 1.e., why can’t I use var?”

The best FP code s like algebra

I dig into this question in the “FP is Like Algebra” lesson, but the short answer here
is this:

The best FP code is like algebra, and in algebra you never re-use vari-

ables. And not re-using variables has many benefits.

For example, in Scala/FP you write code that looks like this:

val a = f(x)
val b = g(a)
val ¢ = h(b)
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When you write simple expressions like this, both you and the compiler are free to
rearrange the code. For instance, because a will always be exactly the same as f(x),

you can replace a with f(x) at any point in your code.

The opposite of this is also true: a can always be replaced with f(x). Therefore, this

equation:

val b = g(a)

is exactly the same as this equation:
val b = g(f(x))

Continuing along this line of thinking, because b is exactly equivalent to g(f(x)), you
can also state c differently. This equation:

val ¢ = h(b)
is exactly the same as this equation:
val ¢ = h(g(f(x)))

From a programming perspective, knowing that you can always replace the im-
mutable values a and b with their equivalent functions (and vice-versa) is extremely
important. If a and b had been defined as var fields, I couldn’t make the substitu-
tions that I did. That’s because with mutable variables you can’t be certain that
later in your program a is still f(x), and b is still g(a). However, because the fields
are immutable, you can make these algebraic substitutions.

FP code 1s easier to reason about

Furthermore, because a and b can never change, the code is easier to reason about.

With var fields you always have to have a background thread running in your brain,

“Is a reassigned somewhere else? Keep an eye out for it.”
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But with FP code you never have to think, “I wonder if a was reassigned anywhere?”
That thought never comes to mind. ais the same as f(x), and that’s all there 1s to it,

end of story. They are completely interchangeable, just like the algebra you knew in
high school.

To put this another way, in algebra you never reassign variables, so it's obvious that the
third line here is a mistake:

a=f(x)

b = g(a)

a = hQ(y) # d'oh -- "a’ 1is reassigned!
c = i(a, b)

Clearly no mathematician would ever do that, and because FP code is like algebra, no
FP developer would ever do that either.

Another good reason to use immutable values

Another good reason to use only immutable values is that mutable variables (var
fields) don’t work well with parallel/concurrent applications. Because concurrency
is becoming more important as CPUs use more cores, I discuss this in the “Benefits
of Functional Programming” and “Concurrency” lessons.

As a prelude to those lessons, in the article, The Downfall of Impera-
tive Programming, Bartosz Milewski writes, “Did you notice that in the
definition of ‘data race’ there’s always talk of mutation?”

As programmers gain more experience with FP, their code tends to look more like this
expression:

val ¢ = h(g(f(x)))


https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
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While that's cool — and it's also something that your brain becomes more comfortable
with over time — it's also a style that makes it harder for new FP developers to under-
stand. Therefore, in this book | write most code in the simple style first:

val a = f(x)
val b = gCa)
val ¢ = h(b)

and then conclude with the reduced code at the end:

val ¢ = h(g(f(x)))

As that shows, when functions are pure and variables are immutable, the code is like
algebra. This is the sort of thing we did in high school, and it was all very logical. (FP
developers refer to this sort of thing as “evaluation” and “substitution.”)

Summary

In this lesson, I defined functional programming like this:

Functional programming is a way of writing software applications using

only pure functions and immutable values.

To support that, I also defined pure function like this:

* The output of a pure function depends only on (a) its input parameters and

(b) its internal algorithm.
* A pure function has no side effects, meaning that it does not read anything

from the outside world or write anything to the outside world.

* As a result of those first two statements, if a pure function is called with an
input parameter x an infinite number of times, it will always return the same

result y.

I noted that higher-order functions (HO¥Fs) are a terrific FP language feature, and
also stated that recursion is a by-product of the definition of FP.
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I also briefly discussed some of the benefits of immutable values (and FP in general):

* The best FP code is like algebra
e Pure functions and immutable values are easier to reason about

* Without much support (yet), I stated that immutable values make paral-

lel/concurrent programming easier

See also

» A Postfunctional Language, a scala-lang.org post by Martin Odersky
* The docs.scala-lang.org definition of functional style

* The Wikipedia definition of P

* The Clojure definition of FP

* The Haskell definition of FP

e The “Creative Clojure” website agrees with my definition of functional pro-

gramming
* Information about FP in the Real World Haskell book
* Here’s the msdn.microsoft.com definition of F'P
* Functional programming on c2.com
A practical introduction to functional programming
* An intro to FP on the “Learn You a Haskell for Great Good” website
 Stack Exchange thread
* Why do immutable objects enable functional programming?
* The “Benefits of Functional Programming” lesson in this book

* The “Concurrency” lesson in this book


http://www.scala-lang.org/old/node/4960
http://docs.scala-lang.org/glossary/#functional-style
https://en.wikipedia.org/wiki/Functional_programming
http://clojure.org/about/functional_programming
https://wiki.haskell.org/Functional_programming
https://clojurefun.wordpress.com/2012/08/27/what-defines-a-functional-programming-language/
https://clojurefun.wordpress.com/2012/08/27/what-defines-a-functional-programming-language/
http://book.realworldhaskell.org/read/why-functional-programming-why-haskell.html
https://msdn.microsoft.com/en-us/library/hh297121(v=vs.100).aspx
http://c2.com/cgi/wiki?FunctionalProgramming
http://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
http://learnyouahaskell.com/introduction
http://programmers.stackexchange.com/questions/108105/what-should-i-understand-before-i-try-to-understand-functional-programming?rq=1
http://stackoverflow.com/questions/12207757/why-do-immutable-objects-enable-functional-programming

What is This Lambda You Speak Of?

Goals

Once you get into FP, you’ll quickly start hearing the terms “lambda” and “lambda
calculus.” The goal of this chapter is to provide background information on where

those names come from, and what they mean.

This chapter 1s mostly about the history of functional programming, so for people
who don’t like history, I first share a short lesson that just explains those terms. After
that, I add a full version that discusses the invention of the lambda calculus, several
key people in the FP history, and languages like Lisp, Haskell, and Scala.

The short story

For those who don’t like history, this is the shortest possible “history of functional
programming” I can provide that explains where the terms lambda and lambda

calculus come from.
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“Lambda™

Backin the 1930s, Alonzo Church was studying mathematics at Princeton University
and began using the Greek symbol A — “lambda” — to describe ideas he had about
these things called functions. Because his work preceded the development of the first
electronic, general-purpose computer by at least seven years, you can imagine him
writing that symbol on chalkboards to describe his concept of functions.

So, historically speaking, that’s the short story of where the term “lambda” comes
from; it’s just a symbol that Mr. Church chose when he first defined the concept of

a function.

Fast-forward to today, and these days the name lambda 1s generally used to refer to

anonymous functions. That’s all it means, and it bears highlighting:

In modern functional programming, lambda means “anonymous func-

tion.”

If you’re familiar with other programming languages, you may know that Python

and Ruby use the keyword lambda to define anonymous functions.

If you're not familiar with anonymous functions, | wrote about them in the Scala Cook-
book, and | also provide an overview of them in the appendices of this book.

The term “lambda calculus™

As an aerospace engineer, I always thought the name “calculus” referred to the form
of mathematics that has to do with infinitesimal changes and derivatives, but the
name calculus also has a broader meaning. The word calculus can mean “a formal

system,” and indeed, that’s how Wikipedia defines lambda calculus:


https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/ENIAC
http://www.secnetix.de/olli/Python/lambda_functions.hawk
https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby
http://amzn.to/24ivK4G
http://amzn.to/24ivK4G
https://en.wikipedia.org/wiki/Lambda_calculus
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Fioure 10.1: “Lambda’ s just another name for “anonymous function”
g J Ly

“Lambda calculus (also written as A-calculus) is a formal system in math-
ematical logic for expressing computation based on function abstraction

and application using variable binding and substitution.”
So we have:

* lambda means “anonymous function,” and

* calculus means “a formal system”

Therefore, the term lambda calculus refers to “a formal way to think about functions.”

That same Wikipedia link states this:

“Lambda calculus provides a theoretical framework for describing func-
tions and their evaluation. Although it is a mathematical abstraction
rather than a programming language, it forms the basis of almost all

functional programming languages today.”

When I first started learning about functional programming, I found these terms to
be a little intimidating, but as with most FP terms, they’re just uncommon words for

talking about “functions and their evaluation.”

If you’re interested in the deeper history of FP, including a guy named Haskell Curry,
the relationship between FORTRAN and FP, and languages like Lisp, Haskell, Scala,
and Martin Odersky’s work that led to the creation of Scala, continue reading the

next section. Otherwise feel free to move on to the next chapter.
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The Longer Story (History)

Back in the 1930s — 80+ years ago — gasoline cost 17 cents a gallon, World War
IT hadn’t started yet (not until 1939, officially), the United States was in the midst of
the Great Depression (1929-1939), and a man by the name of Alonzo Church was
studying mathematics at Princeton University along with other legendary figures like
Alan Turing (who finished his PhD under Church) and John von Neumann.

Mr. Church spent two years as a National Research Fellow and a year at Harvard,
and was interested in things like mathematical and symbolic logic. In 1956 wrote a
classic book titled, “Introduction to Mathematical Logic.”

In 1936 Mr. Church released his work on “lambda calculus,” and it turned out to be
a very important work indeed. Think about it: How many other papers from 1936
do you know that influence life today? His biography page at www-history.mcs.st-
andrews.ac.uk states:

“Church’s great discovery was lambda calculus ... his remaining con-
tributions were mainly inspired afterthoughts in the sense that most of
his contributions, as well as some of his pupils’, derive from that initial

achievement.”

Wikipedia previously stated that the name “lambda” was arbitrary:

“The name derives from the Greek letter lambda (A) used to denote
binding a variable in a function. The letter itself is arbitrary and has no

special meaning.”

However, other research shows that the choice of the name wasn’t entirely arbitrary.
After all, this is the man who founded the “Journal of Symbolic Logic,” so I per-
sonally doubted it was completely arbitrary. I imagine him drawing this symbol on
chalkboards and papers in the 1930s, so my first guess was that he wanted a sym-
bol that was easy to read and write, but fortunately you don’t have to rely on my
guesswork.


http://www-history.mcs.st-andrews.ac.uk/Biographies/Church.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Church.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Church.html
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The book “Paradigms of Artificial Intelligence Programming: Case Studies in Com-
mon Lisp,” by Peter Norvig discusses the origin of the A symbol, as shown in Fig-
ure 10.2.

The name lambda comes from the mathematician Alonzo Church's notation for
functions (Church 1941). Lisp usually prefers expressive names over terse Greek
letters, but lambda is an exception. A better name would be ma ke-function. Lambda
derives from the notation in Russell and Whitehead's Principia Mathematica, which
used a caret over bound variables: i(z + x). Church wanted a one-dimensional
string, so he moved the caretin front: “z(x+ x). The caret looked funny with nothing
below it, so Church switched to the closest thing, an uppercase lambda, Ax(z + x).
The A was easily confused with other symbols, so eventually the lowercase lambda
was substituted: Az(z + x). John McCarthy was a student of Church's at Princeton,
so when McCarthy invented Lisp in 1958, he adopted the lambda notation.

Figure 10.2: The origin of the A symbol (by Peter Norvig)
Note that Mr. Norvig also states that a better name for lambda would be make function.

As mentioned, Mr. Church introduced the world to the “lambda calculus” in 1936.
On his biography page, Wikipedia describes his work like this:

“The lambda calculus emerged in his 1936 paper showing the unsolv-
ability of the Entscheidungsproblem. This result preceded Alan Tur-
ing’s work on the halting problem, which also demonstrated the exis-
tence of a problem unsolvable by mechanical means. Church and Tur-
ing then showed that the lambda calculus and the Turing machine used
in Turing’s halting problem were equivalent in capabilities, and subse-
quently demonstrated a variety of alternative ‘mechanical processes for
computation.” This resulted in the Church—Turing thesis.”

The Wikipedia functional programming page also states:

“Functional programming has its roots in lambda calculus, a formal system devel-
oped in the 1930s to investigate computability, the Entscheidungsproblem, function
definition, function application, and recursion. Many functional programming languages
can be viewed as elaborations on the lambda calculus.”

The book Becoming FFunctional states that lambda calculus introduced the concept
of passing a function to a function. I cover this topic in the Scala Cookbook, and
discuss it in several lessons in this book.


https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://en.wikipedia.org/wiki/Functional_programming
http://amzn.to/29aQRCo
http://amzn.to/1Tkj5sL
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The 1950s and Lisp

While Mr. Church’s lambda calculus was well known 1in its time, it’s important to
note that the ENIAC — generally recognized as the world’s first electronic, general-

purpose computer — wasn’t put into action until 1946, and it fit Alan Turing’s ideas
better than Mr. Church’s.

The name Lisp is derived from “LISt Processor.”

But then in the 1958, MIT professor John McCarthy, a former student of
Mr. Church, introduced a computer programming language named Lisp, which
was “an implementation of Mr. Church’s lambda calculus that worked on von
Neumann computers.”

That second Wikipedia link describes the importance of the Lisp programming lan-
guage:

“Lisp was originally created as a practical mathematical notation for
computer programs, influenced by the notation of Alonzo Church’s
lambda calculus. It quickly became the favored programming language
for artificial intelligence (Al) research. As one of the earliest program-
ming languages, Lisp pioneered many ideas in computer science, includ-
ing tree data structures, automatic storage management, dynamic typ-
ing, conditionals, higher-order functions, recursion, and the self-hosting
compiler.”

That’s pretty impressive for a programming language created in the 1950s. (Beatle-
mania didn’t start until 1963, few people knew the Rolling Stones before 1965, and

color television wouldn’t become popular in the United States until the mid-1960s.)

As a last note about Lisp, famed programmer Eric Raymond, author of The Cathe-
dral and the Bazaar, wrote an article titled How to become a hacker, where he wrote
this about Lisp:


https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29
https://en.wikipedia.org/wiki/Lisp_%28programming_language%29
http://amzn.to/2b9GLl4
http://amzn.to/2b9GLl4
http://www.catb.org/esr/faqs/hacker-howto.html
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“LISP is worth learning for a different reason — the profound enlighten-
ment experience you will have when you finally get it. That experience
will make you a better programmer for the rest of your days, even if you
never actually use LISP itself a lot.”

One of the most interesting computer programming books I've ever come across is
The Little Schemer. (Scheme is a dialect of Lisp.) The Little Schemer is written in a
conversational style between a student and a teacher, where the teacher’s main goal
is to get the student to think recursively and see patterns. Another book named Land
of Lisp may hold the distinction as being the programming book that looks most like a
cartoon. It's another good resource, and it's a much more complete introduction to the
language than The Little Schemer.

If you happen to work with Gimp (GNU Image Manipulation Program) and want to au-
tomate your tasks, you'll find that it supports a scripting language named Script-Fu by
default. Script-Fu is a dialect of Scheme.

Jjohn Backus, FORTRAN, and FP

Figure 10.3: jJohn Backus

In 1977, John Backus won a Turing Award for his lecture, “Can Programming Be


http://amzn.to/1R7NZBi
https://en.wikipedia.org/wiki/Scheme_%28programming_language%29
http://amzn.to/1R7O9Zf
http://amzn.to/1R7O9Zf
http://www.gimp.org/
https://docs.gimp.org/en/gimp-concepts-script-fu.html
https://en.wikipedia.org/wiki/John_Backus
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Liberated From the von Neumann Style? A Functional Style and its Algebra of

Programs.” With minor edits, that link states:

“Backus later worked on a ‘function-level’ programming language
known as FP ... sometimes viewed as Backus’s apology for creating
FORTRAN, this paper did less to garner interest in the IP language

than to spark research into functional programming in general.”

The Wikipedia functional programming page adds:

“He defines functional programs as being built up in a hierarchical way
by means of ‘combining forms’ that allow an ‘algebra of programs’; in
modern language, this means that functional programs follow the prin-

ciple of compositionality.”

(Note: I write much more about “composition” in the lessons of this book.)

| created the sketch of John Backus from his image on ibm.com.

Mr. Backus did much more than this, including his work on the ALGOL 60 pro-
gramming language, and creation of the Backus-Naur Form (BNF). But in terms of
functional programming, his 1977 lecture was an impetus for additional research.

Erlang

Way back in 1986, I was mostly interested in playing baseball, and programmers
for a company named Ericsson created a programming language named Erlang,
which was influenced by Prolog. Wikipedia states, “In 1998 Ericsson announced the
AXD301 switch, containing over a million lines of Erlang and reported to achieve a

high availability of nine ‘9’s.”


https://en.wikipedia.org/wiki/Functional_programming
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/fortran/team/
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Backus–Naur_Form
http://www.erlang.org/
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Erlang_(programming_language)
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Erlang is not a pure functional programming language like Haskell, but it’s an actor-
based, message-passing language. If you've heard that term before, that may be
because the Akka actor library was inspired by Erlang. If you’ve used Akka, you
know that one actor can’t modify the state of another actor, and in this regard, the
Erlang message-passing architecture uses FP concepts.

Joe Armstrong is a famous Erlang programmer (and co-creator of the language), and

in his book, Programming Erlang, he writes:

“In Erlangit’s OK to mutate state within an individual process but not for one process
to tinker with the state of another process ... processes interact by one method, and
one method only, by exchanging messages. Processes share no data with other processes.
This 1s the reason why we can easily distribute Erlang programs over multicores or

networks.”

In that statement, Mr. Armstrong’s “processes” are equivalent to Akka actors, so the
same statement can be made: “Actors share no data with other actors, and because
of this we can easily distribute Akka programs over multicores or networks.” As
you’ll see in the lessons to come, using only immutable values lets us say the same

things about pure FP applications.

Haskell

Haskell Brooks Curry (1900-1982) has the distinction of having three programming
languages named after him (Haskell, Brook, and Curry). In addition to those, the

process of “currying” is also named after him.

Wikipedia states:

“The focus of Curry’s work were attempts to show that combinatory
logic could provide a foundation for mathematics ... By working in the
area of Combinatory Logic for his entire career, Curry essentially be-
came the founder and biggest name in the field ... In 1947 Curry also
described one of the first high-level programming languages.”


http://akka.io/
https://twitter.com/joeerl
http://amzn.to/2aab4HF
https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/Haskell_Curry#Work
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Figure 10.4: Haskell Curry

(The newspaper image of Haskell Curry comes from this catonmat.net page.)

For a brief history of the Haskell programming language, I'll turn things over to the
book, Learn You a Haskell for Great Good!:

“Haskell was made by some really smart guys (with PhDs). Work on
Haskell began in 1987 when a committee of researchers got together to
design a kick-ass language. In 2003 the Haskell Report was published,

which defines a stable version of the language.”

For alonger and more technical account of Haskell’s history, I recommend searching
for a PDF titled, “A History of Haskell: Being Lazy With Class,” by Paul Hudak, John
Hughes, and Simon Peyton Jones, three of the co-creators of Haskell. In that paper
you’ll learn a few more things, including that Haskell was inspired by a programming

language named Miranda.

In that paper you’ll also find this quote from Virginia Curry, Haskell Curry’s wife:

“You know, Haskell actually never liked the name Haskell.”


http://www.catonmat.net/blog/haskell-curry-bird-watching/
https://www.haskell.org/
http://amzn.to/1POaUCv
https://en.wikipedia.org/wiki/Miranda_(programming_language)
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If you want to learn Haskell I highly recommend starting with that book. Real World
Haskell is another good resource.

The maturation of the Haskell language and the nearly simultaneous introduction
of multicore CPUs in mainstream computing devices has been a significant driving
force for the increasing popularity of FP. Because CPUs no longer double in speed
every two years, they now include multiple cores and Hyper-threading technology
to provide performance gains. This makes multicore (concurrent) programming
important, and as luck would have it, pure functions and immutable values make

concurrent programming easier.

As Joe Armstrong writes in his 2013 book Programming Erlang, “Modern processors
are so fast that a single core can run four hyperthreads, so a 32-core CPU might give
us an equivalent of 128 threads to play with. This means that ‘a hundred times faster’ is
within striking distance. A factor of 100 does get me excited. All we have to do is write
the code.”

Martin Odersky and Scala

Martin Odersky was born in 1958, and received his PH.D. under the supervision of
Niklaus Wirth (who is best known as a programming language designer, including
the Pascal language, and received the Turing Award in 1984).

Mr. Odersky is generally best known for creating Scala, but before that he also cre-
ated a language named Pizza, then Generic Java, and the javac compiler. With
a little bit of editing for conciseness, the “Scala prehistory” page on scala-lang.org
states:

“In 1999, after he joined EPFL, the direction of his work changed a bit.
The goal was still to combine functional and object-oriented program-
ming, but without the restrictions imposed by Java. The first step was
Funnel, a minimalist research language based on functional nets ... Fun-

nel was pleasingly pure from a language design standpoint, with very


http://amzn.to/1TX9olw
http://amzn.to/1TX9olw
https://en.wikipedia.org/wiki/Hyper-threading
http://amzn.to/2aab4HF
https://en.wikipedia.org/wiki/Niklaus_Wirth
http://scala-lang.org/
https://en.wikipedia.org/wiki/Pizza_(programming_language)
https://en.wikipedia.org/wiki/Generic_Java
http://www.scala-lang.org/old/node/239.html
https://www.epfl.ch/
http://lampwww.epfl.ch/funnel/
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Figure 10.5: Martin Odersky

few primitive language features. Almost everything, including classes

and pattern matching, would be done by libraries and encodings.”

“However, it turned out that the language was not very pleasant to use in
practice. Minimalism 1s great for language designers but not for users
... The second — and current — step is Scala, which took some of
the ideas of Funnel and put them into a more pragmatic language with
special focus on interoperability with standard platforms. Scala’s design
was started in 2001. A first public release was done in 2003. In 2006, a
second, redesigned version was released as Scala v 2.0.”

| created the sketch of Martin Odersky from the image on his Wikipedia page.

Today

Skipping over a few important programming languages like ML, and OCaml and

fast-forwarding to the here and now, in 2016 there are quite a few pure and impure


https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/OCaml
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functional programming languages, including Haskell, Erlang, Lisp/Scheme vari-
ants, I'# (“a .NET implementation of OCaml”), Clojure (a dialect of Lisp), and of

course, Scala. (My apologies to any languages I omitted.)

On their “programming languages by type” page, Wikipedia provides
a list of functional programming languages that are considered “pure”
and “impure.”

Figure 10.6 shows a rough timeline of some of the important events in the history of
functional programming.

Scala
design Akka is
begins released

1936 1958 1558 1986 1993 1998 |[2084 ZBBT 2016
v v
Alonzo Church Lisp ML first Erlang & Stable 4 The book
creates Lambda appears appears is version “Real
Calculus created of World
Haskell Haskell”
defined is
published
&
Haskell Scala |
first first The book
appears appears “Learn You
a Haskell
For Great
Good" is
published

Figure 10.6: Timeline of events in FP history

One last point

It’s important to note that Mr. Church most likely had no interest in things like (a)
maintaining state over long periods of time, (b) interacting with files (reading and
writing), and (c) networking. In fact, I'm pretty sure that the concept of a “file” had
not been invented in the 1930s; packet-switching networks weren’t invented until the
late 1960s; and DARPA didn’t adopt TCP/IP until 1983.


http://clojure.org/
https://en.wikipedia.org/wiki/List_of_programming_languages_by_type#Pure

56 What is This Lambda You Speak Of?

I mention this because while lambda calculus is important as “a theoretical frame-
work for describing functions and their evaluation,” Mr. Church never said, “Let
me tell you exactly how to work with files, GUIs, databases, web services, and main-

taining state in functional applications ... (followed by his solutions).”

This is important, because as mentioned, pure functional programs consist of only im-
mutable values and pure functions. By definition, they can’t have I/0.

As an example of this problem (I/O in an FP language), the C programming lan-
guage — created between 1969 and 1973 — could handle I/0O, but here’s what the
Wikipedia monad page states about Haskell, I/0O, and monads:

“Eugenio Moggi first described the general use of monads to structure
programs in 1991. Several people built on his work ... early versions
of Haskell used a problematic ‘lazy list’ model for I/O, and Haskell 1.3
introduced monads as a more flexible way to combine I/0O with lazy

evaluation.”

When I write about monads later in this book, I like to remember that lambda calcu-
lus was invented in 1936, but monads weren’t described (invented) until 1991, and
weren’t added to Haskell until version 1.3, which was released in 1998. That’s 62
years in between (a) lambda calculus and (b) monads to handle I/O in Haskell.

If you like history ...

If you like history, Walter Isaacson’s book, The Innovators: How a Group of Hack-
ers, Geniuses, and Geeks Created the Digital Revolution is a detailed history of the
computer technology, tracing it all the way back to Ada Lovelace in the 1840s. The
audiobook version of The Innovators is over 17 hours long, and I listened to it while
driving across the United States in 2015, and I highly recommend it. (His biogra-
phies of Albert Einstein and Steve Jobs are also excellent.)


https://en.wikipedia.org/wiki/Monad_(functional_programming)
https://en.wikipedia.org/wiki/Monad_(functional_programming)
http://amzn.to/2bc5EN5
http://amzn.to/2bc5EN5
http://amzn.to/2aZGrFe
http://amzn.to/2aNLYvc
http://amzn.to/2bc5Z2l
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See also

» AsIwrote the first draft of this chapter, Jamie Allen, Senior Director of Global
Services for Lightbend, tweeted “When I need to break a problem into func-
tions, thinking in LiSP helps me tremendously.”

* My first exposure to the history of functional programming came in an article

titled, Functional Programming for the Rest of Us
* Alonzo Church
A biography of Alonzo Church
* Functional Programming (Wikipedia)
» ENIAC, the first computer in the world
* Haskell Curry
* Lambda mean anonymous function (Stack Overflow)
¢ Lambda mean anonymous function (Stack Exchange)
* Lambda in Python
* Lambda in Ruby (rubymonk)
* Lambda the Ultimate (website)

* “Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp,” by Peter Norvig

 The history of Erlang

* “In many ways, IF'# is essentially a .Net implementation of OCaml”


https://twitter.com/jamie_allen/status/653661859178921984
http://www.defmacro.org/ramblings/fp.html
https://en.wikipedia.org/wiki/Alonzo_Church
http://www-history.mcs.st-andrews.ac.uk/Biographies/Church.html
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/Haskell_Curry
http://stackoverflow.com/questions/16501/what-is-a-lambda-function
http://programmers.stackexchange.com/questions/130722/what-is-the-difference-between-a-function-and-a-lambda
http://www.secnetix.de/olli/Python/lambda_functions.hawk
https://rubymonk.com/learning/books/1-ruby-primer/chapters/34-lambdas-and-blocks-in-ruby/lessons/77-lambdas-in-ruby
http://lambda-the-ultimate.org/
http://www.erlang.org/course/history
https://en.wikibooks.org/wiki/F_Sharp_Programming/Introduction
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The Benefits of Functional Programming

As I write about the benefits of functional programming in this chapter, I need to
separate my answers into two parts. First, there are the benefits of functional program-
ming in general. Second, there are more specific benefits that come from using functional
programming in Scala. I'll look at both of these in these chapter.

Benefits of functional programming in general

Experienced functional programmers make the following claims about functional

programming, regardless of the language they use:

1. Pure functions are easier to reason about

2. Testing 1s easier, and pure functions lend themselves well to techniques like
property-based testing

Debugging is easier
Programs are more bulletproof
Programs are written at a higher level, and are therefore easier to comprehend

Function signatures are more meaningful

N o ook

Parallel/concurrent programming is easier

29
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I'll discuss these benefits in this chapter, and then offer further proof of them as you
go through this book.

Benefits of functional programming in Scala

On top of those benefits of functional programming in general, Scala/FP offers these
additional benefits:

8. Being able to (a) treat functions as values and (b) use anonymous functions

makes code more concise, and still readable
9. Scala syntax generally makes function signatures easy to read
10. The Scala collections’ classes have a very functional API

11. Scala runs on the JVM, so you can still use the wealth of JVM-based libraries
and tools with your Scala/FP applications

In the rest of this chapter I'll explore each of these benefits.

1) Pure functions are easier to reason about

The book, Real World Haskell, states, “Purity makes the job of understanding code

easier.” I've found this to be true for a variety of reasons.

First, pure functions are easier to reason about because you know that they can’t
do certain things, such as talk to the outside world, have hidden inputs, or modify
hidden state. Because of this, you're guaranteed that their function signatures tell
you (a) exactly what’s going into each function, and (b) coming out of each function.

In his book, Clean Code, Robert Martin writes:

“The ratio of time spent reading (code) versus writing is well over 10 to

1 ... (therefore) making it easy to read makes it easier to write.”

I suspect that this ratio is lower with FP. Because pure functions are easier to reason

about:


http://amzn.to/1TX9olw
http://amzn.to/1UJhPQy
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* I'spend less time “reading” them.

* I can keep fewer details in my brain for every function that I read.
This 1s what functional programmers refer to as “a higher level of abstraction.”

Because I can read pure functions faster and use less brain memory per function, I

can keep more overall logic in my brain at one time.

Several other resources support these statements. The book Masterminds of Pro-
gramming includes this quote: “As David Balaban (from Amgen, Inc.) puts it, ‘FP

39

shortens the brain-to-code gap, and that is more important than anything else.
In the book, Practical Common Lisp, Peter Seibel writes:

“Consequently, a Common Lisp program tends to provide a much
clearer mapping between your ideas about how the program works and
the code you actually write. Your ideas aren’t obscured by boilerplate
code and endlessly repeated idioms. This makes your code easier to
maintain because you don’t have to wade through reams of code every
time you need to make a change.”

Although he’s writing about Lisp, the same logic applies to writing pure functions.

Another way that pure functions make code easier to reason about won’t be apparent
when you’re first getting started. It turns out that what really happens in FP applica-
tions 1s that (a) you write as much of the code as you can in a functional style, and
then (b) you have other functions that reach out and interact with files, databases,

web services, Uls, and so on — everything in the outside world.

The concept is that you have a “Pure Function” core, surrounded by impure func-

tions that interact with the outside world, as shown in Figure 11.1.

Given this design, a great thing about Haskell in particular is that it provides a clean
separation between pure and impure functions — so clean that you can tell by look-
ing at a function’s signature whether it is pure or impure. I discuss this more in the
coming lessons, but for now, just know that developers have built libraries to bring
this same benefit to Scala/FP applications.


http://amzn.to/2bedXb4
http://amzn.to/2bedXb4
http://amzn.to/2bKTMSW
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Impure
Pure FP Outer
Core Layer

Figure 11.1: A pure FP core, with a thin layer of 1/0 functions.

2) Testing is easier, and pure functions lend themselves well to techniques
like property-based testing

As I'show in the Scala Cookbook, it’s easier to test pure functions because you don’t
have to worry about them dealing with hidden state and side effects. What this

means is that in imperative code you may have a method like this:
def doSomethingHidden(o: Order, p: Pizza): Unit ...

You can’t tell much about what that method does by looking at its signature, but —
because it returns nothing (Unit) — presumably it (a) modifies those variables, (b)
changes some hidden state, or (c) interacts with the outside world.

When methods modify hidden state, you end up having to write long test code like
this:

test("test hidden stuff that has side effects") {
setUpPizzaState(p)
setUpOrderState(o, p)
doSomethingHidden(o, p)
val result = getTheSideEffectFromThatMethod()

assertEquals(result, expectedResult)

In FP you can’t have code like that, so testing is simpler, like this:


http://amzn.to/24ivK4G
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test("test obvious stuff") {
val result = doSomethingObvious(x, y, z)
test(result, expectedResult)

Proofs

Beyond making unit testing easier, because functional code is like algebra it also

makes it easier to use a form of testing known as property-based testing;

I write much more about this in the lesson on using ScalaCheck, but the main point
is that because the outputs of your functions depend only on their inputs, you can
define “properties” of your functions, and then ScalaCheck “attacks” your functions
with a large range of inputs.

With a few minor edits, the property-based testing page on the ScalaTest website
states:

13

. a property 1s a high-level specification of behavior that should hold
for a range of data points. For example, a property might state, “The
size of a list returned from a method should always be greater than or
equal to the size of the list passed to that method.” This property should
hold no matter what list is passed.”

“The difference between a traditional unit test and a property is that
unit tests traditionally verify behavior based on specific data points ...
for example, a unit test might pass three or four specific lists to a method
that takes a list and check that the results are as expected. A property,
by contrast, describes at a high level the preconditions of the method
under test and specifies some aspect of the result that should hold no

matter what valid list is passed.”


https://www.scalacheck.org/
http://www.scalatest.org/user_guide/property_based_testing
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3) Debugging is easier

As Edsger Dijkstra said, “Program testing can be used to show the presence of bugs,
but never to show their absence.”

Because pure functions depend only on their input parameters to produce their out-
put, debugging applications written with pure functions is easier. Of course it’s pos-
sible to still make a mistake when you write a pure function, but once you have a
stack trace or debug output, all you have to do is follow the values to see what went
wrong. Because the functions are pure, you don’t have to worry about what’s going
on in the rest of the application, you just have to know the inputs that were given to

the pure function that failed.

In Masterminds of Programming, Paul Hudak, a co-creator of the Haskell language,
states, “I’ve always felt that the ‘execution trace’ method of debugging in imperative
languages was broken ... in all my years of Haskell programming, I have never in
fact used Buddha, or GHC’s debugger, or any debugger at all ... I find that testing
works just fine; test small pieces of code using QuickCheck or a similar tool to make
things more rigorous, and then — the key step — simply study the code to see why
things don’t work the way I expect them to. I suspect that a lot of people program
similarly, otherwise there would be a lot more research on Haskell debuggers ...”

ScalaCheck is a property-based testing framework for Scala that was
inspired by Haskell’s QuickCheck.

4) Programs are more bulletproof

People that are smarter than I am can make the mathematical argument that complete
FP applications are more bulletproof than other applications. Because there are fewer
“moving parts” — mutatable variables and hidden state — in FP applications, math-
ematically speaking, the overall application 1s less complex. This is true for simple
applications, and the gap gets larger in parallel and concurrent programming (as

you’ll see in a later section in this chapter).


http://amzn.to/2bedXb4
https://hackage.haskell.org/package/QuickCheck
https://www.scalacheck.org/
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The way I can explain this is to share an example of my own bad code. A few years
ago I started writing a football game for Android devices (American football), and it

has a lot of state to consider. On every play there is state like this:

* What quarter is it?
* How much time is left in the quarter?
* What is the score?

* What down 1s 1t?

What distance 1s needed to make a first down?

* Much more ...

Here’s a small sample of the now-embarrassing public static fields I globally mu-

tate in that application:

// stats for human
public static int numRunsByHuman = 0;
public static int numPassAttemptsByHuman = 0;
public static int numPassCompletionsByHuman = 0;
public static int numInterceptionsThrownByHuman = 0;
public static int numRunningYardsByHuman =

public static int numPassingYardsByHuman

public static int numFirstDownRunsByHuman

0
0
public static int numFumblesByHuman = 0;
0
0

public static int numFirstDownPassesByHuman

When I wrote this code I thought, “I've written Java Swing (GUI) code since the
1990s, and Android code for a few years. I'm working by myself on this, I don’t have
to worry about team communication. I know what I'm doing, what could possibly

go wrong?”

In short, although a football game is pretty simple compared to a business applica-
tion, it still has a lot of “state” that you have to maintain. And when you’re mutating
that global state from several different places, well, it turns out that sometimes the

computer gets an extra play, sometimes time doesn’t run off the clock, etc.


http://xoplay.rocks/
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Skipping all of my imperative state-related bugs ... once I learned how to handle
state in FP applications, I gave up trying to fix those bugs, and I'm now rewriting
the core of the application in an FP style.

As you’ll see in this book, the solution to this problem is to pass the state
around as a value, such as a case class or Map. In this case I might call it
GameState, and it would have fields like quarter, timeRemaining, down,
etc.

A second argument about FP applications being more bulletproof is that because
they are built from all of these little pure functions that are known to work extraor-
dinarily well, the overall application itself must be safer. For instance, if 80% of the
application is written with well-tested pure functions, you can be very confident in
that code; you know that it will never have the mutable state bugs like the ones in

my football game. (And if somehow it does, the problem is easier to find and fix.)

As an analogy, one time I had a house built, and I remember that the builder was
very careful about the 2x4’s that were used to build the framework of the house. He’d
line them up and then say, “You do not want that 2x4 in your house,” and he would
be pick up a bent or cracked 2x4 and throw it off to the side. In the same way that
he was trying to build the framework of the house with wood that was clearly the

best, we use pure functions to build the best possible core of our applications.

Yes, I know that programmers don’t like it when I compare building a
house to writing an application. But some analogies do fit.

5) Programs are written at a higher level, and are therefore easier to com-
prehend

In the same way that pure functions are easier to reason about, overall FP applica-
tions are also easier to reason about. For example, I find that my FP code is more
concise than my imperative and OOP code, and it’s also still very readable. In fact,
I think it’s more readable than my older code.

Wikipedia states, “Imperative programming is a programming paradigm that uses
statements that change a program’s state.”



Some of the features that make FP code more concise and still readable are:

* The ability to treat functions as values
* The ability to pass those values into other functions

* Being able to write small snippets of code as anonymous functions
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* Not having to create deep hierarchies of classes (that sometimes feel “artifical”)

* Most IP languages are “low ceremony” languages, meaning that they require

less boilerplate code than other languages

If you want to see what I mean by FP languages being “low ceremony,”
here’s a good example of OCaml, and this page shows examples of
Haskell’s syntax.

In my experience, when I write Scala/FP code that I'm comfortable with today, I

have always been able to read it at a later time. And as I mentioned when writing

about the benefits of pure functions, “concise and readable” means that I can keep

more code in my head at one time.

| emphasize that Scala/FP code is concise and readable because sometimes “more
concise” code can be a problem. | remember that a friend who didn't like Perl once de-
scribed Perl code as, “Write once, read forever.” Because the syntax could get so com-
plex, he couldn’t modify his own code a few weeks after writing it because he couldn’t
remember how each little syntactical nuance worked. | have the same problem writing

complex regular expressions. If | don’'t document them when | create them, | can never

tell how they work when | look at them later.

(Personally | like the non-OO0 parts of Perl, and have written over 150 Perl tutorials.)

6) Pure function signatures are meaningful

When learning FP, another big “lightbulb going on over my head” moment came

when I saw that my function signatures were suddenly much more meaningful than

my imperative and OOP method signatures.


https://ocaml.org/learn/taste.html
http://prajitr.github.io/quick-haskell-syntax/
http://prajitr.github.io/quick-haskell-syntax/
https://www.perl.org/
http://alvinalexander.com/perl/
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Because non-FP methods can have side effects — which are essentially /udden inputs
and outputs of those methods — their function signatures often don’t mean that

much. For example, what do you think this imperative method does:
def doSomething(): Unit { code here ...

The correct answer 1s, “Who knows?” Because it takes no input parameters and re-

turns nothing, there’s no way to guess from the signature what this method does.

In contrast, because pure functions depend only on their input parameters to pro-
duce their output, their function signatures are extremely meaningful — a contract,

cven.

I write more about this in the upcoming lesson, “Pure Functions Tell
AllL”

7) Parallel programming

While writing parallel and concurrent applications is considered a “killer app” that
helped spur renewed interest in FP, I have written my parallel/concurrent apps (like
Sarah) primarily using Akka Actors and Scala Futures, so I can only speak about
them: they’re awesome tools. I wrote about them in the Scala Cookbook and on
my website (alvinalexander.com), so please search those resources for “actors” and

“futures” to find examples.

Therefore, to support the claims that FP is a great tool for writing paral-
lel/concurrent applications, I'm going to include quotes here from other resources.
As you’ll see, the recurring theme in these quotes is, “Because I'P only has im-
mutable values, you can’t possibly have the race conditions that are so difficult to
deal with in imperative code.”

The first quote comes from an article titled, “Functional Programming for the Rest
of Us,”:

‘A functional program is ready for concurrency without any further

modifications. You never have to worry about deadlocks and race con-


http://alvinalexander.com/sarah
http://amzn.to/24ivK4G
http://alvinalexander.com
http://www.defmacro.org/ramblings/fp.html
http://www.defmacro.org/ramblings/fp.html
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ditions because you don’t need to use locks. No piece of data in a func-
tional program is modified twice by the same thread, let alone by two
different threads. That means you can easily add threads without ever
giving conventional problems that plague concurrency applications a
second thought.”

The author goes on to add the information shown in Figure 11.2.

The coneurrency story doesn't stop here. If vour application is inherently single
threaded the compiler can still optimize functional programs to run on multiple
CPUs. Take a look at the following code fragment:

String sl = somewhatLongOperationl();

String s2 somewhatLongOperation?();

String s3 concatenate(sl, s2);

In a functional language the compiler could analvze the code, classify the funetions
that create strings s1 and s2 as potentially time consuming operations, and run them
concurrently. This is impossible to do in an imperative language because each
function may modify state outside of its scope and the function following it may
depend on it. In functional langnages automatic analysis of functions and finding

Fagure 11.2: A compiler can optimize functional programs to run on multiple cores.

The Clojure.org website adds the statements in Figure 11.3 about how Clojure and
FP help with concurrency.

Concurrency and the multi-core future

¢ Immutability makes much of the problem go away

o Share freely between threads
s But changing state a reality for simulations and for in-program proxies to the outside world
» Locking is too hard to get right over and over again

« Clojure's software transactional memaory and agent systems do the hard part

Figure 11.3: Concurrency benefits from the Clojure website.


http://clojure.org/about/rationale
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Page 17 of the book, Haskell, the Craft of Functional Programming, states, “Haskell
programs are easy to parallelize, and to run efficiently on multicore hardware, be-

cause there 1s no state to be shared between different threads.”

In this article on the ibm.com website, Neal Ford states, “Immutable objects are also
automatically thread-safe and have no synchronization issues. They can also never

exist in unknown or undesirable state because of an exception.”

In the pragprom.com article, Functional Programming Basics, famous programmer
Robert C. Martin extrapolates from four cores to a future with 131,072 processors

when he writes:

“Honestly, we programmers can barely get two Java threads to coop-
erate ... Clearly, if the value of a memory location, once initialized,
does not change during the course of a program execution, then there’s
nothing for the 131072 processors to compete over. You don’t need
semaphores if you don’t have side effects! You can’t have concurrent
update problems if you don’t update! ... So that’s the big deal about
functional languages; and it is one big fricking deal. There is a freight
train barreling down the tracks towards us, with multi-core emblazoned

on it; and you’d better be ready by the time it gets here.”

With a slight bit of editing, an article titled, The Downfall of Imperative Program-

ming states:

“Did you notice that in the definition of a data race there’s always talk of
mutation? Any number of threads may read a memory location without
synchronization, but if even one of them mutates it, you have a race. And
that is the downfall of imperative programming: Imperative programs
will always be vulnerable to data races because they contain mutable

variables.”
id Software co-founder and technical director John Carmack states:
“Programming in a functional style makes the state presented to your

code explicit, which makes it much easier to reason about, and, in a

completely pure system, makes thread race conditions impossible.”


http://amzn.to/1POe1u9
http://www.ibm.com/developerworks/library/j-ft4/
https://pragprog.com/magazines/2013-01/functional-programming-basics
https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
http://www.idsoftware.com/en-us
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Writing Erlang code 1s similar to using the Akka actors library in Scala. The Erlang
equivalent to an Akka actor is a “process,” and in his book, Programming Erlang,

Joe Armstrong writes:

“Processes share no data with other processes. This is the reason why

we can easily distribute Erlang programs over multicores or networks.”

For a final quote, “The Trouble with Shared State” section on this medium.com
article states, “In fact, if you’re using shared state and that state is reliant on sequences
which vary depending on indeterministic factors, for all intents and purposes, the
output is impossible to predict, and that means it’s impossible to properly test or
fully understand. As Martin Odersky puts it:”

non-determinism = parallel processing + mutable state

The author follows that up with an understatement: “Program determinism is usu-

ally a desirable property in computing.”

Determunistic algorithms and concurrency

Deterministic algorithms

If you’re not familiar with the term deterministic algorithm, Wikipedia defines it like
this: “In computer science, a deterministic algorithm is an algorithm which, given a
particular input, will always produce the same output, with the underlying machine
always passing through the same sequence of states.”

(As you’ll soon see, this is basically the definition of a pure function.)

Conversely, a nondeterministic algorithm is like asking a user to ask the person next to
them what their favorite color is: you’re never guaranteed to get the same answer.
If you’re trying to do something like sort a list of numbers, you really want a deter-

ministic solution.


http://www.erlang.org/
http://akka.io/
http://amzn.to/2aab4HF
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976#.1nnkil8gs
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976#.1nnkil8gs
https://en.wikipedia.org/wiki/Deterministic_algorithm
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Parallel, Concurrent

Yossi Kreinin created the original version of the image shown in Figure 11.4 to help

explain the differences between the meanings of “concurrent” and “parallel”.
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Parallel: 2 queues, 2 vending machines

Figure 11.4: The difference between concurrent and parallel.

His image is based on a diagram in this article by famed Erlang programmer Joe

Armstrong. Mr. Armstrong offers this summary in his post:

* Concurrent = Two queues and one coffee machine

* Parallel = Two queues and two coffee machines

I tend to use the two terms interchangeably, but I will be more precise with my

language in the “Concurrency” lesson in this book.


http://yosefk.com/blog/parallelism-and-concurrency-need-different-tools.html
http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html
http://joearms.github.io/2013/04/05/concurrent-and-parallel-programming.html
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8) Scala/FP benefit: The ability to treat functions as values

I’'ve already written a little about higher-order functions (HOVFs), and I write more
about them later in this book, so I won’t belabor this point: the fact that Scala (a) lets
you treat functions as values, (b) lets you pass functions around to other functions,
and (c) lets you write concise anonymous functions, are all features that make Scala
a better functional programming language than another language (such as Java) that

does not have these features.

9) Scala/FP benefit: Syntax makes function signatures easy to read

In my opinion, the Scala method syntax is about as simple as you can make method
signatures, especially signatures that support generic types. This simplicity usually

makes method signatures easy to read.
For instance, it’s easy to tell that this method takes a String and returns an Int:
def foo(s: String): Int = ??77?

These days I prefer to use explicit return types on my methods, such as the Int in
this example. I think that being explicit makes them easier to read later, when I'm
in maintenance mode. And in an example like this, I don’t know how to make that

method signature more clear.

If you prefer methods with wmplicit return types you can write that same method like

this, which is also clear and concise:
def foo(s: String) = ??7?

Even when you need to use generic type parameters — which make any method

harder to read — Scala method signatures are still fairly easy to read:
def foo[A, B](a: A): B = ??7?

It’s hard to make it much easier than that.



74 The Benefits of Functional Programming

Occasionally I think that I’d like to get rid of the initial generic type declaration in
the brackets — the [A, B] part — so the signature would look like this:

def foo(a: A): B = 777

While that’s more concise for simple type declarations, it would create an incon-
sistency when you need to use advanced generic type features such as bounds and
variance, like this example I included in the Scala Cookbook:

def getOrkElse[B >: A](default: => B): B = 77?7

Even with the initial brackets, the type signatures are still fairly easy to read. You
can make the argument that declaring the generic types in brackets before the rest
of the signature makes it clear to the reader that they are about to see those types in

the remainder of the signature. For instance, when you read this function:
def foo[A, B](Ca: A): B = 77?7

you can imagine saying to yourself, “This is a function named foo ... its signature 1s

going to use two generic types A and B, and then ...”

Given what generic types represent, I think that’s pretty clear.

In Haskell, when you declare a function’s type signature, you do it on a separate line,
similar to the way that you declare C function signatures separately. For example, this
is the way that you'd declare the signature for a Haskell function that takes an Order
as an input parameter, and returns a String result:

orderToString :: Order -&gt; String

(Note: Thisis a simple example. One of the difficulties of learning Haskell is that its func-
tion signatures quickly get more complicated. See my Example Haskell pizza-ordering
application for more function signature examples.)


http://alvinalexander.com/source-code/haskell/example-haskell-application-pizza-point-sales-order-system
http://alvinalexander.com/source-code/haskell/example-haskell-application-pizza-point-sales-order-system
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10) Scala/FP benefit: The collections classes have a functional API

When I first came to Scala from Java, the Scala collections API was a real surprise.
But, once I had that “Aha!” moment and realized how they work, I saw what a great
benefit they are. Having all of those standard functional methods eliminates almost

every need for custom for loops.

The important benefit of this is that these standard methods make my code more
consistent and concise. These days I write almost 100% fewer custom for loops,

and that’s good for me — and anyone who has to read my code.

11) Scala/FP benefit: Code runs on the JVM

Because the Scala compiler generates Java bytecode that runs on the JVM, and be-
cause Scala supports both FP and OOP models, you can still use all of those thou-
sands of Java/JVM libraries that have been created in the last twenty years in your
Scala/FP applications. Even if those libraries aren’t “Pure FP,” at least you can
still use them without having to “reinvent the wheel” and write a new library from
scratch.

In fact, not only can you use the wealth of existing JVM libraries, you can also use
all of your favorite JVM tools in general:

Build tools like Ant, Maven, Gradle, and SBT

Test tools like JUnit, TestNG, mock frameworks
+ Continuous integration tools

* Debugging and logging frameworks

* Profiling tools

* More ...

These libraries and tools are a great strength of the JVM. If you ask experienced
FP developers why they are using Scala rather than Haskell or another FP language,
“libraries, tools, and JVM” is the usual answer.
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One more thing ...

On a personal note, a big early influence for me — before I knew about any of
these benefits — was seeing people like Martin Odersky, Jonas Bonér, Bill Venners,
and other leading Scala programmers use and promote an FP style. Because Scala
supports both OOP and FP, it’s not like they had to sell anyone on FP in order to get
us to use Scala. (As a former business owner, I feel like I'm always on the lookout for

people who are trying to “sell” me something.)

I don’t know if they use FP 100% of the time, but what influenced me is that they
started using F'P and then they never said, “You know what? FP isn’t that good after

all. I'm going back to an imperative style.”

In the 2016 version of Programming in Scala, Martin Odersky’s biog-
raphy states, “He works on programming languages and systems, more
spectfically on the topic of how to combine object-oriented and func-
tional programming.” Clearly FP is important to him (as is finding the

best ways to merge FP and OOP concepts).

Summary

In summary, the benefits of “functional programming in general” are:

1. Pure functions are easier to reason about

2. Testing 1s easier, and pure functions lend themselves well to techniques like
property-based testing

Debugging is easier
Programs are more bulletproof
Programs are written at a higher level, and are therefore easier to comprehend

Function signatures are more meaningful

e A

Parallel/concurrent programming is easier


http://amzn.to/2byNzrs
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On top of those benefits, “functional programming in Scala” offers these additional
benefits:

8. Being able to (a) treat functions as values and (b) use anonymous functions

makes code more concise, and still readable
9. Scala syntax generally makes function signatures easy to read
10. The Scala collections’ classes have a very functional API

11. Scala runs on the JVM, so you can still use the wealth of JVM-based libraries
and tools with your Scala/FP applications

What's next
In this chapter I tried to share an honest assessment of the benefits of functional

programming. In the next chapter I'll try to provide an honest assessment of the
potential drawbacks and disadvantages of functional programming.

See Also

Quotes in this chapter came from the following sources:

Real World Haskell

¢ Clean Code

* Masterminds of Programming

* Scala Cookbook

¢ The ScalaCheck website
 Property-based-testing on the ScalaTest website
* Functional Programming for the Rest of Us

* Yossi Kreinin’s parallel vs concurrent image

* Joe Armstrong’s parallel vs concurrent article
* The Clojure.org “rationale” page

* Haskell, the Craft of Functional Programming

e Neal Ford’s comments on ibm.com
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https://www.scalacheck.org/
http://www.scalatest.org/user_guide/property_based_testing
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http://yosefk.com/blog/parallelism-and-concurrency-need-different-tools.html
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http://amzn.to/1POe1u9
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* Robert C. Martin’s Functional Programming Basics article

* The Downfall of Imperative Programming on fpcomplete.com
* The Erlang website

* The Akka website

¢ Programming Erlang

* If you want to take a look at OCaml, O’Reilly’s Real World OCaml is freely

available online
e “The Trouble with Shared State” section of this medium.com article

* Deterministic algorithms on Wikipedia

I found John Carmack’s quote in this reprinted article on gamasutra.com
q P g

You can also search my alvinalexander.com website for examples of Akka and Scala

Futures.


https://pragprog.com/magazines/2013-01/functional-programming-basics
https://www.fpcomplete.com/blog/2012/04/the-downfall-of-imperative-programming
http://www.erlang.org/
http://akka.io/
http://amzn.to/2aab4HF
https://realworldocaml.org/v1/en/html/a-guided-tour.html
https://realworldocaml.org/v1/en/html/a-guided-tour.html
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-a-pure-function-d1c076bec976#.1nnkil8gs
https://en.wikipedia.org/wiki/Deterministic_algorithm
http://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
http://alvinalexander.com
http://alvinalexander.com

Disadvantages of Functional Programming

Zen Mind, Beginner’s Mind

In the last chapter I looked at the benefits of functional programming, and as I

showed, there are quite a few. In this chapter I'll look at the potential drawbacks of
FP.

Just as I did in the previous chapter, I'll first cover the “drawbacks of functional

programming n general’:

1. Writing pure functions is easy, but combining them into a complete application
is where things get hard.

2. The advanced math terminology (monad, monoid, functor, etc.) makes FP
intimidating.
3. For many people, recursion doesn’t feel natural.

4. Because you can’t mutate existing data, you instead use a pattern that I call,

“Update as you copy.”
5. Pure functions and I/0 don’t really mix.

6. Using only immutable values and recursion can potentially lead to perfor-

mance problems, including RAM use and speed.

After that I'll look at the more-specific “drawbacks of functional programming in
Scala”:
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7. You can mix FP and OOP styles.
8. Scala doesn’t have a standard FP library.

1) Writing pure functions is easy, but combining them into a complete ap-
plication is where things get hard

Writing a pure function is generally fairly easy. Once you can define your type signa-
ture, pure functions are easier to write because of the absence of mutable variables,
hidden inputs, hidden state, and I/O. For example, the determinePossiblePlays

function in this code:
val possiblePlays = OffensiveCoordinator.determinePossiblePlays(gameState)

is a pure function, and behind it are thousands of lines of other functional code.
Writing all of these pure functions took time, but it was never difficult. All of the
functions follow the same pattern:

1. Data in
2. Apply an algorithm (to transform the data)

3. Data out

That being said, the part that zs hard is, “How do I glue all of these pure functions
together in an FP style?” That question can lead to the code I showed in the first
chapter:

def updateHealth(delta: Int): Game[Int] = StateT[IO, GameState, Int]
{ (s: GameState) =>

val newHealth = s.player.health + delta
I0((s.copy(player = s.player.copy(health = newHealth)), newHealth))

As you may be aware, when you first start programming in a pure FP style, gluing

pure functions together to create a complete FP application is one of the biggest
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stumbling blocks you’ll encounter. In lessons later in this book I show solutions for

how to glue pure functions together into a complete application.

2) Advanced math terminology makes FP intimidating

I don’t know about you, but when I first heard terms like combinator, monoid,
monad, and functor, I had no idea what people were talking about. And I've been

paid to write software since the early-1990s.

As I discuss in the next chapter, terms like this are intimidating, and that “fear factor”

becomes a barrier to learning FP.

Because I cover this topic in the next chapter, I won’t write any more

about it here.

3) For many people, recursion doesn’t feel natural

One reason I may not have known about those mathematical terms is because my
degree is in aerospace engineering, not computer science. Possibly for the same
reason, | knew about recursion, but never had to use it. That is, until I became

serious about writing pure FP code.

As I'wrote in the “What is FP?” chapter, the thing that happens when you use only
pure functions and immutable values 1s that you %ave to use recursion. In pure FP
code you no longer use var fields with for loops, so the only way to loop over elements

in a collection 1s to use recursion.

Fortunately, you can learn how to write recursive code. If there’s a secret to the
process, it’s in learning how to “think in recursion.” Once you gain that mindset
and see that there are patterns to recursive algorithms, you’ll find that recursion gets

much easier, even natural.

Two paragraphs ago I wrote, “the only way to loop over elements in a collection is to
use recursion,” but thatisn’t 100% true. In addition to gaining a “recursive thinking”

mindset, here’s another secret: once you understand the Scala collections’ methods,
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you won’t need to use recursion as often as you think. In the same way that collec-
tions’ methods are replacements for custom for loops, they’re also replacements for

many custom recursive algorithms.

As just one example of this, when you first start working with Scala and you have a
List like this:

val names = List("chris", "ed", "maurice™)
it’s natural to write a for/yield expression like this:
val capNames = for (e <- names) yield e.capitalize

As you’ll see in the upcoming lessons, you can also write a recursive algorithm to

solve this problem.

But once you understand Scala’s collections’ methods, you know that the map method
is a replacement for those algorithms:

val capNames = fruits.map(_.e.capitalize)
Once you’re comfortable with the collections” methods, you’ll find that you reach for

them before you reach for recursion.

I write much more about recursion and the Scala collections’ methods

in upcoming lessons.

4) Because you can’t mutate existing data, you instead use a pattern that
| call, “Update as you copy”

For over 20 years I've written imperative code where it was easy — and extraordi-
narily common — to mutate existing data. For instance, once upon a time I had a

niece named “Emily Means”:

val emily = Person("Emily", "Means™)
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Then one day she got married and her last name became “Walls”, so it seemed

logical to update her last name, like this:
emily.setLastName("Walls")
In FP you don’t do this. You don’t mutate existing objects.

Instead, what you do is (a) you copy an existing object to a new object, and then as a
copy of the data is flowing from the old object to the new object, you (b) update any
fields you want to change by providing new values for those fields, such as lastName
in Figure 12.1.

01d Object (copy process) New Object
firstName: "Emily" - - - - - - — — > firstName: "Emily"
lastName: '"Means" - — ='"Walls"— - » lastName: "Walls"

Figure 12.1: Results of the “update as you copy™ concept

The way you “update as you copy” in Scala/FP is with the copy method that comes

with case classes. First, you start with a case class:

case class Person (firstName: String, lastName: String)

Then, when your niece is born, you write code like this:

val emilyl = Person("Emily", "Means™)

Later, when she gets married and changes her last name, you write this:
val emily2 = emilyl.copy(lastName = "Walls")

After that line of code, emily2.1lastName has the value "Walls".

Note: I intentionally use the variable names emilyl and emily2 in this example to
make it clear that you never change the original variable. In FP you constantly create
intermediate variables like namel and name2 during the “update as you copy” process,
but there are FP techniques that make those intermediate variables transparent.



84 Disadvantages of Functional Programming

I show those techniques in upcoming lessons.

“Update as you copy™ gets worse with nested objects

The “Update as you copy” technique isn’t too hard when you’re working with this
simple Person object, but think about this: What happens when you have nested
objects, such as a Family that has a Person who has a Seq[CreditCard], and that
person wants to add a new credit card, or update an existing one? (This is like an
Amazon Prime member who adds a family member to their account, and that person

has one or more credit cards.) Or what if the nesting of objects is even deeper?
In short, this is a real problem that results in some nasty-looking code, and it gets

uglier with each nested layer. Fortunately, other FP developers ran into this problem
long before I did, and they came up with ways to make this process easier.

I cover this problem and its solution in several lessons later in this book.

5) Pure functions and 1/0 don't really mix

As I wrote in the “What 1s Functional Programming” lesson, a pure function 1s a func-
tion (a) whose output depends only on its input, and (b) has no side effects. Therefore,

by definition, any function that deals with these things is impure:

File I70

* Database 170

Internet I/0O

* Any sort of UI/GUI input

* Any function that mutates variables

* Any function that uses “hidden” variables

Given this situation, a great question is, “How can an FP application possibly work
without these things?”
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The short answer is what I wrote in the Scala Cookbook and in the previous lesson:
you write as much of your application’s code in an FP style as you can, and then you
write a thin I70 layer around the outside of the FP code, like putting “I/O icing”
around an “IFP cake,” as shown in Figure 12.2.

v\ Impure
[{ PureFP ﬁ? Quter
( ~ Layer

L

\\

e ———

Core /]

Fagure 12.2: A thin, impure 1/0 layer around a pure core

Pure and vmpure_functions

In reality, no programming language is really “pure,” at least not by my definition.
(Several FP experts say the same thing.) Wikipedia lists Haskell as a “pure” I'P lan-
guage, and the way Haskell handles I/O equates to this Scala code:

def getCurrentTime(): IO[String] = 777

The short explanation of this code 1s that Haskell has an I0 type that you must use as
a wrapper when writing I/0O functions. This is enforced by the Haskell compiler.

For example, getLine is a Haskell function that reads a line from STDIN;, and returns
a type that equates to I0[String] in Scala. Any time a Haskell function returns
something wrapped in an IO, like IO[String], that function can only be used in

certain places within a Haskell application.

If that sounds hard core and limiting, well, it is. But it turns out to be a

good thing.


https://en.wikipedia.org/wiki/List_of_programming_languages_by_type#Functional_languages
https://en.wikipedia.org/wiki/List_of_programming_languages_by_type#Functional_languages
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Some people imply that this I0 wrapper makes those functions pure, but in my opin-
ion, this 1sn’t true. At first I thought I was confused about this — that I didn’t
understand something — and then I read this quote from Martin Odersky on scala-

lang.org:

“The IO monad does not make a function pure. It just makes it obvious

that it’s impure.”

For the moment you can think of an IO instance as being like a Scala Option.
More accurately, you can think of it as being an Option that always returns a
Some[YourDataTypeHere], such as a Some[Person] or a Some[String].

As you can imagine, just because you wrap a String that you get from the outside
world inside of a Some, that doesn’t mean the String won’t vary. For instance, if you
prompt me for my name, I might reply “Al” or “Alvin,” and if you prompt my niece
for her name, she’ll reply “Emily,” and so on. I think you’ll agree that Some["A1"],
Some["Alvin"], and Some["Emily"] are different values.

Therefore, even though (a) the return type of Haskell I/O functions must be wrapped
in the I0 type, and (b) the Haskell compiler only permits I0 types to be in certain
places, they are impure functions: they can return a different value each time they are

called.

The benefit of Haskell’s IO type

It’s a little early in this book for me to write about all of this, but ... the main benefit of
the Haskell I0 approach is that it creates a clear separation between (a) pure functions
and (b) impure functions. Using Scala to demonstrate what I mean, I can look at

this function and Anow from its signature that it’s pure function:
def foo(a: String): Int = ?77?

Similarly, when I see that this next function returns something in an I0 wrapper, I

know from its signature alone that it’s an impure function:


http://www.scala-lang.org/old/node/11194.html
http://www.scala-lang.org/old/node/11194.html
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def bar(a: String): IO[String] = 7?77

That’s actually very cool, and I write more about this in the I/O lessons of this book.

I haven’t discussed UI/GUI input/output in this section, but I discuss

it more in the “Should I use FP everywhere?” section that follows.

6) Using only immutable values and recursion can lead to performance
problems, including RAM use and speed

An author can get himself into trouble for stating that one programming paradigm
can use more memory or be slower than other approaches, so let me begin this

section by being very clear:

When you furst write a simple (“naiwe”) FP algorithm, it 1s possible — just possi-
ble — that the immutable values and data-copying I mentioned earlier

can be a performance problem.

I demonstrate an example of this problem in a blog post on Scala Quicksort al-
gorithms. In that article I show that the basic (“naive”) recursive quickSort algo-
rithm found in the “Scala By Example” PDF uses about 660 MB of RAM while
sorting an array of ten million integers, and is four times slower than using the

scala.util.Sorting.quickSort method.

Having said that, it’s important to note how scala.util.Sorting.quickSort works.
In Scala 2.12, it passes an Array[Int] directly to java.util.Arrays.sort(int[]).
The way that sort method works varies by Java version, but Java 8 calls a sort
method in java.util.DualPivotQuicksort. The code in that method (and one other
method it calls) is at least 300 lines long, and is much more complex than the sim-

ple/naive quickSort algorithm I show.

Therefore, while it’s true that the “simple, naive” quickSort algorithm in the “Scala
By Example” PDF has those performance problems, I need to be clear that I'm
comparing (a) a very simple algorithm that you might initially write, to (b) a much

larger, performance-optimized algorithm.


http://alvinalexander.com/scala/scala-quicksort-algorithms-fp-recursive-imperative-performance
http://alvinalexander.com/scala/scala-quicksort-algorithms-fp-recursive-imperative-performance
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In summary, while this is a potential problem with simple/naive FP code, I offer
solutions to these problems in a lesson titled, “Functional Programming and Perfor-

mance.”

7) Scala/FP drawback: You can mix FP and OOP styles

If you’re an FP purist, a drawback to using functional programming in Scala is that Scala
supports both OOP and FP, and therefore it’s possible to mix the two coding styles
in the same code base.

While that is a potential drawback, many years ago when working with a technology
known as Function Point Analysis — totally unrelated to functional programming —
I learned of a philosophy called “House Rules” that eliminates this problem. With
House Rules, the developers get together and agree on a programming style. Once

a consensus 1s reached, that’s the style that you use. Period.

As a simple example of this, when I owned a computer programming consulting

company, the developers wanted a Java coding style that looked like this:

public void doSomething()
{

doX();

doY(Q);

As shown, they wanted curly braces on their own lines, and the code was indented
four spaces. I doubt that everyone on the team loved that style, but once we agreed
on it, that was it.

I think you can use the House Rules philosophy to state what parts of the Scala
language your organization will use in your applications. For instance, if you want
to use a strict “Pure FP” style, use the rules I set forth in this book. You can always

change the rules later, but it’s important to start with something,


http://alvinalexander.com/fpa/

There are two ways to look at the fact that Scala supports both OOP and FP. As men-
tioned, in the first view, FP purists see this as a drawback.

But in a second view, people interested in using both paradigms within one language
see this as a benefit. For example, Joe Armstrong has written that Erlang processes —
which are the equivalent of Akka actors — can be written in an imperative style. Mes-
sages between processes are immutable, but the code within each process is single-
threaded and can therefore be imperative. If a language only supports FP, the code
in each process (actor) would have to be pure functional code, when that isn't strictly
necessary.

As | noted in the previous chapter, in the 2016 version of Programming in Scala, Martin
Odersky’s biography states, “He works on programming languages and systems, more
specifically on the topic of how to combine object-oriented and functional programming.”
Trying to merge the two styles appears to be an important goal for Mr. Odersky.

Personally, | like Scala’s support of both the OOP and FP paradigms because this lets
me use whatever style best fits the problem at hand. (In a terrific addition to this, adding
Akka to the equation lets me use Scala the way other programmers use Erlang.)

8) Scala/FP drawback: Scala doesn’t have a standard FP library

Another potential drawback to functional programming in Scala 1s that there isn’t a built-
in library to support certain FP techniques. For instance, if you want to use an I0
data type as a wrapper around your impure Scala/FP functions, there isn’t one built

into the standard Scala libraries.

To deal with this problem, independent libraries like Scalaz, Cats, and others have

been created. But, while these solutions are built into a language like Haskell, they

are standalone libraries in Scala.

I found that this situation makes it more difficult to learn Scala/FP. For
instance, you can open any Haskell book and find a discussion of the I0

type and other built-in language features, but the same is not true for


http://amzn.to/2byNzrs
https://github.com/scalaz/scalaz
https://github.com/typelevel/cats
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Scala. (I discuss this more in the 170 lessons in this book.)

| considered comparing Scala’s syntax to Haskell and other FP languages like
F#/OCaml to demonstrate potential benefits and drawbacks, but that sort of discussion
tends to be a personal preference: one developer’s “concise” is another developer’s
“cryptic.”

If you want to avoid that sort of debate and read an objective comparison of Haskell and
Scala features, Jesper Nordenberg provides one of the most neutral “Haskell vs Scala”
discussions I've read.

“Should | use FP everywhere?”

Caution: A problem with releasing a book a few chapters at a time is that the later
chapters that you’ll finish writing at some later time can have an impact on earlier
content. For this book, that’s the case regarding this section. I have only worked
with small examples of Functional Reactive Programming to date, so as I learn more
about it, I expect that new knowledge to affect the content in this section. Therefore,
a caution: “T'his section is still under construction, and may change significantly.”

After I listed all of the benefits of functional programming in the previous chapter, 1
asked the question, “Should I write a// of my code in an FP style?” At that time you
might have thought, “Of course! This FP stuff sounds great!”

Now that you've seen some of the drawbacks of FP, I think I can provide a better

answer.

la) GUIs and Pure FP are not a good fit

The first part of my answer is that I like to write Android apps, and I also enjoy
writing Java Swing and Javal’X code, and the interface between (a) those frameworks
and (b) your custom code isn’t a great fit for FP.


http://jnordenberg.blogspot.com/2012/05/my-take-on-haskell-vs-scala.html
http://jnordenberg.blogspot.com/2012/05/my-take-on-haskell-vs-scala.html
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As one example of what I mean, in an Android football game I work on in my spare
time, the OOP game framework I use provides an update method that I'm supposed

to override to update the screen:

@0verride
public void update(GameView gameView) {

// my custom code here ...

Inside that method I have a lot of imperative GUI-drawing code that currently cre-
ates the UI shown in Figure 12.3.

There i1sn’t a place for FP code at this point. The framework expects me to update
the pixels on the screen within this method, and if you’ve ever written anything like
a video game, you know that to achieve the best performance — and avoid screen
flickering — it’s generally best to update only the pixels that need to be changed. So
this really is an “update” method, as opposed to a “completely redraw the screen”
method.

Remember, words like “update” and “mutate” are not in the FP vocab-
ulary.

Other “thick client,” GUI frameworks like Swing and JavalFX have similar interfaces,
where they are OOP and imperative by design. Figure 12.4 shows an example of a
little text editor I wrote and named “AlPad,” and its major feature is that it lets me
easily add and remove tabs to keep little notes organized.

The way you write Swing code like this is that you first create a JTabbedPane:
JTabbedPane tabbedPane = new JTabbedPane();

Once created, you keep that tabbed pane alive for the entire life of the application.
Then when you later want to add a new tab, you mutate the JTabbedPane instance like
this:


http://xoplay.rocks/
http://alvinalexander.com/apps/alpad
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Figure 12.3: The UI for my “XO Play” application
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Figure 12.4: A few tabs in my “AlPad” application
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tabbedPane.addTab(
"to-do",
null,
newPanel,
"to-do");

That’s the way thick client code usually works: you create components and then
mutate them during the life of the application to create the desired user interface.

The same is true for most other Swing components, like JFrame, JList, JTable, etc.

Because these frameworks are OOP and imperative by nature, this interface point

is where IFP and pure functions typically don’t fit.

If you know about Functional Reactive Programming (FRP), please
stand by; I write more on this point shortly.

When you’re working with these frameworks you have to conform to their styles at
this interface point, but there’s nothing to keep you from writing the rest of your

code in an FP style. In my Android football game I have a function call that looks
like this:

val possiblePlays = OffensiveCoordinator.determinePossiblePlays(gameState)

In that code, determinePossiblePlays is a pure function, and behind it are several
thousand lines of other pure functions. So while the GUI code has to conform to
the Android game framework I’'m using, the decision-making portion of my app —

the “business logic” — is written in an FP style.
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1b) Caveats to what I just wrote

Having stated that, let me add a few caveats.

First, Web applications are completely different than thick client (Swing, JavalFX) ap-
plications. In a thick client project, the entire application is typically written in one
large codebase that results in a binary executable that users install on their comput-
ers. Eclipse, Intelli] IDEA, and NetBeans are examples of this.

Conversely, the web applications I've written in the last few years use (a) one of
many JavaScript-based technologies for the U, and (b) the Play Framework on the
server side. With Web applications like this, you have impure data coming into your
Scala/Play application through data mappings and REST functions, and you prob-
ably also interact with impure database calls and impure network/internet I/ O, but
just like my football game, the “logic” portion of your application can be written

with pure functions.

Second, the concept of Functional-Reactive Programming (FRP) combines FP tech-
niques with GUI programming. The RxJava project includes this description:

“RxJavais a Java VM implementation of Reactive Extensions: a library
for composing asynchronous and event-based programs by using observ-
able sequences ... It extends the Observer Pattern to support sequences
of data/events and adds operators that allow you to compose sequences
together declaratively while abstracting away concerns about things like
low-level threading, synchronization, thread-safety and concurrent data

structures.”

(Note that declarative programming is the opposite of imperative pro-

gramming.)
The ReactiveX.1i0 website states:

“ReactiveX i1s a combination of the best ideas from the Observer pattern,
the Iterator pattern, and functional programming.”


https://www.playframework.com/
https://en.wikipedia.org/wiki/Functional_reactive_programming
https://github.com/ReactiveX/RxJava
http://reactivex.io/
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming
http://reactivex.io/
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I provide some FRP examples later in this book, but this short example from the

RxScala website gives you a taste of the concept:
object Transforming extends App {

Vel
* Asynchronously calls 'customObservableNonBlocking'
* and defines a chain of operators to apply to the

* callback sequence.

*/
def simpleComposition()
{
AsyncObservable. customObservableNonBlocking()

.drop(10)
.take(5)
.map(stringValue => stringValue + "_xform")
.subscribe(s => println("onNext => " + s))

ks

simpleComposition()

This code does the following:

1. Using an “observable,” it receives a stream of String values. Given that

stream of values, it ...
Drops the first ten values
“Takes” the next five values

Appends the string "_xform" to the end of each of those five values

AN

Outputs those resulting values with println

As this example shows, the code that receives the stream of values is written in a
functional style, using methods like drop, take, and map, combining them into a

chain of calls, one after the other.


https://github.com/ReactiveX/RxScala/blob/0.x/examples/src/main/scala/Transforming.scala
https://github.com/ReactiveX/RxScala/blob/0.x/examples/src/main/scala/Transforming.scala
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I cover FRP in a lesson later in this book, but if you’d like to learn more
now, the RxScala project is located here, and Netflix’s “Reactive Pro-

gramming in the Netflix API with RxJava™ blog post is a good start.

This Haskell.org page shows current work on creating GUIs using FRP. (I'm not an
expert on these tools, but at the time of this writing, most of these tools appear to be

experimental or incomplete.)

2) Pragmatism (the best tool for the job)

I tend to be a pragmatist more than a purist, so when I need to get something done,
I want to use the best tool for the job.

For instance, when I first started working with Scala and needed a way to stub out
new SBT projects, I wrote a Unix shell script. Because this was for my personal
use and I only work on Mac and Unix systems, creating a shell script was by far the
simplest way to create a standard set of subdirectories and a bui/d.sbt file.

Conversely, if I also worked on Microsoft Windows systems, or if I had been inter-
ested in creating a more robust solution like the Lightbend Activator, I might have

written a Scala/FP application, but I didn’t have those motivating factors.

Another way to think about this is instead of asking, “Is FP the right tool
for every application I need to write?,” go ahead and ask that question
with a different technology. For instance, you can ask, “Should I use
Akka actors to write every application?” If you’re familiar with Akka, I
think you’ll agree that writing an Akka application to create a few sub-
directories and a build.sbt file would be overkill — even though Akka is
a terrific tool for other applications.


https://github.com/ReactiveX/RxScala
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
https://wiki.haskell.org/Functional_Reactive_Programming
https://www.lightbend.com/activator/download
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Summary

In summary, potential drawbacks of functional programming in general are:

1. Writing pure functions is easy, but combining them into a complete application
is where things get hard.

2. The advanced math terminology (monad, monoid, functor, etc.) makes FP
intimidating.
3. For many people, recursion doesn’t feel natural.

4. Because you can’t mutate existing data, you instead use a pattern that I call,

“Update as you copy.”
5. Pure functions and I70 don’t really mix.

6. Using only immutable values and recursion can potentially lead to perfor-
mance problems, including RAM use and speed.

Potential drawbacks of *functional programming in Scala” are:

7. You can mix FP and OOP styles.
8. Scala doesn’t have a standard FP library.

What's next

Having covered the benefits and drawbacks of functional programming, in the next
chapter I want to help “free your mind,” as Morpheus might say. That chapter is on
something I call, “The Great FP Terminology Barrier,” and how to break through
that barrier.

See also

* My Scala Quicksort algorithms blog post
* Programming in Scala
* Jesper Nordenberg’s “Haskell vs Scala” post

* Information about my “AlPad” text editor


http://alvinalexander.com/scala/scala-quicksort-algorithms-fp-recursive-imperative-performance
http://amzn.to/2byNzrs
http://jnordenberg.blogspot.com/2012/05/my-take-on-haskell-vs-scala.html
http://alvinalexander.com/apps/alpad
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Disadvantages of Functional Programming

“Reactive Extensions” on reactivex.io

Declarative programming

Imperative programming

The RxScala project

Netflix’s “Reactive Programming in the Netflix API with RxJava” blog post
Functional Reactive Programming on haskell.org

Lightbend Activator


http://reactivex.io/
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://github.com/ReactiveX/RxScala
http://techblog.netflix.com/2013/02/rxjava-netflix-api.html
https://wiki.haskell.org/Functional_Reactive_Programming
https://www.lightbend.com/activator/download

The “Great FP Terminology Barrier”

A short excursion to ... The Twilight Zone

Hello, Rod Serling of The Twilight Zone here. Al will be back shortly, but for now,

let me take you to another place and time ... an alternate universe ...

In this alternate universe you are born a few years earlier, and one day you find
yourself writing some code. One week, you create a List class, and then a few days
after that you find yourself writing the same for loops over and over again to iter-
ate over list elements. Recognizing a pattern and also wanting to be DRY (“Don’t
Repeat Yourself™), you create a cool new method on the List class to replace those
repetitive for loops:

val xs = List(1l, 2, 3).applyAFunctionToEveryElement(_ * 2)

You originally named this method, “apply a function to every element and return a
value for each element,” but after deciding that was way too long for a function name,

you shortened it to applyAFunctionToEveryElement.

But the problem with this shorter name is that it’s not technically accurate. Because
you are applying a function to each element and then returning the corresponding
result for each element, you need a better name. But what name 1s accurate — and

concise?
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http://www.imdb.com/title/tt0052520/
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Pulling out your handy thesaurus, you come up with possible method names like
these:

* apply

* convert

* evolve

* transform
* transmute

* metamorphose

As you try to settle on which of these names is best, your mathematics buddy peers
over your shoulder and asks, “What are you doing?” After you explain what you’re
working on, he says, “Oh, cool. In mathematics we call that sort of thing ‘map.’”
Then he pats you on the back, wishes you luck, and goes back to doing whatever it

1s that mathematicians do.

While some of the names you’ve come up with are good, this brief talk with your
friend makes you think that it might be good to be consistent with mathematics. After
all, you want mathematicians and scientists to use your programming language, so

you decide to name your new method map:
val xs = List(1, 2, 3).map(_ * 2)

“Whoa,” you think to yourself, “that looks cool. I'll bet there are zillions of functions
that people can pass into map to achieve all kinds of cool things. And then I can use

phrases like ‘map over a list.”” Things are taking shape.

map as a general concept

As you think about your invention, it occurs to you that there are at least a few differ-
ent data types in the world that can be mapped over ... not just lists, but hashmaps,
too. Shoot, you can even think of a String as a Seq[Char], and then even that can be
mapped over. In time you realize that any collection whose elements can be iterated

over can implement your new map function.
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As this thought hits you, you realize that a logical thing to do is to create a trait that
declares a map method. Then all of these other collections can extend that trait and
implement their own map methods. With this thought, you begin sketching a new

trait:

trait ThingsThatCanBeMappedOver {

// extending classes need to implement this
def map[A, B](f: A => B): TODO[B]

You realize that the map function signature isn’t quite right — you’re going to have
to invent some other things to make this work — but never mind those details for
now, you're on a roll.

With that trait, you can now implement your List class like this:

class List extends ThingsThatCanBeMappedOver {

As you write that first line of code you realize that the trait name ThingsThatCanBe-
MappedOver isn’t quite right. It’s accurate, but a little long and perhaps unprofes-
sional. You start to pull out your thesaurus again, but that act makes you think of
your math buddy; what would he call this trait?

It occurs to you that he would be comfortable writing code like this:

class List extends Map {

and as a result, you decide to call your new trait Map:
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trait Map {

// extending classes need to implement this
def map[A, B](f: A => B): TODO[B]

There, that looks professional, and math-y like, too. Now you just have to figure out

the correct function signature, and possibly implement a default method body.

Sadly, just at that moment, Rod Serling returns you to this version of planet Earth

And the moral is ...

In this version of Earth’s history, someone beat you to the invention of “things that
can be mapped over,” and for some reason — possibly because they had a mathe-
matics background — they made this declaration:

“Things that can be mapped over shall be called ... Functor.”

Huh?

History did not record whether the Ballmer Peak, caffeine, or other chemicals were
involved in that decision.

In this book, when I use the phrase, “Functional Programming Terminology Bar-
rier,” this 1s the sort of thing I'm referring to. If a normal human being had dis-
covered this technique, they might have come up with a name like ThingsThat-
CanBeMappedOver, but a mathematician discovered it and came up with the name,
“Functor.”

Moral: A lot of FP terminology comes from mathematics. Don’t let it

get you down.


https://xkcd.com/323/
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A few more FP terms

As a few more examples of the terminology barrier ’'m referring to, here are some other

terms you’ll run into as you try to learn functional programming:

Term Definition

combinator Per the Haskell wiki, this has two meanings, but the
common meaning 1s, “a style of organizing libraries
centered around the idea of combining things.” This
refers to being able to combine functions together like a
Unix command pipeline, 1.e.,

ps aux | grep root | wc -1

higher-order function A function that takes other functions as parameters, or

whose result 1s a function. (docs.scala-lang.org)

lambda Another word for “anonymous function.”

As these examples show, when you get into FP you’ll start seeing new terminology,
and oftentimes they aren’t terms that you need to know for other forms of program-
ming. For instance, I taught Java and OOP classes for five years, and I didn’t know
these words at that time. (As a reminder, my background is in aerospace engineering,

not computer science.)

A common theme is that these terms generally come from mathematics fields like
category theory. Personally, I like math, so this is good for me. When someone uses
a term like “Combinatory Logic,” I think, “Oh, cool, what’s that? Is it something

that can make me a better programmer?”

However, a bad thing about it is that it’s easy to get lost in the terminology. If you've

ever been lost in a forest, the feeling is just like that.

As I'write later in this book, I personally wasted a lot of time wondering,
“What 1s currying? Why does everyone write about it so much?” That

was a real waste of time.


https://wiki.haskell.org/Combinator
http://docs.scala-lang.org/tutorials/tour/higher-order-functions.html
https://en.wikipedia.org/wiki/Category_theory
https://wiki.haskell.org/Combinatory_logic
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I'll say this more than once in this book: the best thing you can do to learn FP is
to write code using only pure functions and immutable values, and see where that
leads you. I believe that if you place those restrictions on yourself, you’d eventually
come up with the same inventions that mathematicians have come up with — and

you might have simpler names for all of the terms.

“Mathematicians have big, scary words like ‘identity’ and ‘associativity’ and ‘commuta-
tivity’ to talk about this stuff — it’s their shorthand.”

~ From the book, Coders at Work

More terms coming ...

The key point of this lesson is that there’s generally no need to worry about a lot
of mathematical and FP jargon, especially when you’re first getting started. As I
found out through my own experience, all this terminology does 1s create a learning

barrier.

That being said, one good thing about terminology is that it lets us know that we’re all
talking about the same thing, Therefore, I will introduce new terms as they naturally

come up in the learning process. Which leads me to ...

What's next

In the next lesson I’ll formally define the term, “Pure Function.” In this particular
case — because I use the term so often throughout the remainder of the book, and
it’s a foundation of functional programming — it will help your learning process if I

take a few moments to clearly define that term now.


http://amzn.to/2bdqLAF
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See also

¢ The mathematical definition of “map” on Wikipedia
* The definition of “category theory” on Wikipedia

» Iffor some reason you want to see alot of FP terms at this point, Cake Solutions

has a nice Dictionary of functional programming
» Combinator on the Haskell Wiki
» Combinatory logic on the Haskell Wiki
* Combinator pattern on the Haskell Wiki
» Higher-order functions on scala-lang.org
* The Ballmer Peak
* The book, Coders at Work


https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Category_theory
http://www.cakesolutions.net/teamblogs/2013/03/27/dictionary-of-functional-programming
https://wiki.haskell.org/Combinator
https://wiki.haskell.org/Combinatory_logic
https://wiki.haskell.org/Combinator_pattern
http://docs.scala-lang.org/tutorials/tour/higher-order-functions.html
https://xkcd.com/323/
http://amzn.to/2bdqLAF
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Pure Functions

Becoming Functional

Goals

This lesson has two goals:

1. Properly define the term “pure function.”

2. Show a few examples of pure functions.

It also tries to simplify the pure function definition, and shares a tip on how to easily

identify many impure functions.

Introduction

As I mentioned in the “What is Functional Programming?” chapter, I define func-

tional programming (FP) like this:

Functional programming 1s a way of writing software applications using only

pure functions and immutable values.

Because that definition uses the term “pure functions,” it’s important to understand
what a pure function is. I gave a partial pure function definition in that chapter, and

now I’ll provide a more complete definition.
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http://amzn.to/2gEdC2H
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Definition of “pure function”

Just like the term functional programming, different people will give you different defi-
nitions of a pure function. I provide links to some of those at the end of this lesson,

but skipping those for now, Wikipedia defines a pure function like this:

1. The function always evaluates to the same result value given the same argu-
ment value(s). It cannot depend on any hidden state or value, and it cannot

depend on any I/0.

2. Evaluation of the result does not cause any semantically observable side effect

or output, such as mutation of mutable objects or output to I/O devices.
That’s good, but I prefer to reorganize those statements like this:

1. A pure function depends only on (a) its declared input parameters and (b) its
algorithm to produce its result. A pure function has no “back doors,” which

means:

1. Its result can’t depend on reading any hidden value outside of the function
scope, such as another field in the same class or global variables.

2. It cannot modify any hidden fields outside of the function scope, such as

other mutable fields in the same class or global variables.

3. It cannot depend on any external I/0O. It can’t rely on input from files,
databases, web services, Uls, etc; it can’t produce output, such as writing
to a file, database, or web service, writing to a screen, etc.

2. A pure function does not modify its input parameters.

This can be summed up concisely with this definition:

A pure function is a function that depends only on its declared input param-
eters and its algorithm to produce its output. It does not read any other
values from “the outside world” — the world outside of the function’s

scope — and it does not modify any values in the outside world.


https://en.wikipedia.org/wiki/Pure_function
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A mantra for writing pure functions

Once you've seen a formal pure function definition, I prefer this short mantra:

I like that because it’s short and easy to remember, but technically it isn’t 100%
accurate because it doesn’t address side effects. A more accurate way of saying this

1S:

1. Output depends only on input
2. No side effects

You can represent that as shown in Figure 14.1.

PF = O0ODI + NSE
Fure Cutput Ho
Function Depends Side
on Effects
Input

Figure 14.1: An equation to emphasize how pure functions work.

A simpler version of that equation is shown in Figure 14.2.

PF = ODI + NSE

Figure 14.2: A simpler version of that equation.

In this book I'll generally either write, “Output depends on input,” or show one of
these images.
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The universe of a pure function

Another way to state this is that the universe of a pure function is only the input it

receives, and the output it produces, as shown in Figure 14.3.

Figure 14.3: The entire unwerse of a pure function.

If it seems like I'm emphasizing this point a lot, it’s because I am(!). One of the
most important concepts of functional programming is that FP applications are built
almost entirely with pure functions, and pure functions are very different than what I
used to write in my OOP career. A great benefit of pure functions is that when you’re
writing them you don’t have to think about anything else; all you have to think about

is the universe of this function, what’s coming in and what’s going out.

Examples of pure and impure functions

Given the definition of pure functions and these simpler mantras, let’s look at some

examples of pure and umpure functions.

Examples of pure functions

Mathematical functions are great examples of pure functions because it’s pretty ob-
vious that “output depends only on input.” Methods like these in scala.math._ are

all pure functions:

* abs
* ceil

®* max


http://www.scala-lang.org/api/current/#scala.math.package
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* min

I refer to these as “methods” because they are defined using def in the package object
math. However, these methods work just like functions, so I also refer to them as pure
functions.

Because a Scala String is immutable, every method available to a String is a pure
function, including:

* charAt
* isEmpty
* length

* substring

Many methods that are available on Scala’s collections’ classes fit the definition of a

pure function, including the common ones:

* drop
e filter
* map

* reduce

Examples of impure functions

Conversely, the following functions are umpure.

Going right back to the collections’ classes, the foreach method is impure. foreach
1s used only for its side effects, which you can tell by looking at its signature on the
Seq class:

def foreach(f: (A) => Unit): Unit


http://www.scala-lang.org/api/current/#scala.collection.immutable.Seq
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Date and time related methods like getDayOfWeek, getHour, and getMinute are all
impure because their output depends on something other than their inputs. Their

results rely on some form of hidden I/0.

Methods on the scala.util.Random class like nextInt are also impure because their

output depends on something other than their inputs.

In general, impure functions do one or more of these things:

Read hidden inputs (variables not explicitly passed in as function input param-
eters)

* Write hidden outputs
* Mutate the parameters they are given

e Perform some sort of I/O with the outside world

Tip: Telltale signs of impure functions

By looking at function signatures only, there are two ways you can identify many

impure functions:

* They don’t have any input parameters

* They don’t return anything (or they return Unit in Scala, which is the same

thing)
For example, here’s the signature for the println method of the Scala Predef object:

def println(x: Any): Unit

Because println is such a commonly-used method, you already know that it writes
information to the outside world, but if you didn’t know that, its Unit return type
would be a terrific hint of that behavior.

Similarly when you look at the “read*” methods that were formerly in Predef (and

are now 1in scala.io.StdIn), you’ll see that a method like readLine takes no input


http://www.scala-lang.org/api/current/#scala.Predef$
http://www.scala-lang.org/api/current/#scala.io.StdIn$
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parameters, which is also a giveaway that it is impure:

def readlLine(): String

Because it takes no input parameters, the mantra, “Output depends only on input”
clearly can’t apply to it.

Simply stated:

* If a function has no input parameters, how can its output depend on its input?

* If a_function has no result, it must have side effects: mutating variables, or per-
forming some sort of I/O.

While this is an easy way to spot many impure functions, other impure methods can
have both (a) input parameters and (b) a non-Unit return type, but still be impure

because they read variables outside of their scope, mutate variables outside of their
scope, or perform I/0.

Summary

As you saw in this lesson, this is my formal definition of a pure function:
A pure function 1s a function that depends on/y on its declared inputs and
its internal algorithm to produce its output. It does not read any other
values from “the outside world” — the world outside of the function’s

scope — and it does not modify any values in the outside world.

Once you understand the complete definition, I prefer the short mantra:

or this more accurate statement:

1. Output depends only on input
2. No side effects
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What's next

Now that you've seen the definition of a pure function, I'll show some problems that
arise from using impure functions, and then summarize the benefits of using pure

functions.

See also

The Wikipedia definition of a pure function

» Wikipedia has a good discussion on “pure functions” on their Functional Pro-

gramming page
* The wolfram.com definition of a pure function
* The schoolofhaskell.com definition of a pure function

* The ocaml.org definition of a pure function


https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://reference.wolfram.com/language/tutorial/PureFunctions.html
https://www.schoolofhaskell.com/school/starting-with-haskell/basics-of-haskell/3-pure-functions-laziness-io
https://ocaml.org/learn/tutorials/functional_programming.html#Pureandimpurefunctionalprogramming

Grandma’s Cookies (and Pure Functions)

To help explain pure functions, I’d like to share a little story ...

Once upon a time I was a freshman in college, and my girlfriend’s grandmother sent
her a tin full of cookies. I don’t remember if there were different kinds of cookies in
the package or not — all I remember is the chocolate chip cookies. Whatever her
grandmother did to make those cookies, the dough was somehow more white than
any other chocolate chip cookie I had ever seen before. They also tasted terrific, and
I ate most of them. (Sorry about that.)

Some time after this, my girlfriend — who would later become my wife — asked
her grandmother how she made the chocolate chip cookies. Grandmother replied,
“I just mix together some flour, butter, eggs, sugar, and chocolate chips, shape the
dough into little cookies, and bake them at 350 degrees for 10 minutes.” (There were

a few more ingredients, but I don’t remember them all.)

Later that day, my girlfriend and I tried to make a batch of cookies according to her
grandmother’s instructions, but no matter how hard we tried, they always turned

out like normal cookies. Somehow we were missing something,

Digging into the mystery
Perplexed by this mystery — and hungry for a great cookie — I snuck into grand-

mother’s recipe box late one night. Looking under “Chocolate Chip Cookies,” I

found these comments:
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/**

* Mix together some flour, butter, eggs, sugar,
* and chocolate chips. Shape the dough into

* little cookies, and bake them at 350 degrees
* for 10 minutes.

*/

“Hubh,” I thought, “that’s just what she told us.”

I'started to give up on my quest after reading the comments, but the desire for a great
cookie spurred me on. After thinking about it for a few moments, I realized that I
could decompile grandmother’s makeCookies recipe to see what it showed. When 1
did that, this is what I found:

def makeCookies(ingredients: List[Ingredient]): Batch[Cookie] = {
val cookieDough = mix(ingredients)
val betterCookieDough = combine(cookieDough, love)
val cookies = shapeIntolLittleCookies(betterCookieDough)
bake(cookies, 350.DegreesFahrenheit, 10.Minutes)

‘Aha,” I thought, “here’s some code I can dig into.”
Looking at the first line, the function declaration seems fine:
def makeCookies(ingredients: List[Ingredient]): Batch[Cookie] = {

Whatever makeCookies does, as long as it’s a pure function — where its output de-
pends only on its declared inputs — its signature states that it transforms a list of
ingredients into a batch of cookies. Sounds good to me.

The first line inside the function says that mix is some sort of algorithm that trans-

forms ingredients into cookieDough:
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val cookieDough = mix(ingredients)

Assuming that mix is a pure function, this looks good.
The next line looks okay:

val betterCookieDough = combine(cookieDough, love)

Whoa. Hold on just a minute ... now I'm confused. What is love? Where does love

come from?
Looking back at the function signature:
def makeCookies(ingredients: List[Ingredient]): Batch[Cookie] = {

clearly love is not defined as a function input parameter. Somehow love snuck into

this function. That’s when it hit me:
“Ahal makeCookies is not a pure function!™

Taking a deep breath to get control of myself, I looked at the last two lines of the
function, and with the now-magjor assumption that shapeIntoLittleCookies and bake

are pure functions, those lines look fine:

val cookies = shapelntolLittleCookies(betterCookieDough)

bake(cookies, 350.DegreesFahrenheit, 10.Minutes)

“I don’t know where love comes from,” I thought, “but clearly, it is a problem.”

Hidden inputs and free variables

In regards to the makeCookies function, you’ll hear functional programmers say a

couple of things about love:

* love 1s a fudden input to the function

e love is a “free variable”
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These statements essentially mean the same thing, so I prefer the first statement: to
think of love as being a hidden input into the function. It wasn’t passed in as a
function input parameter, it came from ... well ... it came from somewhere else ...
the ether.

Functions as factories

Imagine that makeCookies is the only function you have to write today — this func-
tion 1s your entire scope for today. When you do that, it feels like someone teleported
love right into the middle of your workspace. There you were, minding your own
business, writing a function whose output depends only on its inputs, and then —

Bam! — love is thrown right into the middle of your work.

Put another way, if makeCookies is the entire scope of what you should be thinking

about right now, using love feels like you just accessed a global variable, doesn’t it?

With pure functions I like to think of input parameters as coming into a function’s
front door, and its results going out its back door, just like a black box, or a factory,
as shown in Figure 15.1.
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Figure 15.1: Thinking of a pure function as a_factory with two doors.

But in the case of makeCookies it’s as though love snuck in through a side door, as
shown in Figure 15.2.
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Figure 15.2: Impure functions use side doors.

While you might think it’s okay for things like love to slip in a side door, if you spend
any time in Alaska you’ll learn not to leave your doors open, because you never know

what might walk in, as shown in Figure 15.3.
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Figure 15.3: Bad things can happen when you use side doors.

Free variables

When I wrote about hidden inputs I also mentioned the term “free variable,” so let’s
look at its meaning. Ward Cunningham’s c2.com website defines a free variable like

this:


http://onemansalaska.com/
http://onemansalaska.com/
http://c2.com/cgi/wiki?FreeVariable
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“A free variable 1s a variable used within a function, which is neither a

formal parameter to the function nor defined in the function’s body.”

That sounds exactly like something you just heard, right? As a result, I prefer to use
the less formal term, “hidden input.”

What happens when hidden inputs change?

If Scala required us to mark impure functions with an impure annotation, makeCook-
ies would be declared like this as a warning to all readers that, “Output depends on
something other than input”:

@impure

def makeCookies ...
And because makeCookies is an impure function, a good question to ask right now
is:

love

The answer 1s that because love comes into the function through a side door, it can
change the makeCookies result without you ever knowing why you can get different
results when you call it. (Or why my cookies never turn out right.)

Unit tests and purity

I like to “speak in source code” as much as possible, and a little code right now can
show what a significant problem hidden inputs are, such as when you write a unit

test for an impure method like makeCookies.

If you’re asked to write a Scala'lest unit test for makeCookies, you might write some
code like this:


http://www.scalatest.org/
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test("make a batch of chocolate chip cookies") {
val ingredients = List(
Flour(3.Cups),
Butter(l.Cup),
Egg(2),
Sugar(1.Cup),
ChocolateChip(2.Cups)
)
val batchOfCookies = GrandmasRecipes.makeCookies(ingredients)
assert(cookies.count == 12)
assert(cookies.taste == Taste.JustLikeGrandmasCookies)

assert(cookies.doughColor == Color.WhiterThanOtherCookies)

If you ran this test once it might work fine, you might get the expected results. But if
you run it several times, you might get different results each time.

That’s a big problem with makeCookies using love as a hidden input: when you’re
writing black-box testing code, you have no idea that makeCookies has a hidden de-
pendency on love. All you'll know is that sometimes the test succeeds, and other

times 1t fails.

Put a little more technically:

» love’s state affects the result of makeCookies

* As a black-box consumer of this function, there’s no way for you to know that

love affects makeCookies by looking at its method signature

If you have the source code for makeCookies and can perform white-box testing, you
can find out that love affects its result, but that’s a big thing about functional pro-
gramming: you never have to look at the source code of a pure function to see if it
has hidden inputs or hidden outputs.

I’'ve referred to hidden inputs quite a bit so far, but hidden outputs —
mutating hidden variables or writing output — are also a problem of

impure functions.
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Problems of the impure world

However, now that I do have the makeCookies source code, several questions come

to mind:

* Does love have a default value?
* How is love set before you call makeCookies?

» What happens if love is not set?

Questions like these are problems of impure functions in general, and fudden inputs in
particular. Fortunately you don’t have to worry about these problems when you write

pure functions.

When you write parallel/concurrent applications, the problem of hid-
den inputs becomes even worse. Imagine how hard it would be to solve
the problem if love is set on a separate thread.

The moral of this story

Every good story should have a moral, and I hope you see what a problem this is. In
my case, I still don’t know how to make cookies like my wife’s grandmother did. (I

lay in bed at night wondering, what is love? Where does love come from?)

In terms of writing rock-solid code, the moral is:

* love is a hidden input to makeCookies
* makeCookies output does not depend solely on its declared inputs

* You may get a different result every time you call makeCookies with the same

inputs

* You can’t just read the makeCookies signature to know its dependencies

Programmers also say that makeCookies depends on the state of love. Furthermore,
with this coding style it’s also likely that love is a mutable var.
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My apologies to my wife’s grandmother for using her in this example. She was the most
organized person | ever met, and I'm sure that if she was a programmer, she would
have written pure functions. And her cookies are sorely missed.

What's next

Given all of this talk about pure functions, the next lesson answers the important

question, “What are the benefits of pure functions?”

See also

The Wikipedia definition of a pure function

* Wikipedia has a good discussion on “pure functions” on their Functional Pro-
gramming page
* My unit test was written using ScalaTest.

* When you need to use specific quantities in Scala applications, Squants offers a
DSL similar to what I showed in these examples.


https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
http://www.scalatest.org/
http://www.squants.com/
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Benefits of Pure Functions

When asked, “What are the advantages of writing
in a language without side effects?,” Simon
Peyton Jones, co-creator of Haskell, replied, “You
only have to reason about values and not about
state. If you give a function the same input, it’ll
give you the same output, every time. This has
implications for reasoning, for compiling, for
parallelism.”

From the book, Masterminds of Programming

The goal of this lesson is simple: to list and explain the benefits of writing pure

functions.

Benefits of pure functions

My favorite benefits of pure functions are:

* They’re easier to reason about
* They’re easier to combine

* They're easier to test

* They’re easier to debug

* They’re easier to parallelize

FP developers talk about other benefits of writing pure functions. For instance,

Venkat Subramaniam adds these benefits:
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* They are idempotent
* They offer referential transparency
* They are memoizable

* They can be lazy

In this lesson I’'ll examine each of these benefits.

Pure functions are easier to reason about

Pure functions are easier to reason about than impure functions, and I cover this
in detail in the lesson, “Pure Function Signatures Tell All.” The key point is that
because a pure function has no side effects or hidden I/ O, you can get a terrific idea
of what it does just by looking at its signature.

Pure functions are easier to combine

Because “output depends only on input,” pure functions are easy to combine to-
gether into simple solutions. For example, you’ll often see FP code written as a
chain of function calls, like this:

val x = doThis(a).thenThis(b)
.andThenThis(c)
.doThisToo(d)
.andFinallyThis(e)

This capability is referred to as functional composition. I'll demonstrate more examples
of it throughout this book.

Asyou’ll see in the “FP is Like Unix Pipelines” lesson, Unix pipelines work extremely
well because most Unix commands are like pure functions: they read input and
produce transformed output based only on the inputs and the algorithm you supply.
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Pure functions are easier to test

AsIshowed in the “Benefits of Functional Programming” chapter and the unit test in
the previous lesson, pure functions are easier to test than impure functions. I expand
on this in several other lessons in this book, including the lesson on property-based

testing,

Pure functions are easier to debug

In the “Benefits of Functional Programming” chapter I wrote that on a large scale,
FP applications are easier to debug. In the small scale, pure functions are also easier
to debug than their impure counterparts. Because the output of a pure function
depends only on the function’s input parameters and your algorithm, you don’t need

to look outside the function’s scope to debug it.

Contrast that with having to debug the makeCookies function in the previous lesson.
Because love is a hidden input, you have to look outside the function’s scope to
determine what love’s state was at the time makeCookies was called, and how that

state was set.

Pure functions are easier to parallelize

In that same chapter I also wrote that it’s easier to write parallel/concurrent appli-
cations with FP. Because all of those same reasons apply here I won’t repeat them,
but I will show one example of how a compiler can optimize code within a pure

function.

I'm not a compiler writer, so I'll begin with this statement from the “pure functions”

section of the Wikipedia functional programming page:

“If there is no data dependency between two pure expressions, then
their order can be reversed, or they can be performed in parallel and
they cannot interfere with one another (in other terms, the evaluation

of any pure expression is thread-safe).”


https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
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As an example of what that means, in this code:

val x = f(a)
val y = g(b)
val z = h(c)

val result = x +y + z

there are no data dependencies between the first three expressions, so they can be
executed in any order. The only thing that matters is that they are executed before
the assignment to result. If the compiler/interpreter wants to run those expressions
in parallel, it can do that and then merge their values in the final expression. This
can happen because (a) the functions are pure, and (b) there are no dependencies
between the expressions.

That same Wikipedia page also states:

“If the entire language does not allow side-effects, then any evaluation
strategy can be used; this gives the compiler freedom to reorder or com-
bine the evaluation of expressions in a program (for example, using de-

forestation).”

The 2006 article, Functional Programming for the Rest Of Us, includes a quote similar
to these Wikipedia quotes. It states, “An interesting property of functional languages
is that they can be reasoned about mathematically. Since a functional language is
simply an implementation of a formal system, all mathematical operations that could
be done on paper still apply to the programs written in that language. The compiler
could, for example, convert pieces of code into equivalent but more efficient pieces with
a mathematical proof that two pieces of code are equivalent. Relational databases have
been performing these optimizations for years. There is no reason the same techniques
can't apply to regular software.”


http://www.defmacro.org/ramblings/fp.html
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Pure functions are idempotent

I don’t use the word “idempotent” too often, so I'll quote from Venkat Subrama-
niam’s explanation of the benefit of idempotence in regards to pure functions (with

a few minor edits by me):

The word idempotent has a few different meanings ... a function or oper-
ation is idempotent if the result of executing it multiple times for a given
input 1s the same as executing it only once for the same input. If we
know that an operation is idempotent, we can run it as many times as

we like ... it’s safe to retry.

In a related definition, in A practical introduction to functional programming, Mary

Rose Cook states:
A process 1s deterministic 1f repetitions yield the same result every time.

The terms idempotent and deterministic are similar to a favorite phrase of mine: you can

call a pure function an infinite number of times and always get the same result.

Honestly, with these definitions it feels like I'm writing, “A benefit of pure functions is that
they are pure functions.” My only reason for keeping this section is so that you have
some exposure to the terms idempotent and deterministic.

This demonstrates that like many other uncommon phrases in functional programming,
you can understand a concept long before you know that someone created a label for

that concept.

Pure functions offer referential transparency

Referential transparency (RT) 1s another technical term that you’ll hear in the FP
world. It’s similar to idempotency, and refers to what you (and a compiler) can do

because your functions are pure.


http://blog.agiledeveloper.com/2015/12/benefits-of-pure-functions-idempotent.html
https://maryrosecook.com/blog/post/a-practical-introduction-to-functional-programming
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If you like algebra, you’ll like RT. It’s said that an expression 1s referentially transpar-
ent 1f 1t can be replaced by its resulting value without changing the behavior of the

program.

For instance, assume that x and y are immutable values within some scope of an

application, and within that scope they’re used to form this expression:
X + Yy

Then you can assign this expression to a third variable z:

val z = X +y

Now, throughout the given scope of your program, anywhere the expression x +
y 13 used, it can be replaced by z without affecting the result of the program (and

vice-versa).

Note that although I state that x and y are immutable values, they can also be the
result of pure functions. For instance, "hello".length + "world".length will always
be 10. This result could be assigned to z, and then z could be used everywhere instead
of this expression. In Scala this looks like this:

val x = "hello".length // 5
val y = "world".length // 5
val z = X +y // 10

Because all of those values are immutable, you can use z anywhere you might use x+y,
and in fact, in this example you can replace z with 10 anywhere, and your program

will run exactly the same.

In FP we say things like, “10 cannot be reduced any more.” (More on
this later.)

Conversely, if x or y was an impure function, such as a “get the current time” func-
tion, z could not be a reliable replacement for x + y at different points in the appli-

cation.
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Pure functions are memoizable

Because a pure function always returns the same result when given the same inputs,
a compiler (or your application) can also use caching optimizations, such as memoiza-

tion.

Wikipedia defines memoization like this:

“Memoization is an optimization technique used primarily to speed up
computer programs by storing the results of expensive function calls and

returning the cached result when the same inputs occur again.”

For example, I previously noted that my Android football game has this function
call:

val possiblePlays = OffensiveCoordinator.determinePossiblePlays(gameState)

The determinePossiblePlays function currently has several thousand lines of pure
functions behind it, and over time it’s only going to get more complicated. Although
this function doesn’t currently use memoization, it would be fairly simple to create
a cache for it, so that each time it received the same gameState it would return the

same result.

The cache could be implemented as a Map, with a type of Map[GameState,
Seq[OffensivePlay]]. Then when determinePossiblePlays receives a GameState
instance, it could perform a fast lookup in this cache.

While those statements are true, I don’t want to oversimplify this too
much. determinePossiblePlays makes decisions based on many GameS-
tate factors, including two important (a) game score and (b) time re-

maining. Those two variables would have to be factors in any cache.

Pure functions can be lazy

Laziness 1s a major feature of the Haskell language, where everything is lazy. In Scala

I primarily use laziness with large data sets and streams, so I haven’t personally taken


https://en.wikipedia.org/wiki/Memoization
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advantage of this benefit yet.
(I’ll update this benefit when I have a good Scala example.)

Summary

In this lesson I wrote about the benefits of pure functions. My favorite benefits are:

* They’re easier to reason about
* They’re easier to combine

* They’re easier to test

* They’re easier to debug

* They’re easier to parallelize
Other FP developers write about these benefits of pure functions:

* They are idempotent
* They offer referential transparency
* They are memoizable

* They can be lazy

See also

» Wikipedia has a good discussion on the benefits of “pure functions” on their

Functional Programming page
* The Haskell.org definition of referential transparency
* Stack Exchange provides a definition of referential transparency

 Stack Overflow says, Don’t worry about the term R it’s for pointy-headed

purists
* Venkat Subramaniam’s post on the benefits of pure functions

* If'you like debates on the precise meaning of technical terms, reddit.com has

a thread titled, Purity and referential transparency are different


https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://en.wikipedia.org/wiki/Functional_programming#Pure_functions
https://wiki.haskell.org/Referential_transparency
http://programmers.stackexchange.com/questions/254304/what-is-referential-transparency
http://stackoverflow.com/questions/4865616/purity-vs-referential-transparency
http://stackoverflow.com/questions/4865616/purity-vs-referential-transparency
http://blog.agiledeveloper.com/2015/12/benefits-of-pure-functions.html
https://www.reddit.com/r/haskell/comments/21y560/purity_and_referential_transparency_are_different/

Pure Functions and 1/0

Goal

The goal of this lesson 1s to answer the question, “Because pure functions can’t have
170, how can an FP application possibly get anything done if all of its functions are

pure functions?”

So how do you do anything with functional programming?

Given my pure function mantra, “Output depends only on input,” a perfectly ratio-
nal question at this point is:

“How do I get anything done if I can’t read any inputs or write any
outputs?”

Great question!

The answer is that you violate the “Write Only Pure Functions” rule! It seems like
other books go through great lengths to avoid answering that question until the final
chapters, but I just gave you that answer fairly early in this book. (You’re welcome.)

The general i1dea 1s that you write as much of your application as possible in an FP
style, and then handle the UI and all forms of input/output (I/O) (such as Database
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I/0, Web Service 1/0, File 170, etc.) in the best way possible for your current

programming language and tools.

In Scala the percentage of your code that’s considered impure 1/0O will vary, de-
pending on the application type, but will probably be in this range:

* On the low end, it will be about the same as a language like Java. So if you
were to write an application in Java and 20% ofit was going to be impure 1/O
code and 80% of it would be other stuff, in FP that “other stuff” will be pure
functions. This assumes that you treat your Ul File I/ O, Database 1/0, Web
Services I/0, and any other conceivable I/0O the same way that you would in
Java, without trying to “wrap” that I/O code in “functional wrappers.” (More

on this shortly.)

* On the high end, it will approach 100%, where that percentage relies on two
things. First, you wrap all of your I/0O code in functional wrappers. Second,
your definition of “pure function” is looser than the definition I have stated
thus far.

/O wrapper’s code

I don’t mean to make a joke or be facetious in that second statement. It’s just that
some people may try to tell you that by putting a wrapper layer around I/0 code,
the impure 1/0 function somehow becomes pure. Maybe somewhere in some mathe-
matical sense that is correct, I don’t know. Personally, I don’t buy that.

Let me explain what I'm referring to.
Imagine that in Scala you have a function that looks like this:
def promptUserForUsername: String = 777

Clearly this function is intended to reach out into the outside world and prompt a
user for a username. You can’t tell sow it does that, but the function name and the

fact that it returns a String gives us that impression.

Now, as you might expect, every user of an application (like Facebook or Twitter)
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should have a unique username. Therefore, any time this function is called, it will
return a different result. By stating that (a) the function gets input from a user, and (b)
it can return a different result every time it’s called, this is clearly not a pure function.

It 1s impure.

However, now imagine that this same function returns a String that is wrapped in

another class that I'll name I0:
def promptUserForUsername: IO[String] = 777

This feels a little like using the Option/Some/None pattern in Scala.

What’s the benefit?

That’s interesting, but what does this do for us?

Personally, I think it has one main benefit: I can glance at this function signature, and
know that it deals with I/ O, and therefore it’s an impure function. In this particular
example I can also infer that from the function name, but what if the function was

named differently?:
def getUsername: IO[String] = ??77

In this case getUsername is a little more ambiguous, so if it just returned String,
I wouldn’t know exactly how it got that String. But when I see that a String is
wrapped with I0, I know that this function interacts with the outside world to get
that String. That’s pretty cool.

Does using 10 make a_function pure?

But this is where it gets interesting: some people state that wrapping promptUser-

ForUsername’s return type with I0 makes it a pure function.
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I am not that person.

The way I look at it, the first version of promptUserForUsername returned String

values like these:

"alvin"
"kim"

"xena"

and now the second version of promptUserForUsername returns that same infinite

number of different strings, but they’re wrapped in the I0 type:

I0("alvin™)
I0("kim™)
I0("xena™)

Does that somehow make promptUserForUsername a pure function? I sure don’t
think so. It still interacts with the outside world, and it can still return a different

value every time it’s called, so by definition it’s still an impure function.

As Martin Odersky states in this Google Groups Scala debate:

“The I0 monad does not make a function pure. It just makes it obvious
that it’s impure.”

Where does 10 come from?

As I'noted in the “What is This Lambda You Speak Of?” chapter, monads were in-
ventedin 1991, and added to Haskell in 1998, with the I0 monad becoming Haskell’s
way of handling input/output. Therefore, I'd like to take a few moments to explain
why this is such a good idea i Haskell.


https://groups.google.com/forum/#!topic/scala-debate/xYlUlQAnkmE%5B251-275%5D
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/O in Haskell

If you come from the Java world, the best thing you can do at this moment is to forget
anything you know of how the Java Virtual Machine (JVM) works. By that, I mean
that you should not attempt to apply anything you know about the JVM to what I'm
about to write, because the JVM and Haskell compiler are as different as dogs and
cats.

Haskell is considered a “pure” functional programming language, and when monads
were invented in the 1990s, the I0 monad became the Haskell way to handle I/0.
In Haskell, any function that deals with I/O must declare its return type to be IO.
T hus 1s not optional. Functions that deal with I/O must return the I0 type, and this is
enforced by the compiler.

For example, imagine that you want to write a function to read a user’s name from

the command line. In Haskell you'd declare your function signature to look like this:
getUsername :: IO String

In Scala, the equivalent function will have this signature:

def getUsername: IO[String] = ??77?

A great thing about Haskell is that declaring that a function returns something inside
of an outer “wrapper” type of I01s a signal to the compiler that this function is going
to interact with the outside world. As I've learned through experience, this is also a
nice signal to other developers who need to read your function signatures, indicating,
“This function deals with I/0.”

There are two consequences of the I0 type being a signal to the Haskell compiler:

1. The Haskell compiler is free to optimize any code that does not return some-
thing of type I0. This topic really requires a long discussion, but in short, the
Haskell compiler is free to re-order all non-I0 code in order to optimize it. Be-
cause pure functional code is like algebra, the compiler can treat all non-I0
functions as mathematical equations. This is somewhat similar to how a re-

lational database optimizes your queries. (That is a very short summary of a
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large, complicated topic. I discuss this more in the “Functional Programming
is Like Algebra” lesson.)

2. You can only use Haskell functions that return an IO type in certain areas of
your code, specifically (a) in the main block or (b) in a do block. Because of this,
if you attempt to use the getUsername function outside of a main or do block,

your code won’t compile.

If that sounds pretty hardcore, well, it is. But there are several benefits of this ap-

proach.

First, you can always tell from a function’s return type whether it interacts with
the outside world. Any time you see that a function returns something like an
I0[String], you know that Stringis a result of an interaction with the outside world.
Similarly, if the type is I0O[Unit], you can be pretty sure that it wrote something to
the outside world. (Note that I wrote those types using Scala syntax, not Haskell

syntax.)

Second, when you’re working on a large programming team, you know that a
stressed-out programmer under duress can’t accidentally slip an I/O function into
a place where it shouldn’t be.

You know how it is: a deadline is coming up and the pressure is in-
tense. Then one day someone on the programming team cracks and
gives in to the pressure. Rather than doing something “the right way,”
he does something expedient, like accessing a database directly from a
GUI method. “T’ll fix it later,” he rationalizes as he incurs Technical
Debt. But as we know, later never comes, and the duct tape stays there
until that day when you’re getting ready to go on vacation and it all falls
apart.

More ... later

I'll explore this topic more in the I/0 lessons in this book, but at this point I want
to show that there is a very different way of thinking about I/0 than what you might
be used to in languages like C, C++, Java, C#, etc.


http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor
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Summary

As I showed in this lesson, when you need to write I/O code in functional program-
ming languages, the solution is to violate the “Only Write Pure Functions” rule. The
general idea is that you write as much of your application as possible in an FP style,

and then handle the UlI, Database 1/0, Web Service I/0, and File I/0O in the best
way possible for your current programming language and tools.

I'also showed that wrapping your I/O functions in an I0 type doesn’t make a function
pure, but it is a great way to add something to your function’s type signature to let
every know, “This function deals with I/0O.” When a function returns a type like
I0[String] you can be very sure that it reached into the outside world to get that
String, and when it returns I0[Unit], you can be sure that it wrote something to the
outside world.

What's next

So far I've covered a lot of background material about pure functions, and in the next
lesson I share something that was an important discovery for me: The signatures of

pure functions are much more meaningful than the signatures of impure functions.

See also

* The this Google Groups Scala debate where Martin Odersky states, “The
I0 monad does not make a function pure. It just makes it obvious that it’s

impure.”


https://groups.google.com/forum/#!topic/scala-debate/xYlUlQAnkmE%5B251-275%5D
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Pure Function Signatures Tell All

Learn You a Haskell for Great Good!

One thing you’ll find in FP is that the signatures of pure functions tell you a lot about
what those functions do. In fact, it turns out that the signatures of functions in FP
applications are much more important than they are in OOP applications. As you’ll
see 1n this lesson:

Because pure functions have no side effects, their outputs depend only
on their inputs, and all FP values are immutable, pure function signa-
tures tell you exactly what the function does.

OOP function signatures

When writing OOP applications I never gave much thought to method signatures.
When working on development teams I always thought, “Meh, let me see the method
source code so I can figure out what it really does.” I remember one time a junior
developer wrote what should have been a simple Java “setter” method named setFoo,
and its source code looked something like this:

public void setFoo(int foo) {
this.foo = foo;
makeAMeal(foo);

141


http://amzn.to/1POaUCv

142 Pure Function Signatures Tell All

foo++;
washTheDishes(foo);
takeOutTheTrash();

In reality I don’t remember everything that setter method did, but I clearly remember
the foo++ part, and then saw that it the foo and foo++ values in other method calls.
A method that —according to its signature — appeared to be a simple setter method

was in fact much, much more than that.

I hope you can see the problem here: there’s no way to know what’s really happening

inside an impure function without looking at its source code.

The first moral of this story is that because OOP methods can have side effects, I
grew to only trust methods from certain people.

The second moral is that this situation can’t happen with pure functions (at least not
as blatanly as this).

Signatures of pure functions

The signatures of pure functions in Scala/FP have much more meaning than OOP

functions because::

* They have no side effects
* Their output depends only on their inputs

e All values are immutable

To understand this, let’s play a simple game.

A game called, “What can this pure function possible do?”

As an example of this — and as a first thought exercise — look at this function

signature and ask yourself, “If FOO is a pure function, what can it possibly do?”:
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def FOO(s: String): Int = ?77?

Ignore the name FOO; I gave the function a meaningless name so you’d focus only on
the rest of the type signature to figure out what this function can possibly do.

To solve this problem, let’s walk through some preliminary questions:

* Can this function read user input? It can’t have side effects, so, no.
+ Can it write output to a screen? It can’t have side effects, so, no.

* (Can it write (or read) information to (or from) a file, database, web service, or
any other external data source? No, no, no, and no.

So what can 1t do?

If'you said that there’s an excellent chance that this function does one of the following

things, pat yourself on the back:

* Converts a String to an Int
* Determines the length of the input string

* Calculates a hashcode or checksum for the string

Because of the rules of pure functions, those are the only types of things this function

can do. Output depends only on input.

A second game example

Here’s a second example that shows how the signatures of pure functions tell you a
lot about what a function does. Given this simple class:

case class Person[name: String]
What can a pure function with this signature possibly do?:

def FOO(people: Seq[Person], n: Int): Person = 777
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I'll pause to let you think about it ...

By looking only at the function signature, you can guess that the function probably

returns the nth element of the given List[Person].

That’s pretty cool. Because it’s a pure function you know that the Person value that’s

returned must be coming from the Seq[Person] that was passed in.
Conversely, by removing the n parameter from the function:

def FOO(people: Seq[Person]): Person = 777

Can you guess what this function can do?

(Pause to let you think ...)

My best guesses are:

e It’s a head function
e It’s a tail function

* It’s a Frankenstein’s Monster function that builds one Person from many Per-

sons

A third game example

Here’s a different variation of the “What can this pure function possibly do?” game.
Imagine that you have the beginning of a function signature, where the input param-
eters are defined, but the return type is undefined:

def foo(s: String, i: Int) ...
Given only this information, can you answer the “What can this function possibly
do?” question? That is, can you answer that question if you don’t know what the

function’s return type is?

(Another pause to let you think ...)
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The answer is “no.” Even though foo is a pure function, you can’t tell what it does

until you see its return type. But ...

Even though you can’t tell exactly what it does, you can guess a little bit. For example,
because output depends only on input, these return types are all allowed by the

definition of a pure function:

def fool(s: String, i: Int): Char = 7?77

def foo2(s: String, i: Int): String = 777

def foo3(s: String, i: Int): Int = 7?77

def foo4(s: String, i: Int): Seq[String] = 777

Even though you can’t tell what this function does without seeing its return type, I
find this game fascinating. Where OOP method signatures had no meaning to me,
I can make some really good guesses about what FP method signatures are trying to

tell me — even when the function name is meaningless.

Trying to play the game with an impure method

Let’s look at one last example. What can this method possibly do?:

def foo(p: Person): Unit = ...

Because this method returns Unit (nothing), it can also be written this way:
def foo(p: Person) { ... }

In either case, what do you think this method can do?

Because it doesn’t return anything, it must have a side effect of some sort. You can’t
know what those side effects are, but you can guess that it may do any or all of these
things:

* Write to STDOUT
* Write to a file

* Write to a database
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* Write to a web service

» Update some other variable(s) with the data in p

Mutate the data in p

* Ignore p and do something totally unexpected

As you can see, trying to understand what an impure method can possibly do 1s much
more complicated than trying to understand what a pure function can possibly do.

As a result of this, I came to understand this phrase:

Summary

As shown in this lesson, when a method has side effects there’s no telling what it does,
but when a function is pure its signature lets you make very strong guesses at what it

does — even when you can’t see the function name.

The features that make this possible are:

* The output of a pure function depends only on its inputs
* Pure functions have no side effects

e All values are immutable

What's next

Now that I've written several small lessons about pure functions, the next two lessons
will show how combining pure functions into applications feels both like (a) algebra
and (b) Unix pipelines.
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“Some advanced Lispers will cringe when someone
says that a function ‘returns a value.’ This is
because Lisp derives from something called
lambda calculus, which is a fundamental
programming-like algebra developed by Alonzo
Church. In the lambda calculus you ‘run’ a
program by performing substitution rules on the
starting program to determine the result of a
function. Hence, the result of a set of functions
just sort of magically appears by performing
substitutions; never does a function consciously
‘decide’ to return a value. Because of this, Lisp
purists prefer to say that a function ‘evaluates to

) ”

a result.
From the book, Land of Lisp

Introduction

I like to start most lessons with a relevant quote, but in the case of “FP as Algebra,”
several relevant quotes come to mind, so I'd like to share one more, from the book,
Thinking Functionally with Haskell:

“FP has a simple mathematical basis that supports equational reasoning

about the properties of programs.”

Because of functional programming’s main features — pure functions and im-

mutable values — writing FP code is like writing algebraic equations. Because I
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always liked algebra and thought it was simple, this made FP appealing to me.

I'll demonstrate what I mean in this lesson.

Goals
The first goal of this lesson is to give some examples of how FP code i1s like algebra.

A second goal of this lesson is to keep building an “FP way of thinking” about pro-
gramming problems. The mindset of this lesson is that each pure function you write
is like an algebraic equation, and then gluing those functions together to create a
program is like combining a series of algebraic equations together to solve a math

problem.

As this chapter’s introductory quote states, when you begin to think about your func-
tions as “evaluating to a result,” you’ll be in a state of mind where you’re thinking
about solving problems and writing your code as being like writing algebraic equa-

tions, and that’s a good thing;

Background: Algebra as a reason for “Going FP”

Hopefully you’ll find your own reasons for “Going FP,” but for me the lightbulb went
on over my head when I realized that P let me look at my code this way. Gluing
pure functions together felt like combining a series of algebraic equations together
— l.e., algebraic substitution — and because I always liked algebra, this was a good
thing,

Before learning FP my background was in OOP. I first learned and then taught Java
and OOP in the 1990s and early 2000s, and with that background I always looked at
problems from the eyes of an OOP developer. That never made me see writing code
as being like writing mathematical expressions. I always thought, “Okay, these things
here are my objects (Pizza, Topping, Order), these are their behaviors (addTopping),
and they hide their internal workings from other objects.”

But since learning FP I now see my code as being more like algebra, and it’s a very
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different perspective. I clearly remember my first thought when I saw the connection

between FP and algebra:

“Whoa ... 1f my function’s output depends solely on its input, well, shoot,
I can always write one pure function. If I can write one pure function,
then I can write another, and then another. And then once they’re all
working I can glue them together to form a complete solution, like a
series of equations. And since they’re all pure functions they can’t really
fail — especially not because of hidden state issues — at least not if 1

test them properly.”

Sometimes programming can get a little overwhelming when you think about writing
an entire application, but when I realized that I can always write one pure function,

that gave me a tremendous sense of confidence.

As a programming tip, when you’re writing a pure function, think of that
function as your world, your only concern in the entire world. Because
“output depends only on input,” all you have to think about is that your
function (your world) is given some inputs, and you need to create an

algorithm to transform those inputs into the desired result.

Background: Defining algebra

It’s important to understand what “algebra” is so you can really internalize this les-

SO1.

Unfortunately, trying to find a good definition of algebra is difficult because many
people go right from the concept of “algebra” to “mathematics,” and that’s not what
I have in mind. This informal definition of algebra by Daniel Eklund fits my way of
thinking a little better:

For purposes of simplicity, let us define algebra to be two things: 1) a
SET of objects (not “objects” as in object-oriented), and 2) the OPER-
ATTONS used on those objects to create new objects from that set.
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As emphasized, the key words in that sentence are set and operations. Mr. Eklund goes
on to define “numeric algebra”:

In the case of numeric algebra — informally known as high-school alge-
bra — the SET is the set of numbers (whether they be natural, rational,
real, or complex) and the OPERATIONS used on these objects can be
(but definitely not limited to be) addition or multiplication. The algebra
of numbers 1s therefore the study of this set, and the laws by which these

operators generate (or don’t generate) new members from this set.

As an example, a set of natural numbers is [0,1,2 ... infinity]. Operations on that set
can be add, subtract, and multiply, and new members are generated using these
operators, such as 1 + 2 yielding 3.

Mr. Eklund goes on to define other types of algebras, but for our purposes I’ll just

share one more sentence:

The key thing to realize here is that an algebra lets us talk about the
objects and the operations abstractly, and to consider the laws that these

operations obey as they operate on the underlying set.

In Scala/FP, the “objects” Mr. Eklund refers to can be thought of as the built-in
Scala types and the custom types you create, and the “operations” can be thought

of as the pure functions you write that work with those types.

For instance, in a pizza store application, the “set” might include types like Pizza,
Topping, Customer, and Order. To find the operations that work with that set, you
have to think about the problem domain. In a pizza store you add toppings to a
pizza that a customer wants, and then you can add one or more pizzas to an order
for that customer. The types are your set (the nouns), and the functions you create

define the only possible operations (verbs) that can manipulate that set.

Given that discussion, a Scala trait for a Pizza type might look like this:
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trait Pizza {
def setCrustSize(s: CrustSize): Pizza
def setCrustType(t: CrustType): Pizza
def addTopping(t: Topping): Pizza
def removeTopping(t: Topping): Pizza
def getToppings(): Seq[Topping]

In the same way that 1 is a natural number and can work with operations like add
and subtract, Pizza is a type and can work with the operations (methods) it defines.

From algebra to FP

If you haven’t worked with algebra in a while, it may help to see a few algebraic

functions as a refresher:

fx) =x+1
f(xny =X +Yy
fCa,b,c,x) = a * xA2 + b*x + ¢

It’s easy to write those algebraic equations as pure functions in Scala/FP. Assuming

that all the values are integers, they can be written as these functions in Scala:

def f(x: Int) = x + 1
def f(x: Int, y: Int) = x +y
def f(Ca: Int, b: Int, c: Int, x: Int) = a*x*x + b*x + ¢

These are pure functions (“output depends only on input”) that use only immutable

values. This shows one way that FP is like algebra by starting with algebraic functions
and then writing the Scala/FP versions of those functions.

From FP to algebra

Similarly I can start with Scala/FP code and show how it looks like algebraic equa-
tions. For example, take a look at these Scala expressions:
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val emailDoc = getEmailFromServer(src)
val emailAddr = getAddr(emailDoc)

val domainName = getDomainName(emailAddr)

You can see how that code 1s like algebra if I add comments to it:

val emailDoc = getEmailFromServer(src) // val b = f(a)
val emailAddr = getAddr(emailDoc) // val c = g(b)
val domainName = getDomainName(emailAddr) // val d = h(c)

No matter what these functions do behind the scenes, they are essentially algebraic
expressions, so you can reduce them just like you reduce mathematical expressions.

Using simple substitution, the first two expressions can be combined to yield this:

val emailAddr = getAddr(getEmailFromServer(src))

val domainName = getDomainName(emailAddr)
Then those two expressions can be reduced to this:
val domainName = getDomainName(getAddr(getEmailFromServer(src)))

If you look at the comments I added to the code, you’ll see that I started with this:

val b = f(a)
val ¢ = g(b)
val d = h(c)

and reduced it to this:
val d = h(g(f(a)))

I can make these substitutions because the code is written as a series of expressions
that use pure functions.

You can write the code in the three lines, or perform the substitutions to end up with

just one line. Either approach is valid, and equal.
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What makes this possible is that other than getEmailFromServer(src), which is pre-

sumably an impure function, the code:

* Only uses pure functions (no side effects)

* Only uses immutable values

When your code is written like that, it really is just a series of algebraic equations.

Benefit: Algebra is predictable

A great thing about algebra is that the results of algebraic equations are incredibly
predictable. For example, if you have a double function like this:

def double(i: Int) =1 * 2

you can then call it with the number 1 an infinite number of times and it will always

return 2. That may seem obvious, but hey, it’s how algebra works.
Because of this, you know that these things will always happen:

println(double(1)) // prints 2
println(double(2)) // ! 4
println(double(3)) // ! 6

And you also know that this can never happen:

println(double(1)) // prints 5 (can never happen)
println(double(1)) // prints 17 (can never happen)

With pure functions you can never have two different return values for the same input
value(s). This can’t happen with pure functions, and it can’t happen with algebra,

either.
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A game: What can possibly go wrong?

A great thing about thinking about your code as algebra is that you can look at one
of your pure functions and ask, “What can possibly go wrong with this function?”
When you do so, I hope that tring to find any problems with it will be very difficult.
After thinking about it long and hard I hope you get to the point of saying, “Well, I
guess the JVM could run out of RAM (but that doesn’t have anything directly to do

with my function).”

My point is that because it’s isolated from the rest of the world, it should be a real
struggle to think about how your pure function can possibly fail. When you’re writing
OOP code you have to concern yourself that “output does not only depend on input,”
which means that you have to think about everything else in the application that
can fail or be a problem — 1.e., things like (a) state of the application outside the
function’s scope, and (b) variables being mutated while you’re trying to use them —

but with FP code you don’t have those concerns.

For example, imagine that you’re writing a multi-threaded imperative application,
you’ve been given a list of users, and the purpose of your function is to sort that list
of users. There are a lot of ways to sort lists, so that isn’t hard, but what happens
to your code if that list of users is mutated by another thread while your function is
trying to sort the list? For instance, imagine that 20 users are removed from the list

while you’re trying to sort it; what will happen to your function?

You can demonstrate this problem for yourself. Remembering that Scala Array ele-

ments can be mutated, imagine that you have an Array[String] like this:

// 1 - a mutable sequence to work with

val arr = Array("one", "two", "three", "four", "five")

Then imagine that you begin printing the length of each string in a different thread,
like this:
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// 2 - start printing the numbers in a different thread
val thread = new Thread {
override def run {

printStringlLength(arr)

ks
thread.start

If you now mutate the array like this:

// 3 - mutate the sequence to see how that other thread works
Thread.sleep(100)
arr(3) = null

you can easily generate a NullPointerException if your printStringlLength method
looks like this:

def printStringlLength(xs: Seq[String]) {
for (x <- xs) {
println(x.length)
Thread.sleep(200)

Conversely, it’s impossible to replicate this example if you use a Scala Vector or List.
Because these sequences are immutable, you can’t accidentally mutate a sequence

in one thread while it’s being used in another.

Transform as you copy, don’t mutate

In my previous Java/OOP life I mutated variables all the time. That’s how I did
almost everything, and frankly, I didn’t know there was another way. I knew that
a Java String was immutable, but based on my OOP thinking, I thought this was
more of a pain than anything that was actually helpful to me.
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But when you think of your code as algebra, you realize that mutating a variable has
nothing to do with algebra. For instance, I never had a math instructor who said,
“Okay, x 1s currently 10, but let’s go ahead and add 1 to it so x is now 11.” Instead
what they said is, “Okay, we have x, which is 10, and what we’ll do is add 1 to it to
get a new value y”:

x = 10
y=x+1

In FP code you do the same thing. You never mutate x, but instead you use it as

a foundation to create a new value. In Scala, you typically do this using the case
class copy method.

Case class copy method

When you use a Scala case class you automatically get a copy method that supports
this “transform as you copy” algebraic philosophy.

A simple way to demonstrate this is to show what happens when a person changes
their name. I'll demonstrate this with two variations of a Person class, first showing

an OOP/imperative approach, and then showing an FP/algebraic approach.

With OOP code, when Jonathan Stuart Leibowitz changes his name to Jon Stewart,
you might write code like this:

// oop design

class Person(var name: String)

// create an instance with the original name

var p = new Person("Jonathan Stuart Leibowitz")

// change the name by mutating the instance

p.name = "Jon Stewart"

In my OOP life I wrote code like that all the time and never gave it a second
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thought. But you just don’t do that sort of thing in algebra. Instead, what you
do in FP/algebraic code is this:

// fp design

case class Person(name: String)

// create an instance with the original name

val p = Person("Jonathan Stuart Leibowitz")

// create a new instance with the "transform as you copy" approach

val p2 = p.copy(Chame = "Jon Stewart")

The FP approach uses the copy method to create a new value p2 from the original p,
resulting in p2.name being “Jon Stewart.”

Mathematically, the last two lines of the FP approach are similar to this:

val x = a

val y = x + b
O, 1f it helps to use the original value names, this:

val p = a

val p2

p+b

It’s good to see the case class copy approach now, because (a) it’s a Scala/FP idiom,

and (b) we’re going to use it a lot in this book.

As I mentioned earlier, I never thought of my OOP code as having the
slightest thing to do with algebra. Now I think of'it that way all the time,
and that thought process is the result of writing pure functions and using

only immutable variables.
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Benefit: Automated property-based testing

In a preview of a later chapter, a nice benefit of coding in this style is that you can
take advantage of something called “property-based testing,” what I'll call “PBT”
here. PBT is a way of testing your code in a manner similar to using JUnit, but
instead of writing each individual test manually at a low level, you instead describe
your function and let the PBT testing tool pound away at it. You can tell the PBT
tool to throw 100 test values at your function, or 1,000, or many more, and because
your function is a pure function — and therefore has this algebraic property to it —

the PBT library can run tests for you.

Technically you can probably do the same thing with impure functions, but I find
that this technique is much easier with pure functions.

I wrote a little about this in the Benefits of Functional Programming
lesson, and I write much more about it later in this book, so I won’t
write any more here. If you’re interested in more details at this time, see
the ScalaCheck website and the property-based testing page on that site.

Later in this book: Algebraic Data Types

Another way that FP relates to algebra is with a concept known as Algebraic Data
Types, or ADTs. Don’t worry about that name, ADT is a simple concept. For ex-
ample, this code 1s an ADT:

sealed trait Bool
case object True extends Bool

case object False extends Bool
This code from the book, Beginning Scala, is also an ADT:

sealed trait Shape
case class Circle(radius: Double) extends Shape
case class Square(length: Double) extends Shape

case class Rectangle(h: Double, w: Double) extends Shape


/book/benefits-of-functional-programming-in-scala.html
/book/benefits-of-functional-programming-in-scala.html
https://www.scalacheck.org/
http://www.scalatest.org/user_guide/property_based_testing
http://amzn.to/1MRH8tp
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I don’t want to get into this in much detail right now, I just wanted to let you know
that there’s more algebra later in this book. The “algebra” in ADTs is described on
the Haskell wiki like this:

“Algebraic” refers to the property that an Algebraic Data Type is created
by “algebraic” operations. The “algebra” here is “sums” and “products”

(of types).

Again, don’t fear the term; it’s another complicated-sounding term for a simple con-

cept, as shown in these examples.

Summary

In this lesson I tried to show a few ways that functional programming is like algebra.
I showed how simple algebraic functions can be written as pure functions in Scala,
and I showed how a series of Scala expressions looks just like a series of algebraic
functions. I also demonstrated how a series of expressions can be reduced using
simple algebraic substitution. I also noted that in the future you’ll learn about a
term named Algebraic Data Types.

The intent of this lesson is to help you keep building an “FP way of thinking” about

programming problems. If you write your code using only pure functions and im-

mutable variables, your code will natural migrate towards this algebraic way of think-
ing:

Pure Functions + Immutable Values == Algebra

Who knows, you may even start saying that your functions “evaluate to a result.”

What's next

In the next chapter I'll make a quick observation that when you write functional code,
you’re also writing code that fits a style known as Expression-Oriented Programming;


https://wiki.haskell.org/Algebraic_data_type
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See Also

What the Heck are Algebraic Data Types, the Daniel Eklund paper
* Algebraic Data Type on Wikipedia

* The Algebra of Algebraic Data Types

 Algebraic Data Type on the Haskell wiki
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A Note About Expression-Oriented
Programming

Expression-Oriented Programming

Goals

This chapter isn’t a lesson so much as it as an observation — a short note that the FP
code I'm writing in this book also falls into a category known as Expression-Oriented

Programming, or EOP.

In fact, because Pure FP code is more strict than EOP, FP is a superset of EOP. As a
result, we just happen to be writing EOP code while we’re writing Scala/FP code.

Therefore, my goals for this lesson are:

* To show the difference between statements and expressions
* To briefly explain and demonstrate EOP
* To note that all “Pure FP” code is also EOP code

I wrote about EOP in the Scala Cookbook, so I'll keep this discussion
short.
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Statements and expressions

When you write pure functional code, you write a series of expressions that combine
pure functions. In addition to this code conforming to an FP style, the style also
fits the definition of “Expression-Oriented Programming,” or EOP. This means that
every line of code returns a result (“evaluates to a result”), and is therefore an expression

rather than a statement.

As noted in the quote at the beginning of this chapter, statements do not

return results and are executed solely for their side effects.

An expression has the form:
val resultingValue = somePureFunction(someImmutableValues)
Contrast that with the OOP “statement-oriented code” I used to write:

order.calculateTaxes()

order.updatePrices()

Those two lines of code are statements because they don’t have a return value; they’re
just executed for their side effects.

In FP and EOP you write those same statements as expressions, like this:

val tax = calculateTax(order)

val price = calculatePrice(order)

While that may seem like a minor change, the effect on your overall coding style is
huge. Writing code in an EOP style is essentially a gateway to writing in an FP style.

I'm tempted to write about “The Benefits of EOP,” but because I already
wrote about “The Benefits of Functional Programming” in a previous
lesson, I won’t repeat those points here. Please see those chapters to

refresh your memory on all of those benefits.
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A key point
A key point of this lesson is that when you see statements like this:

order.calculateTaxes()

order.updatePrices()

you should think, “Ah, these are statements that are called for their side effects. This
is imperative code, not FP code.”

Scala supports EOP (and FP)

As I noted in the Scala Cookbook, these are obviously expressions:

val x = 2 + 2
val doubles = List(1,2,3,4,5).map(_ * 2)

Butit’s a little less obvious that the if/then construct can also be used to write expres-
sions:

val greater = if (a > b) a else b

Note: In Java you need the special ternary operator syntax to write code
like that.

The match construct also returns a result, and is used to write expressions:

val evenOrOdd = i match {
case 1 | 3 15171 9 = println("odd")
case 2 1 41 61 81 10 => println("even")

And try/catch blocks are also used to write expressions:


http://amzn.to/24ivK4G
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def toInt(s: String): Int = {
try {
s.tolnt
} catch {
case : Throwable => 0@

As you'll see in the upcoming lessons on recursion, match expressions are a big part
of the Scala language, and because they evaluate to a value, you'll often write the first
part of recursive functions like this:

def sum(list: List[Int]): Int = list match { ...

Summary

When every line of code has a return value it is said that you are writing expressions,
and using an EOP style. In contrast, statements are lines of code that do not have
return values, and are executed for their side effects. When see statements in code
you should think, “This is imperative code, not FP code.”

As noted 1in this lesson, because EOP is a subset of an P style, when you write

Scala/FP code you are also writing EOP code.

What's next

Given this background, the next lesson shows how writing Unix pipeline commands
also fits an EOP style, and in fact, an FP style.
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Masterminds of Programming

Goals

The primary goal of this lesson is to show that you can think of writing functional
programs as being like writing Unix pipeline commands. Stated another way, if
you’ve written Unix pipeline commands before, you have probably written code in

a functional style, whether you knew it or not.

As a second, smaller goal, I want to demonstrate a few ways that you can look at
your code visually to help you “Think in FP.”

Note: This section is written for Unix and Linux users. If you don’t
know Unix, (a) I highly recommend learning it, and (b) you may want
to (sadly) skip this section, as it may not make much sense unless you
know the Unix commands that I show.
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Discussion

One way to think about FP is that it’s like writing Unix/Linux pipeline commands,
1.e., a series of two or more commands that you combine at the Unix command line

to get a desired result.

For example, imagine that your boss comes to you and says, “I need a script that will
tell me how many unique users are logged into a Unix system at any given time.”

How would you solve this problem?

Knowing Unix, you know that the who command shows the users that are currently
logged in. So you know that you want to start with who — that’s your data source.
To make things interesting, let’s assume that who doesn’t support any command-line
arguments, so all you can do is run who without arguments to generate a list of users

logged into your system, like this:

$ who

al console Oct 10 10:01
joe ttys00@ Oct 10 10:44
tallman ttys@@1 Oct 10 11:05
joe ttys002 Oct 10 11:47

who’s output is well structured and consistent. It shows the username in the first
column, the “console” they’re logged in on in the second column, and the date and
time they logged in on in the last columns.

Some Unix systems may show the IP address the user is logged in from.
I left that column off of these examples to keep things simple.

If you didn’t have to automate this solution, you could solve the problem by looking
at the unique usernames in the first column. In this case there are four lines of output,
but only three of the usernames are unique — al, joe, and tallman — so the current
answer to your boss’s question 1s that there are three unique users logged into the
system at the moment.

Now that you know how to solve the problem manually, the question becomes, how

do you automate this solution?
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An algorithm

The solution’s algorithm appears to be:

* Run the who command
e Create a list of usernames from the first column
* Get only the unique usernames from that list

* Count the size of that list
In Unix that algorithm translates to chaining these commands together:

e Start with who as the data source
e Use a command like cut to create the list of usernames
* Use uniq to get only the unique usernames from that list

* Use wc -1 to count those unique usernames

Implementing the algorithm
A good solution for the first two steps is to create this simple Unix pipeline:
who | cut -d" ' -f1

That cut command can be read as, “Using a blank space as the field separator (-d'
"), print the first field (-f1) of every row of the data stream from STDIN to STD-
OU'LY” That pipeline command results in this output:

al
joe
tallman

joe

Notice what I did here: I combined two Unix commands to get a desired result. If
you think of the who command as providing a list of strings, you can think of the cut
command as being a pure function: it takes a list of strings as an input parameter,
runs a transformation algorithm on that incoming data, and produces an output list
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of strings. It doesn’t use anything but the incoming data and its algorithm to produce

1ts result.

As a quick aside, the signature for a Scala cut function that works like the Unix cut

command might be written like this:

def cut(strings: Seq[String],
delimiter: String,
field: Int): Seq[String] = 777

Getting back to the problem at hand, my current pipeline command generates this

output:

al

joe

tallman

joe

and I need to transform that data into a “number of unique users.”

To finish solving the problem, all I need to do is to keep combining more pure func-

tions — er, Unix commands — to get the desired answer. That is, I need to keep

transforming the data to get it into the format I want.

The next thing I need to do is reduce that list of all users down to a list of unique users.
I do that by adding the uniq command to the end of the current pipeline:

who | cut -d'" " -f1 | unigq

uniq transforms its STDIN to this STDOU'T:
al

joe

tallman

Now all I have to do to get the number of unique users is count the number of lines
that are in the stream with we -1:
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who | cut -d' ' -fl | uniq | wc -1

That produces this output:

Whoops. What’s that 3 doing way over there to the right? I want to think of my
result as being an Int value, but this is more like a String with a bunch of leading
spaces. What to do?

Well, it’s Unix, so all I have to do is add another command to the pipeline to trans-

form this string-ish result to something that works more like an integer.

There are many ways to handle this, but I know that the Unix tr command is a nice
way to remove blank spaces, so I add it to the end of the current pipeline:

who | cut -d" " -f1 | uniqg | wc -1 | tr -d " '

That gives me the final, desired answer:

That looks more like an integer, and it won’t cause any problem if I want to use this
result as an input to some other command that expects an integer value (with no

leading blank spaces).

If you’ve never used the tr command before, it stands for translate, and

I wrote a few tr command examples many years ago.

The solution as a shell script

Now that I have a solution as a Unix pipeline, I can convert it into a little shell script.
For the purposes of this lesson, I’ll write it in a verbose manner rather than as a
pipeline:

WHO="who"
RES1="echo $WHO | cut -d' ' -f1°


http://alvinalexander.com/unix/edu/un010011/
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RES2="echo $RES1 | uniq’
RES3="echo $RES2 | wc -1°
RES4="echo $RES3 | tr -d ' '
echo $RES4

Hmm, that looks suspiciously like a series of expressions, followed by a print statement,
doesn’t it? Some equivalent Scala code might look like this:

val who: Seq[String] = getUsers // an impure function
val resl = cut(who, " ", 1)

val res2 = uniq(resl)

val res3 = countlLines(res?2)
val res4 = trim(res3)

println(res4) // a statement

Combining simple expressions

I usually write “one expression at a time” code like this when I first start solving
a problem, and eventually see that I can combine the expressions. For example,
because the first and last lines of code are impure functions I might want to leave
them alone, but what about these remaining lines:

val resl = cut(who, " ", 1)

val res2 = uniq(resl)

val res3 = countlLines(res?2)

val res4 = trim(res3)

In the first line, because cut is a pure function, resl and cut(who, " ", 1) will

always be equivalent, so I can eliminate resl as an intermediate value:

val res2 = unigqCcut(who, " ", 1))

countLines(res2)

val res3

val res4 = trim(res3)

Next, because res2 is always equivalent to the right side of its expression, I can
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eliminate res2 as an intermediate value:

val res3 countLinesCuniqgCcut(who, " ", 1)))

val res4 = trim(res3)

Then I eliminate res3 for the same reason:

val res4 = trimCcountlLines(unigCcut(who, " ", 1))))

Because there are no more intermediate values, it makes sense to rename res4:
val result = trimCcountlLines(unigCcut(who, " ", 1))))

If you want, you can write the entire original series of expressions and statements —

including getUsers and the println statement — like this:
println(trimCcountLinesCuniq(cut(getUsers, " ", 1)))))
As a recap, I started with this:

val who: Seq[String] = getUsers

val resl = cut(who, " ", 1)
val res2 = uniq(resl)
val res3 = countlLines(res2)

val res4 = trim(res3)

println(res4)
and ended up with this:
println(trimCcountLinesCuniq(cut(getUsers, " ", 1)))))

The thing that enables this transformation is that all of those expressions in the mid-

dle of the original code are pure function calls.
This is the Scala equivalent of the Unix pipeline solution:

who | cut -d" " -f1 | unig | wc -1 | tr -d " "
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I always find solutions like this amusing, because if you have ever seen
Lisp code, condensed Scala/FP code tends to look like this, where you
read the solution starting at the inside (with getUsers), and work your

way out (to cut, then unig, etc.).

Note: You don’t have to use this condensed style. Use whatever you’re comfortable
with.

How is this like functional programming?
“That’s great,” you say, “but how is this like functional programming?”

Well, if you think of the who command as generating a list of strings (Seq[String]),
you can then think of cut, uniq, wc, and tr as being a series of transformer functions,
because they transform the input they’re given into a different type of output, as
shown in Figure 21.1.

5 J -
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Figure 21.1: Unix commands transform their input into thewr output.
Looking at just the we command — and thinking of it as a pure function — you can
think of it as taking a Seq[String] as its first input parameter, and when it’s given

the -1 argument, it returns the number of lines that it counts in that Seq.

In these ways the wec command is a pure function:

* It takes a Seq[String] as input
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* It does not rely on any other state or hidden values

* It does not read or write to any files

* It does not alter the state of anything else in the universe
* Its output depends only on its input

* Given the same input at various points in time, it always returns the same value

The one thing that we did that I didn’t like is that it left-pads its output with blank
spaces, so I used the tr command just like the wc command to fix that problem: as
a pure function.

A nice way to think of this code 1s like this:

Input -> Transformer -> Transformer ... Transformer-> Output

With that thought, this example looks as shown in Figure 21.2.

Figure 21.2: Using a series of transformers in a pipeline to solve a problem.

Note a few key properties in all of this. First, data flows in only one direction, as
shown in Figure 21.3.

Second, Figure 21.4 shows that the input data a function is given is never modified.

Finally, as shown in Figure 21.5, you can think of functions as having an entrance and

an exit, but there are no side doors or windows for data to slip in or out.

These are all important properties of pure functions (and Unix commands).
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Figure 21.3: Pipeline data flows in only one direction.

Figure 21.4: Data 1s never modified.
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Figure 21.5: Pure functions have one entrance and one exit.



175

Pipelines as combinators

There’s another interesting point about this example in regards to FP. When I com-

bine these commands together like this:
who | cut -d" " -fl | unig | wc -1 | tr -d " '

I create what’s called in Unix a pipeline or command pipeline. In FP we call that same
thing a combinator. That is, I combined the three commands — pure functions —

together to get the data I wanted.
If I had structured my Scala code differently I could have made it look like this:

who.cut(delimiter=" ", field=1)
.uniq
.wc(lines = true)
.tr(find=" ", replace="")

I'll add a more formal definition of “combinator” later in this book, but in general,
when you see code like this — a chain of functions applied to some initial data —
this is what most people think when they use the term “combinator.” This is another
case where an FP term sounds scary, but remember that whenever you hear the term

“combinator” you can think “Unix pipeline.”

Look back at how you thought about that problem

At this point it’s worth taking a moment to think about the thought process involved
in solving this problem. If you look back at how it was solved, our thinking followed

these steps:

* We started with the problem statement: wanting to know how many users are

logged into the system.

* We thought about what data source had the information we needed, in this

case the output of the who command.

* At this point should note that implicit in my own thinking is that I knew the

structure of the data I'd get from the who command. That is, as an experienced
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Unix user I knew that who returns a list of users, with each user login session

printed on a new line.

* Depending on your thought process you may have thought of the who output
as a multiline String or as a List (or more generally as a Seq in Scala). Either
thought is fine.

* Because you knew the structure of the who data, and you know your Unix
commands, you knew that you could apply a sequence of standard commands

to the who data to get the number of unique users.

* You may or may not have known beforehand that the we -1 output is padded

with blank spaces. I did not.

T he functional programming thought process

The reason I mention this thought process is because that’s what the functional pro-

gramming thought process is like:

* You start with a problem to solve.
* You either know where the data source is, or you figure it out.

* Likewise, the data is either in a known format, or in a format you need to

learn.
* You clearly define the output you want in the problem statement.

* You apply a series of pure functions to the input data source(s) to transform

the data into a new structure.

« Ifall of the functions that you need already exist, you use them; otherwise you

write new pure functions to transform the data as needed.

Note the use of the word apply in this discussion. Functional program-
mers like to say that they apply functions to input data to get a desired
output. As you saw, using the word “apply” in the previous discussion

was quite natural.
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A second example

As a second example of both “Unix pipelines as FP,” and “The FP thought process,”
imagine that you want a sorted list of all users who are currently logged in. How

would you get the desired answer?

Let’s follow that thought process again. I’ll give you the problem statement, and
everything after that is up to you.

a) You start with a problem to solve.

Problem statement: I want a sorted list of all users who are currently logged in.

b) You either know where the data source 1s, or you figure it out.

The data source is:

¢) Likewrse, the data 1s either in a known_format, or in a_format you need to learn.

The data format looks like this:

d) Going back to the problem statement, you clearly define the output you want

The desired output format is:
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¢e) Apply a series of functions to the input data source(s) to get the output data you

want.

The command pipeline needed to get the output data from the input data is:

) If all of the functions that you need already exist, you use them; otherwise you

write new pure functions to convert/transform the data as needed.

Do you need to create any new functions to solve this problem? If so, define them

here:

One possible solution

Here’s my solution:

who | cut -fl -d" ' | uniq | sort

More exercises

That exercise was intentionally a relatively simple variation of the original exercise.
Here are a few more advanced exercises you can work to get the hang of this sort of

problem solving:

* Write a pipeline to show the number of processes owned by the root user.

* Write a pipeline to show the number of open network connections. (Tip: I use

netstat as the data source.)
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* Use the 1sof command to show what computers your computer is currently

connected to.

* Write a pipeline command to show which processes are consuming the most
RAM on your computer.

* Write a command to find the most recent .gitignore file on your computer.

Data flow diagrams

Besides demonstrating how writing Unix pipeline commands are like writing FP
code (and vice-versa), I'm also trying to demonstrate “T'he FP Thought Process.”
Because “output depends only on input,” FP lends itself to something that used to
be called “Data Flow Diagrams” — or DFDs — back in the old days.

There’s a formal notation for DFDs, but I don’t care forit. (There are actually several
formal notations.) If I was going to sketch out the solution to the last problem, I'd

draw it like the image in Figure 21.6.

Because I'm using my own graphical drawing language here, I’ll note that at the

moment:

* I prefer to draw data flows as streams (simple tables).
* I like to annotate streams with their data types.

* I like to draw functions as rectangles (because of the whole front-door/back-

door, entrance/exit concept).

I'm not suggesting that you have to draw out every problem and solution like this,

but if you’re working on a hard problem, this can be helpful.

“Conservation of data™

If I'm working on a difficutl problem, or trying to explain a solution to other people,
I like to draw visual diagrams like that. The book, Complete Systems Analysis, by


http://amzn.to/1Q45ZLy
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Figure 21.6: A DFED-like sketch of the pipeline solution.
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Robertson and Robertson, defines something else that they call a “Rule of Data

Conservation,” which they state like this:

“Each process (function) in the data flow diagram must be able to pro-

duce the output data flows from its input.”

Using their diagramming process, the data that flows from the who command would
be described like this:

Who = Username + Terminal + Date + Time

If you take the time to draw the data flows like this, it’s possible to make sure that
the “Rule of Data Conservation” is satisfied — at least assuming that you know each

function’s algorithm.

“Black holes and muracles™

A set of Power Point slides at DePaul.edu (that is hard to link to because of the whole
“PPT” thing) makes the following observations about data flows:

* Data stays at rest unless moved by a process
* Processes cannot consume or create data
— Must have at least 1 input data flow (to avoid miracles)

— Must have at least 1 output data flow (to avoid black holes)

Just substitute “function” for “process” in their statements, and I really like those last
two lines — avoiding black holes and miracles — as they apply to writing pure functions.

One caveat about this lesson

In this lesson I tried to show how writing Unix pipeline commands is like writing
FP code. This is true in that combining Unix commands to solve a problem is like

combining pure functions to solve a problem.
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One part I didn’t show is a program that runs continuously until the user selects a
“Quit” option. But fear not, I will show this in an upcoming lesson, I just need to pro-
vide a little more background information, including covering topics like recursive

programming.

Summary

As I mentioned at the beginning, my main goal for this lesson is to demonstrate that
writing Unix pipeline commands is like writing functional code. Just like functional

programming, when you write Unix pipeline commands:

* You have data sources, or inputs, that bring external data into your applica-

tion.

* Unix commands such as cut, unig, etc., are like pure functions. They take in
immutable inputs, and generate output based only on those inputs and their

algorithms.

* You combine Unix commands with pipelines in the same way that you use FP

functions as “combinators.”

See Also

* tr command examples on my website
* Unix pipelines on Wikipedia
* Data Flow Diagrams on Wikipedia

* Data Flow Diagrams on visual-paradigm.com


http://alvinalexander.com/unix/edu/un010011/
https://en.wikipedia.org/wiki/Pipeline_%28Unix%29
https://en.wikipedia.org/wiki/Data_flow_diagram
http://www.visual-paradigm.com/tutorials/data-flow-diagram-dfd.jsp

Functions Are Variables, Too

“A variable is a named entity that refers to an
object. A variable is either a val or a var. Both
vals and vars must be initialized when defined,
but only vars can be later reassigned to refer to a
different object.”

The Scala Glossary

Goals

The goal of this lesson is to show that in a good FP language like Scala, you can use
functions as values. In the same way that you create and use String and Int values,

you can use a function:

val name = "Al" // string value
val weight = 222 // int value
val double = (i: Int) => 1 * 2 // function value

To support this goal, this lesson shows:

* How to define a function as a val
* The “implicit” form of the val function syntax
* How to pass a function to another function

* Other ways to treat functions as values

183
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Scala’s val function syntax

Understanding Scala’s val function syntax is important because you’ll see function

signatures over and over in a variety of places, including:

* When you define val functions

* When you define function input parameters (i.e., when one function takes an-

other function as an input parameter)

* When you’re reading the Scaladoc for almost every method in the Scala col-

lections classes

In the REPL output

You’ll see examples of most of these in this lesson.

Formalizing some definitions

Before getting into this lesson, it will help to make sure that I'm formal about how I

use certain terminology. For instance, given this expression:
val x = 42

it’s important to be clear about these things:

1) Technically, x is a varable, a specific type of variable known as an ummutable
vanable. Informally, I prefer to refer to x as a “value,” as in saying, “x i3 an
integer value.” I prefer this because x is declared as a val field; it’s bound to
the Int value 42, and that can never change. But to be consistent with (a) other
programming resources as well as (b) algebraic terminology, I’ll refer to x as a

vaniable 1n this lesson.

Wikipedia states that in algebra, “a variable is an alphabetic character
representing a number, called the value of the variable, which is either
arbitrary or not fully specified or unknown.” So in this way, referring to

x as a variable is consistent with algebraic terms.


https://en.wikipedia.org/wiki/Variable_%28mathematics%29
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2) x has a type. In this case the type isn’t shown explicitly, but we know that the
type is an Int. I could have also defined it like this:

val x: Int = 42

But because programmers and the Scala compiler know that 42 is an Int, it’s conve-

nient to use the shorter form.

3) Variables themselves have values, and in this example the variable x has the
value 42. (As you can imagine, it might be confusing if I wrote, “The value x
has the value 42.)”

I'm formalizing these definitions now because as you’re about to see, these terms also

apply to creating functions: functions also have variable names, types, and values.

Function literals

If you haven’t heard of the term “function literal” before, it’s important to know that

in this example:

xs.map(x => x * 2)

this part of the code is a _function literal:

X =>x *2

It’s just like saying that this is a string literal:
"hello, world"

I mention this because ...

Function literals can be assigned to variables

In functional programming languages, function literals can be assigned to variable

names. In Scala this means:
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* You can define a function literal and assign it to a val field, which creates an

immutable variable
* You give that variable a name, just like any other val field
* A function variable has a value, which is the code 1n its function body
* A function variable has a #pe — more on this shortly
* You can pass a function around to other functions, just like any other val
* You can store a function in a collection, such as a Map

* In general, you use a function variable just like any other variable

The val function syntax

In the “Explaining the val Function Syntax” appendix, I show two different ways
to define functions using vals in Scala. In this lesson I'll use only the following

approach, which shows the “ummplicit return type” syntax:
val isEven = (i: Int) = 1 % 2 == 0

In this case “implicit” means that this function doesn’t explicitly state that it returns a

Boolean value; both you and the compiler can infer that by looking at the function

body.

Scala also has a val function syntax where you explicitly declare the func-
tion’s return type, and I show that in the appendix.

I discuss the implicit syntax in detail in the appendix, but Figure 22.1 shows a quick
look at what each of those fields means.

If that syntax looks a little unusual, fear not, I show more examples of'it in this lesson

and in the appendices.
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Figure 22.1: Scala’s implicit return type syntax_for functions.

Other ways to wnile this_function

This function body is a short way of saying that it returns true if the Int it is given
1s an even number, otherwise it returns false. If you don’t like the way that code

reads, it may help to put curly braces around the function body:
val isEven = (i: Int) = {1 % 2 ==0}
Or you can make the if/else condition more obvious:
val isEven = (i: Int) => if (i % 2 == @) true else false
You can also put curly braces around that function body:
val isEven = (i: Int) => { if (1 % 2 == @) true else false }
Finally, if you prefer a really long form, you can write isEven like this:
val isEven = (i: Int) => {

if (1% 2==0) 1

true

} else {

false
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Note: I only show this last version to show an example of a multi-line function body.

I don’t recommend writing short functions like this.

If you were going to explain any of these functions to another person, a good expla-
nation would be like this:

“The function isEven transforms the input Int into a Boolean value

based on its algorithm, which in this caseis i % 2 == 0.”

When you read that sentence, it becomes clear that the Boolean return value is implied
(implicit). | know that when | look at the code | have to pause for a moment before
thinking, “Ah, it has a Boolean return type,” because it takes a moment for my brain
to evaluate the function body to determine its return type. Therefore, even though it's
more verbose, | generally prefer to write functions that explicitly specify their return type,
because then | don’t have to read the function body to determine the return type.

IMHO, if (a) you have to read a function’s body to determine its return type while (b)
what you're really trying to do is understand some other block of code — such as when
you’re debugging a problem — then (c) this forces you to think about low-level details
that aren't important to the problem at hand. That’s just my opinion, but it's what | have
come to believe; I'd rather just glance at the function’s type signature.

Put another way, it's often easier to write functions that don’t declare their return types,
but it’s harder to maintain them.

The general implicit val function syntax

You can come to understand the implicit val function syntax by pasting a few func-
tions into the Scala REPL. For instance, when you paste this function into the REPL:

val isEven = (i: Int) => 1 % 2 ==

you’ll see that the REPL responds by showing that isEven is an instance of something
called <functionl>:
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scala> val isEven = (i: Int) => 1 % 2 ==

isEven: Int => Boolean = <functionl>

And when you paste a function that takes two input parameters into the REPL:
val sum = (a: Int, b: Int) =>a + b

you’ll see that it’s an instance of <function2>:

scala> val sum = (a: Int, b: Int) => a + b

sum: (Int, Int) => Int = <function2>
When I line up the REPL output for those two examples, like this:

isEven: 1Int => Boolean = <functionl>

sum: (Int, Int) => Int <function2>

you can begin to see that the general form for the way the REPL displays function
variables is this:

variableName: type = value

You can see this more clearly when I highlight the function types and values. This is
the REPL output for isEven:

isEven: Int => Boolean = <functionl>

and this 1s the output for the sum function:

sum: (Int, Int) => Int = <function2>

name type value

The type of the isEven function can be read as, “Iransforms an Int value into a
Boolean value,” and the sum function can be read as, “Takes two Int input parame-
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ters and transforms them into an Int.”

Cool FP developers generally don’t say, “a function returns a result.”
They say things like, “a function transforms its inputs into an output
value.” Or, as it’s stated in the Land of Lisp book, Lisp purists prefer to
say that “a function evaluates to a result.” This may seem like a minor
point, but I find that using phrases like this helps my brain to think of
my code as being a combination of algebraic functions (or equations) —

and that’s a good way to think.

What <functioni> and <function2> mean

In the “Explaining the val Function Syntax” appendix I write more about this topic,
but in short, the output <functionl> indicates that isEven is an instance of the Func-
tionl trait (meaning that it has one input parameter), and <function2> means that
sum is an instance of the Function2 trait (meaning that it has two input parameters).
The actual “value” of a function 1s the full body of the function, but rather than show
all of that, the REPL uses <functionl> and <function2> to show that isEven and sum

are instances of these types.

As I discuss in that appendix, behind the scenes the Scala compiler converts this

function:

val sum = (a: Int, b: Int) => a + b

into code that looks a lot like this:

val sum = new Function2[Int, Int, Int] {

def apply(a: Int, b: Int): Int =a + b

I don’t want to get too hung up on these details right now, but this is where the Func-
tion2 reference comes from. For more information on this topic, see the “Explaining

the val Function Syntax” appendix.


http://amzn.to/1PjyUeL
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http://www.scala-lang.org/api/current/scala/Function1.html
http://www.scala-lang.org/api/current/scala/Function2.html
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Passing functions into other functions

A great thing about functional programming is that you can pass functions around
just like other variables, and the most obvious thing this means is that you can pass
one function into another. A good way to demonstrate this is with the methods in

the Scala collections classes.

For example, given this list of integers (List[Int]):
val ints = List(1,2,3,4)

and these two functions that take Int parameters:

(i: Int) => 1 % 2 ==
(1i: Int) => 1 * 2

val isEven
val double

you can see that isEven works great with the List class filter method:

scala> ints.filter(isEven)
res@: List[Int] = List(2, 4)

and the double function works great with the map method:

scala> ints.map(double)
resl: List[Int] = List(2, 4, 6, 8)

Passing functions into other functions like this is what functional programming is all

about.

How this works (the short answer)

In the upcoming lessons on Higher-Order Functions I show how to write methods
like map and filter, but here’s a short discussion of how the process of passing one
function into another function (or method) works.
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Technically filter is written as a method that takes a function as an input parameter.
Any function it accepts must (a) take an element of the #pe contained in the collection,
and (b) return a Boolean value. Because in this example filter is invoked on ints —
which is a List[Int] — it expects a function that takes an Int and returns a Boolean.
Because isEven transforms an Int to a Boolean, it works great with filter for this
collection.

A look at the Scaladoc

The filter method Scaladoc is shown in Figure 22.2. Notice how it takes a predicate
which has the generic type A as its input parameter, and it returns a List of the same
generic type A. It’s defined this way because filter doesn’t transform the list elements,
it just filters out the ones you don’t want.

def filter(p: (A) = Boolean): List[A)
Selects all elements of this traversable collection which satisfy a predicate.

p the predicate used to test elements.

returns a new traversable collection consisting of all elements of this traversable collection
that satisfy the given predicate p. The order of the elements is preserved.

Figure 22.2: The filter method of Scala’s List class.

As shown in Figure 22.3, map also takes a function that works with generic types. In
my example, because ints is a List[Int], you can think of the generic type A in the
image as an Int. Because map is intended to let you transform data, the generic type B
can be any type. In my example, double is a function that takes an Int and returns
an Int, so it works great with map.

I explain this in more detail in upcoming lessons, but the important point for this

lesson is that you can pass a function variable into another function.

Because functions are variables ...

Because functions are variables, you can do all sorts of things with them. For instance,
if you define two functions like this:
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def map[B](f: (A) = B): List[B]
[use case]
Builds a new collection by applying a function to all elements of this list.

B the element type of the returned collection.
f the function to apply to each element.
returns a new list resulting from applying the given function £ to each element of this list

and collecting the results.

Figure 22.3: The map method of Scala’s List class.

val double = (i: Int) => 1 * 2
val triple = (i: Int) => 1 * 3

you can have fun and store them in a Map:

val functions = Map(
"2x" -> double,

"3x" -> triple

If you put that code into the REPL, you’ll have two functions stored as values inside
a Map.

Now that they’re in there, you can pass the Map around as desired, and then later on
get references to the functions using the usual Map approach, i.e., by supplying their
key values. For example, this is how you get a reference to the double function that’s
stored in the Map:

scala> val dub = functions("2x")

d: Int => Int = <functionl>

This 1s just like getting a String or an Int or any other reference out of a Map — you
specify the key that corresponds to the value.

Now that you have a reference to the original double function, you can invoke it:

scala> dub(2)
resd: Int = 4
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You can do the same things with the other function I put in the Map:

scala> val trip = functions("3x")

t: Int = Int = <functionl>

scala> trip(2)
resl: Int = 6

These examples show how to create functions as variables, store them in a Map, get
them out of the Map, and then use them.

T he point of this example

Besides showing how to put function variables into Maps, a key point of this example
is: 1n Scala you can use a function variable just like a String variable or an Int
variable. The sooner you begin treating functions as variables in your own code, the

further you’ll be down the path of becoming a great functional programmer.

Exercise

Given what I've shown so far, this request may be a bit of an advanced exercise, but
... here’s that Map example again:

val functions = Map(
"2x" -> double,

"3x" -> triple

Given that Map, sketch its data type here:



195

As an example of what I'm looking for, this Map:
val m = Map("age" -> 42)

has a data type of:

Map[String, Int]

That’s what I’'m looking for in this exercise: the #ype of the Map named functions.

Solution to the exercise

If you pasted the Map code into the REPL, you saw its output:

Map[String, Int => Int] = Map(2x -> <functionl>, 3x -> <functionl>)

The first part of that output shows the Map’s data type:

Map[String, Int => Int]

The data type for the Map’s key 1s String, and the type for its value is shown as Int =>
Int. That’s how you write the #ype for a function that transforms a single Int input

parameter to a resulting Int value. As you know from the previous discussion, this

means that it’s an instance of the Functionl trait.

As a second example, if the Map was holding a function that took two Int’s as input
parameters and returns an Int — such as the earlier sum function — its type would
be shown like this:

Map[(Int, Int) => Int]

That would be a Function2 instance, because it takes two input parameters.
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Examples of val functions

To help you get comfortable with the “implicit return type” version of the val func-

tion syntax, here are the functions I showed in this lesson:

val isEven = (i: Int) => 1 % 2 ==
val sum = (a: Int, b: Int) =>a + b
val double = (i: Int) => i * 2

val triple = (i: Int) => 1 * 3

And here are a few more functions that show different input parameter types:

val strlen = (s: String) => s.length

val concat = (a: String, b: String) => a + b

case class Person(firstName: String, lastName: String)
val fullName = (p: Person) => s"${p.firstName} ${p.lastName}"

Summary

Here’s a summary of what I showed in this lesson:

* Function literals can be assigned to val fields to create function variables

* To be consistent with algebra and other FP resources, I refer to these fields are

variables rather than values
» Examples of the val function syntax
» A function is an instance of a FunctionN trait, such as Functionl or Function2
» What various function type signatures look like in the REPL
* How to pass a function into another function
* How to treat a function as a variable by putting it in a Map

 That, in general, you can use a function variable just like any other variable

In regards to val function signatures, understanding them is important because

you’ll see them in many places, including function literals, the Scaladoc, REPL out-
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put, and other developer’s code. You’ll also need to know this syntax so you can

write your own functions that take other functions as input parameters.

What's next
The next lesson shows that you can use def methods just like val functions. That’s

important because most developers prefer to use the def method syntax to define

their algorithms.

See also

e Scala’s Function! trait


http://www.scala-lang.org/api/current/scala/Function1.html
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Using Methods As If They Were Functions

“The owls are not what they seem.”

From the television series, Twin Peaks

Goals

As shown in Figure 23.1, have you noticed that the Scaladoc for the List class map
method clearly shows that it takes a function?

def map[B](f: (A) = B): List[B]
[use case]

Builds a new collection by applying a function to all elements of this list.

B the element type of the returned collection.
f the function to apply to each element.
returns a new list resulting from applying the given function £ to each element of this list and collecting the results.

Figure 23.1: The map method of Scala’s List class.

But despite that, you can somehow pass it a method, and it still works, as shown 1in this
code:

// [1] create a method
scala> def doubleMethod(i: Int) =i * 2
doubleMethod: (i: Int)Int

// [2] supply the method where a function is expected
scala> List(1,2,3).map(doubleMethod)

res@: List[Int] = List(2, 4, 6)

199
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The intent of this lesson is to provide a brief explanation of how this works, and

because it works, how it affects your Scala/FP code.

I only cover this topic lightly in this lesson. If you want more details
after reading this lesson, see the appendix, “The Differences Between

val and def When Creating Functions.”

Motivation

I think it’s safe to say that most Scala/FP developers prefer to define their “functions”
using the def keyword. Although the result isn’t 100% exactly the same as writing a
val function, Scala lets you treat both approaches the same, such as when you pass
a def method into another function. Therefore, because the syntax of def methods
seems to be more comfortable for developers to read and write, most developers use
the def approach.

A def method is not a val (Part 1)

From the previous lessons, you know that this val isEven example is an instance of
the Functionl trait:

scala> val isEven = (i: Int) => 1 % 2 ==

isEven: Int => Boolean = <functionl>

However, when you write the same algorithm using def, the REPL output shows

that you have created something else:

scala> def isEven(i: Int) =1 % 2 ==

isEven: (i: Int)Boolean

The REPL output for the two examples is clearly different. This is because a val
function is an instance of a Function@ to Function22 trait, but a def methodis ... well
... when you’re not working in the REPL — when you’re writing a real application
— it’s a method that needs to be defined inside of a class, object, or trait.
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A deeper look

While this reality is “fudged” a little bit inside the REPL, when you are writing Scala
code 1n a real application, that statement 1s correct: the only way you can define def
methods is within a class, object, or trait.

You can easily demonstrate the differences. First, create a file named Methods.scala
and put this code in it:

class Methods {
def sum(a: Int, b: Int) =a + b

If you compile that code with scalac:

$ scalac Methods.scala

and then run javap on the resulting Methods.class file you’ll see this output:

$ javap Methods

Compiled from "Methods.scala"

public class Methods {
public int sum(int, int);
public Methods();

sum is clearly a method in the class named Methods. Conversely, if you create a sum2
Junction in that same class, like this:

class Methods {
def sum(a: Int, b: Int) =a + b
val sum2 = (a: Int, b: Int) =>a + b

and then compile it with scalac and examine the bytecode again with javap, you’ll

see that a val function creates something completely different:
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public scala.Function2<java.lang.0Object, java.lang.Object, java.lang.Object> sum2();

This lesson explores these differences, particularly from the point of view of using
def methods just as though they are functions.

A def method is not a val (Part 2)

In addition to showing that def methods are different than val functions, the REPL
also shows that a method is not a variable that you can pass around. That is, you

know that you can assign an Int to a variable name:

scala> val x =1
x: Int =1

and then show information about that variable:

scala> x
resd: Int =1

You can also define a function and assign it to a variable:

scala> val double = (i: Int) => 1 * 2

double: Int => Int = <functionl>
and then show information about it:

scala> double

resl: Int => Int = <functionl>
But if you define a method using def:

scala> def triple(i: Int) =1 * 3
triple: (i: Int)Int

and then try to show that method’s “variable,” what you’ll actually get is an error:



203

scala> triple

<console>:12: error: missing arguments for method triple;

follow this method with “_" if you want to treat it as a partially applied function
triple

A

The REPL shows this error because the triple method is not a variable (field name)

in the same way that an Int or a function is a variable.

Not yet, anyway. Very shortly I'll demonstrate how you can manually

create a variable from a method.

Recap

The reason I show these examples is to demonstrate that until you do something like
passing a method into a function, a def method is not the same as a val function.

Despite that, we know that somehow you can later treat a method as a function.

Which leads to the next question ...

How is it that | can use a method like a function?

b

In the appendix, “The Differences Between val and def When Creating Functions,’
I show in detail how the Scala compiler lets you use def methods just like val func-
tions. Without repeating too much of that information here, you’ll find that the
solution 1s hinted at in Version 2.9 of The Scala Language Specification:

“Eta-expansion converts an expression of method type to an equivalent ex-
ression of function type.
f function type.”

What that means is that when the Scala compiler is given these two lines of code:

def isEven(i: Int) =1 % 2 == 0 // define a method

val evens = nums.filter(isEven) // pass the method into a function
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it uses this “Eta Expansion” capability to automatically convert the method isEven

into a function — a true Functionl instance — so it can be passed into filter.

This happens automatically during the compilation process, so you generally don’t
even have to think about. In fact, I used Scala for almost a year before I thought,

“Hey, how is this even working?”

How to manually convert a method to a function

To give you an idea of how Eta Expansion works, let’s use the earlier triple example.

I first defined this method:

scala> def triple(i: Int) =1 * 3
triple: (i: Int)Int

and then when I tried to show its value in the REPL, I got this error:

scala> triple
<console>:12: error: missing arguments for method triple;
follow this method with “_' if you want to treat it as a
partially applied function

triple

A

The error message states that you can follow this method with an underscore to treat
the method as a partially applied function. That is true, and I demonstrate it in the next
lesson. But for this lesson, the important thing to know is that doing this creates a function

Jfrom your method.

To demonstrate this, go ahead and do what the error message says. Follow the

method name with an underscore, and also assign that result to a variable name:

scala> val tripleFn = triple _

tripleFn: Int => Int = <functionl>

Notice that the signature of this result is Int => Int. This means that tripleFnis a
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function that takes one Int as an input parameter, and returns an Int result. The
REPL output also shows that tripleFn has a value <functionl>, which means that
it’s an instance of the Functionl trait. Because it’s now a real function, you can
display its value in the REPL:

scala> tripleFn

resd@: Int => Int = <functionl>

This new function works just like the method works, taking an Int input parameter

and returning an Int result:

scala> tripleFn(1)
res@: Int = 3

To confirm that this manually-created function works as advertised, you can pass
it into the map method of a List[Int], which really does expect a function, not a
method:

// create a List[Int]
scala> val x = List(1,2,3)
x: List[Int] = List(1, 2, 3)

// pass in the “tripleFn" function
scala> x.map(tripleFn)
resl: List[Int] = List(3, 6, 9)

This is a short example of what Eta Expansion does for you behind the scenes, during

the compilation process.

To sum up this point, this process happens automatically when you pass a def method
into a function that expects a function. It also lets you use def methods just like they

are functions in many other situations.

For much more information on this process, see the appendix, “The
Differences Between val and def When Creating Functions.”
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It's hard to really “prove” in the REPL that this is what happens because | don’t know
of any way to disable Eta Expansion. But if you could disable it, you would find that the
method would not work with map, and the function would work with it.

While you can't prove it in the REPL, you can show what happens behind the scenes
with the Scala compiler. If you start with this class:

class EtaExpansionTest {

def double(i: Int) =1 * 2

def foo = {

val xs = List(1,2,3)

xs .map(double) // pass the “double’ method into "map"
ks

and then compile it with this command:
$ scalac -Xprint:all Methods.scala

you'll see a lot of output, and if you take the time to dig through that output, you'll be
amazed at what the compiler does to the xs.map(double) code by the time it's done
with it.  won’t go into all of that here, but if you're interested in how this process works,

| encourage you to dig into that output.

In some places it doesn’t happen automatically

In the previous lesson I showed that you can define functions and then store them

in a Map. Can you do the same thing with methods?
Well, if you define two methods like this:

1*2

i*3

def double(i: Int)
def triple(i: Int)
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and then try to store them in a Map, like this:

val functions = Map(
"2x" -> double,

"3x" -> triple

you’ll get the following error messages:

<console>:13: error: missing arguments for method double;
follow this method with "_' if you want to treat it as a
partially applied function

"2x" -> double,

A

<console>:14: error: missing arguments for method triple;
follow this method with “_' if you want to treat it as a
partially applied function

"3x" -> triple

A

Before this lesson those errors might have been a head-scratcher, but now you know
how to solve this problem — how to manually convert the methods into functions
by following the method invocations with an underscore:

val functions = Map(
"2x" -> double _,

"3x" -> triple _

That syntax converts the double and triple methods into functions, and then everything
works as shown in the previous lesson, which in this case means that you can get a
function back out of the Map and use it:

scala> val dub = functions("2x")

dub: Int => Int = <functionl>
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scala> dub(3)
resd: Int = 6

Why this lesson is important

The reason I showed everything in this lesson 1s because most developers prefer the
def method syntax over the val function syntax. That is, given the choice to write an
algorithm using either approach, developers seem to prefer the def approach, and I

believe that’s because the def syntax is easier to read.

Because of this, in the rest of this book I will often write def methods and refer to
them as functions. Technically this isn’t accurate, but because (a) methods can be
used just like functions, and (b) I don’t want to have to keep writing, “4 method that

acts like a function,” I will now start using this terminology.

Summary

Here’s a summary of what I showed in this lesson:

* The Scaladoc for collections methods like map and filter show that they take

Junctions as input parameters.
* Despite that, somehow you can pass methods into them.
* The reason that works is called “Eta Expansion.”

* I showed how to manually convert a method to a function (using the partially-
applied function approach).

* As a result of Eta Expansion, you can use def to define methods, and then
generally treat them in the same way that you use val functions.

In this lesson I only covered the basics of how a “def method” is like a “val function.”
For more details on the differences, see the appendix, “The Differences Between val
and def When Creating Functions.”
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What's next

In this lesson I showed that you can generally treat a def method just like a val
function, and not have to worry about the differences between the two. I also showed
that if the compiler doesn’t take care of that process for you automatically, you can

handle it manually.

In the next lesson you’ll see how to write functions that take other functions as in-
put parameters. With this background, you know that this also means that those

functions will be able to take methods as input parameters as well.
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How to Write Functions That Take Functions
as Input Parameters

Learn You a Haskell for Great Good!

Motivation and Goals

The topic I'm about to cover is a big part of functional programming: power program-

mung that’s made possible by passing functions to other functions to get work done.

So far I've shown I've shown how to be the consumer of functions that take other
functions as input parameters, that is, the consumer of Higher Order Functions (HOFY)
like map and filter. In this lesson I'm going to show everything you need to know
to be the producer of HOVFs, 1.e., the writer of HOF APIs.

Therefore, the primary goal of this lesson is to show how to write functions that take

other functions as input parameters. I'll show:

* The syntax you use to define function input parameters
* Many examples of that syntax

* How to execute a function once you have a reference to it

211
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As a beneficial side effect of this lesson, you’ll be able to read the source code and
Scaladoc for other HOFs, and you’ll be able to understand the function signatures

they’re looking for.

Terminology

Before we start, here are a few notes about the terminology I'll use in this lesson.

1) I use the acronym “FIP” to stand for “function input parameter.” This isn’t
an industry standard, but because I use the term so often, I think the acronym

makes the text easier to read.
2) As shown already, I'll use “HOZF” to refer to “Higher Order Function.”

3) As shown in the previous lessons you can create functions as variables, and
because of Eta Expansion you can do that by writing them as either (a) val
functions or (b) def methods. Because of this, and because I think def methods
are easier to read, from now on I’ll write def methods and refer to them as

“functions,” even though that terminology isn’t 100% accurate.

Introduction
I finished the previous lesson by showing a few function definitions like this:

def isEven(i: Int) =1 % 2 == 0
def sum(a: Int, b: Int) =a + b

I also showed that isEven works great when you pass it into the List class filter

method:

scala> val list
list: List[Int]

List.range(0, 10)
List(o, 1, 2, 3, 4, 5, 6, 7, 8, 9

scala> val evens = list.filter(isEven)
evens: List[Int] = List(@, 2, 4, 6, 8)

The key points of this are:
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* The filter method accepts a function as an input parameter.

* The functions you pass into filter must match the type signature that filter
expects — in this case creating a function like isEven that takes an Int as an

input parameter and returns a Boolean.

Understanding filter’s Scaladoc

The Scaladoc shows the type of functions filter accepts, which you can see in Fig-
ure 24.1.

def filter(p: (A) = Boolean): List[A]

Selects all elements of this traversable collection which satisfy a predicate.

p the predicate used to test elements.

returns a new traversable collection consisting of all elements of this traversable collection that
satisfy the given predicate p. The order of the elements is preserved.

Figure 24.1: The Scaladoc shows the type of functions filter accepls.

The Scaladoc text shows that filter takes a predicate, which is just a function that

returns a Boolean value.
This part of the Scaladoc:
p: (A) => Boolean

means that filter takes a function input parameter which it names p, and p must
transform a generic input A to a resulting Boolean value. In my example, where list
has the type List[Int], you can replace the generic type A with Int, and read that
signature like this:

p: (Int) => Boolean

Because isEven has this type — it transforms an input Int into a resulting Boolean
— it can be used with filter.
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A lot of functionality with a little code

The filter example shows that with HOFs you can accomplish a lot of work with a
little bit of code. If List didn’t have the filter method, you’d have to write a custom

method like this to do the same work:

// what you'd have to do if “filter  didn't exist
def getEvens(list: List[Int]): List[Int] = {
val tmpArray = ArrayBuffer[Int]()
for (elem <- list) {
if (elem % 2 == @) tmpArray += elem
I
tmpArray.tolist

val result = getEvens(list)
Compare all of that imperative code to this equivalent functional code:
val result = list.filter(_ % 2 == @)

As you can see, this is a great advantage of functional programming. The code is

much more concise, and it’s also easier to comprehend.

As FP developers like to say, you don’t tell the computer specifically
“how” to do something — you don’t specify the nitty-gritty details. In-
stead, in your FP code you express a thought like, “I want to create a
filtered version of this list with this little algorithm.” When you do that,
and you have good P language to work with, you write your code at a

much higher programming level.
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“Common control patterns™

In many situations Scala/FP code can be easier to understand than imperative code.
That’s because a great benefit of Scala/FP is that methods like filter, map, head,
tail, etc., are all standard, built-in functions, so once you learn them you don’t have
to write custom for loops any more. As an added benefit, you also don’t have to

read other developers’ custom for loops.

I feel like I say this a lot, but we humans can only keep so much in our
brains at one time. Concise, readable code is simpler for your brain and

better for your productivity.

I know, I know, when you first come to Scala, all of these methods on the collections
classes don’t feel like a benefit, they feel overwhelming. But once you realize that
almost every for loop you’ve ever written falls into neat categories like map, filter,
reduce, etc., you also realize what a great benefit these methods are. (And you’ll
reduce the amount of custom for loops you write by at least 90%.)

Here’s what Martin Odersky wrote about this in his book, Programming in Scala:

“You can use functions within your code to factor out common control
patterns, and you can take advantage of higher-order functions in the
Scala library to reuse control patterns that are common across all pro-

grammers’ code.”

Given this background and these advantages, let’s see how to write functions that

take other functions as input parameters.

Defining functions that take functions as parameters

To define a function that takes another function as an input parameter, all you have
to do is define the signature of the function you want to accept.

To demonstrate this, I’'ll define a function named sayHello that takes a function as an

input parameter. I'll name the input parameter callback, and also say that callback


http://amzn.to/2fiqDBh
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must have no input parameters and must return nothing. This is the Scala syntax to
make this happen:

def sayHello(callback: () => Unit) {
callback()

In this code, callback is an input parameter, and more specifically it is a function input
parameter (or FIP). Notice how it’s defined with this syntax:

callback: (O => Unit

Here’s how this works:

* callback is the name I give to the input parameter. In this case callback is a

function I want to accept.
* The callback signature specifies the type of function I want to accept.

* The O portion of callback’s signature (on the left side of the => symbol) states

that it takes no input parameters.

* The Unit portion of the signature (on the right side of the => symbol) indicates
that the callback function should return nothing.

* When sayHello is called, its function body is executed, and the callback()
line inside the body invokes the function that is passed in.

Figure 24.2 reiterates those points.

Now that I've defined sayHello, I'll create a function to match callback’s signature
soI cantestit. The following function takes no input parameters and returns nothing,
so it matches callback’s type signature:

def helloAl(): Unit = { println("Hello, Al") }
Because the signatures match, I can pass helloAl into sayHello, like this:

sayHelloChelloAl)



217

—— input parameter name
—— callback's input types
[——— callback's return type
¥ ¥ ¥
def sayHellol(callback:() == Unit] {
callback() e the function that

is passed in is
} invoked here

Figure 24.2: How sayHello and callback work.

The REPL demonstrates how all of this works:

scala> def sayHello(callback:() => Unit) {
| callback()
I}

sayHello: (callback: () => Unit)Unit

scala> def helloAl(): Unit = { println("Hello, A1") }
helloAl: (OUnit

scala> sayHello(helloAl)
Hello, Al

If you’ve never done this before, congratulations. You just defined a function named
sayHello that takes another function as an input parameter, and then invokes that
function when it’s called.

It’s important to know that the beauty of this approach is not that sayHello can take
one function as an input parameter; the beauty is that it can take any function that
matches callback’s signature. For instance, because this next function takes no input

parameters and returns nothing, it also works with sayHello:

def holalLorenzo(): Unit = { println("Hola, Lorenzo") }
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Here it is in the REPL:

scala> sayHello(holalLorenzo)

Hola, Lorenzo

This 1s a good start. Let’s build on it by defining functions that can take more com-

plicated functions as input parameters.

The general syntax for defining function input parameters
I defined sayHello like this:

def sayHello(callback: () => Unit)

Inside of that, the callback function signature looks like this:
callback: (O => Unit

I can explain this syntax by showing a couple of examples. Imagine that we’re defin-
ing a new version of callback, and this new version takes a String and returns an
Int. That signature would look like this:

callback: (String) => Int

Next, imagine that you want to create a different version of callback, and this one
should take two Int parameters and return an Int. Its signature would look like this:

callback: (Int, Int) => Int

As you can infer from these examples, the general syntax for defining function input
parameter type signatures 1is:

variableName: (parameterTypes ...) => returnType

With sayHello, this is how the values line up:
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General sayHello Notes

variableName callback The name you give the FIP
parameter Types () The FIP takes no input parameters

returnType Unit The FIP returns nothing

Naming your function input parameters

I find that the parameter name callback is good when you first start writing HOFs.
Of course you can name it anything you want, and other interesting names at first
are aFunction, theFunction, theExpectedFunction, or maybe even fip. But, from
now on, I’'ll make this name shorter and generally refer to the FIPs in my examples
as just f, like this:

sayHello(f: (O => Unit)
foo(f:(String) => Int)
bar(f:(Int, Int) => Int)

Looking at some function signatures

Using this as a starting point, let’s look at signatures for some more FIPs so you can
see the differences. To get started, here are two signatures that define a FIP that
takes a String and returns an Int:

sampleFunction(f: (String) => Int)
sampleFunction(f: String => Int)

The second line shows that when you define a function that takes only one input

parameter, you can leave off the parentheses.

Next, here’s the signature for a function that takes two Int parameters and returns
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an Int:

sampleFunction(f: (Int, Int) => Int)

Can you imagine what sort of function matches that signature?
(A brief pause here so you can think about that.)

Any function that takes two Int input parameters and returns an Int matches that

signature, so functions like these all fit:

def sum(Ca: Int, b: Int): Int =a + b
def product(a: Int, b: Int): Int = a * b
def subtract(a: Int, b: Int): Int = a - b

You can see how sum matches up with the FIP signature in Figure 24.3.

sampleFunction(f:{Int, Int) == Int)
i i i

def sum{a: Int, b: Int): Int = a + b

Figure 24.3: How sum matches up with the parameters in the FIP signature.

For me, an important part of this is that no matter how complicated the type signa-
tures get, they always follow the same general syntax I showed earlier:

variableName: (parameterTypes ...) => returnType
For example, all of these FIP signatures follow the same pattern:

O => Unit

String => Int

(String) => Int

(Int, Int) => Int

(Person) => String

(Person) => (String, String)
(String, Int, Double) => Seq[String]

- -h -h -h -h -h —h
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f: List[Person] => Person

A note about “type signatures”

I'm being a little loose with my verbiage here, so let me tighten it up for a moment.
When I say that this is a “type signature”:

f: String => Int

that 1sn’t 100% accurate. The type signature 1s really just this part:

String => Int

Therefore, being 100% accurate, these are the type signatures I just showed:
O => Unit

String => Int

(String) => Int

(Int, Int) => Int

(Person) => String

(Person) => (String, String)

(String, Int, Double) => Seq[String]
List[Person] => Person

This may seem like a picky point, but because FP developers talk about type signa-

tures all the time, I want to take that moment to be more precise.

It’s common in FP to think about types a lof in your code. You might
say that you “think in types.”

A function that takes an Int parameter

Recapping for a moment, I showed the sayHello function, whose callback param-

eter states that it takes no input parameters and returns nothing:

sayHello(callback: () => Unit)
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I refer to callback as a FIP, which stands for “function input parameter.”
Now let’s look at a few more FIPs, with each example building on the one before it.

First, here’s a function named runAFunction that defines a FIP whose signature states

that it takes an Int and returns nothing:

def runAFunction(f: Int => Unit): Unit = {
f(42)

The body says, “Whatever function you give to me, I’'m going to pass the Int value
42 into it.” That’s not terribly useful or functional, but it’s a start.

Next, let’s define a function that matches f’s type signature. The following print-
AnInt function takes an Int parameter and returns nothing, so it matches:

def printAnInt (i: Int): Unit = { println(i+l) }
Now you can pass printAnInt into runAFunction:
runAFunction(printAnInt)

Because printAnInt is invoked inside runAFunction with the value 42, this prints 43.
Here’s what it all looks like in the REPL:

scala> def runAFunction(f: Int => Unit): Unit = {
| f(42)
I}

runAFunction: (f: Int => Unit)Unit

scala> def printAnInt (i: Int): Unit = { println(i+l) }
printAnInt: (i: Int)Unit

scala> runAFunction(printAnInt)
43
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Here’s a second function that takes an Int and returns nothing:
def plusTen(i: Int) { println(i+10) }
When you pass plusTen into runAFunction, you’ll see that it also works, printing 52:

runAFunction(plusTen) // prints 52

T he power of the technique

Although these examples don’t do too much yet, you can see the power of HOFs:
You can easily swap in interchangeable algorithms.

As long as the signature of the function you pass in matches the signature that’s ex-
pected, your algorithms can do anything you want. This is comparable to swapping
out algorithms in the OOP Strategy design pattern.

Let’s keep building on this...

Taking a function parameter along with other parameters

Here’s a function named executeNTimes that has two input parameters: a function,
and an Int:

def executeNTimes(f: (O => Unit, n: Int) {
for (i1 <- 1 ton) fO

As the code shows, executeNTimes executes the f function n times. To test this, define

a function that matches f’s signature:


http://alvinalexander.com/java/java-strategy-design-pattern-in-java
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def helloWorld(): Unit = { println("Hello, world") }
and then pass this function into executeNTimes along with an Int:

scala> executeNTimes(ChelloWorld, 3)
Hello, world
Hello, world
Hello, world

As expected, executeNTimes executes the helloWorld function three times. Cool.

More parameters, everywhere

Next, here’s a function named executeAndPrint that takes a function and two Int
parameters, and returns nothing. It defines the FIP f as a function that takes two

Int values and returns an Int:

def executeAndPrint(f: (Int, Int) => Int, x: Int, y: Int): Unit = {
val result = f(x, y)
println(result)

executeAndPrint passes the two Int parameters it’s given into the FIP it’s given in

this line of code:
val result = f(x, y)

Except for the fact that this function doesn’t have a return value, this example shows
a common FP technique:

* Your function takes a FIP.
* It takes other parameters that work with that FIP.

* You apply the FIP (f) to the parameters as needed, and return a value. (Or, in

this example of a function with a side effect, you print something)

To demonstrate executeAndPrint, let’s create some functions that match f’s signa-
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ture. Here are a couple of functions take two Int parameters and return an Int:

def sum(x: Int, y: Int) = x +y
def multiply(x: Int, y: Int) = x * vy

Now you can call executeAndPrint with these functions as the first parameter and

whatever Int values you want to supply as the second and third parameters:

executeAndPrint(sum, 3, 11) // prints 14
executeAndPrint(multiply, 3, 9) // prints 27

Let’s keep building on this...

Taking multiple functions as input parameters

Now let’s define a function that takes multiple FIPs, and other parameters to feed
those FIPs. Let’s define a function like this:

» It takes one function parameter that expects two Ints, and returns an Int
* It takes a second function parameter with the same signature

* It takes two other Int parameters

* The Ints will be passed to the two FIPs

* It will return the results from the first two functions as a tuple — a Tuple2, to

be specific

Since I learned FP, I like to think in terms of “Function signatures first,” so here’s a

function signature that matches those bullet points:

def execTwoFunctions(fl:(Int, Int) => Int,
f2:(Int, Int) => Int,
a: Int,
b: Int): Tuple2[Int, Int] = ??7?

Given that signature, can you imagine what the function body looks like?
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(I’'ll pause for a moment to let you think about that.)
Here’s what the complete function looks like:

def execTwoFunctions(fl: (Int, Int) => Int,
f2: (Int, Int) => Int,

a: Int,

b: Int): Tuple2[Int, Int] = {
val resultl = f1Ca, b)
val result2 = f2Ca, b)

(resultl, result2)

That’s a verbose (clear) solution to the problem. You can shorten that three-line
function body to just this, if you prefer:

(f1Ca,b), f2(a,bd)
Now you can test this new function with the trusty sum and multiply functions:

def sum(x: Int, y: Int) = x + vy
def multiply(x: Int, y: Int) = x * y

Using these functions as input parameters, you can test execTwoFunctions:
val results = execTwoFunctions(sum, multiply, 2, 10)
The REPL shows the results:

scala> val results = execTwoFunctions(sum, multiply, 2, 10)
results: (Int, Int) = (12,20)

I hope this gives you a taste for not only how to write HOFs, but the power of using

them in your own code.

Okay, that’s enough examples for now. I'll cover two more topics before finishing

this lesson, and then in the next lesson you can see how to write a map function with
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everything I’ve shown so far.

The FIP syntax is just like the val function syntax
A nice thing about Scala is that once you know how things work, you can see the

consistency of the language. For example, the syntax that you use to define FIPs is

the same as the “explicit return type” (ERT) syntax that you use to define functions.

I show the ERT syntax in detail in the “Explaining Scala’s val Function
Syntax” appendix.

What I mean by this is that earlier I defined this function:
sampleFunction(f: (Int, Int) => Int)

The part of this code that defines the FIP signature is exactly the same as the ERT
signature for the sum function that I define in the val Function Syntax appendix:

val sum: (Int, Int) => Int = (a, b) => a + b
You can see what I mean if you line the two functions up, as shown in Figure 24.4.
sampleFunction{f: {(Int, Int) == Int]

val sum: (Int, Int) == Int = (a, b) == a + b

Figure 24.4: The FIP signature is exactly the same as the ERT signature for the sum_function.

Once you understand the FIP type signature syntax, it becomes easier to read things
like the ERT function syntax and the Scaladoc for HOFs.

The general thought process of designing HOFs

Personally, I'm rarely smart enough to see exactly what I want to do with all of my
code beforehand. Usually I #nk I know what I want to do, and then as I start coding I
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realize that I really want something else. As a result of this, my usual thought process
when it comes to writing HOFs looks like this:

1. I write some code
2. I write more code
3. Irealize that I'm starting to duplicate code

4. Knowing that duplicating code is bad, I start to refactor the code

Actually, I have this same thought process whether I'm writing OOP code or IP
code, but the difference is in what I do next.

With OOP, what I might do at this point is to start creating class hierarchies. For
instance, if I was working on some sort of tax calculator in the United States, I might
create a class hierarchy like this:

trait StateTaxCalculator
class AlabamaStateTaxCalculator extends StateTaxCalculator ...
class AlaskaStateTaxCalculator extends StateTaxCalculator ...

class ArizonaStateTaxCalculator extends StateTaxCalculator ...

Conversely, in FP, my approach is to first define an HOF like this:

def calculateStateTax(f: Double => Double, personsIncome: Double): Double = ...

Then I define a series of functions I can pass into that HOE, like this:

def calculateAlabamaStateTax(income: Double): Double = ...
def calculateAlaskaStateTax(income: Double): Double = ...

def calculateArizonaStateTax(income: Double): Double = ...
As you can see, that’s a pretty different thought process.
Note: I have no idea whether I'd approach these problems exactly as

shown. I just want to demonstrate the difference in the general thought

process between the two approaches, and in that regard — creating a
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class hierarchy versus a series of functions with a main HOF — I think

this example shows that.

To summarize this, the thought process, “I need to refactor this code to keep it DRY,”
1s the same in both OOP and FP, but the way you refactor the code is very different.

Summary

A function that takes another function as an input parameter is called a “Higher
Order Function,” or HOF. This lesson showed how to write HOFs in Scala, includ-
ing showing the syntax for function input parameters (FIPs) and how to execute a

function that is received as an input parameter.

As the lesson showed, the general syntax for defining a function as an input param-

eter is:
variableName: (parameterTypes ...) => returnType

Here are some examples of the syntax for FIPs that have different types and numbers
of arguments:

def exec(f:() => Unit) = ??? // note: i don't show the function body

// for any of these examples

def exec(f: String => Int) // parentheses not needed

def exec(f: (String) => Int)

def exec(f: (Int) => Int)

def exec(f: (Double) => Double)

def exec(f: (Person) => String)

def exec(f: (Int) => Int, a: Int, b: Int)

def exec(f: (Pizza, Order) => Double)

def exec(f: (Pizza, Order, Customer, Discounts) => Currency)
def exec(fl: (Int) => Int, f2:(Double) => Unit, s: String)
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What's next

In this lesson I showed how to write HOFs. In the next lesson we’ll put this knowl-
edge to work by writing a complete map function that uses the techniques shown in

this lesson.
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Magic Burns

In the previous lesson I showed how to write higher-order functions (HOFs). In this
lesson you’ll use that knowledge to write a map function that can work with a List.

Writing @ map function
Imagine a world in which you know of the concept of “mapping,” but sadly a map
method isn’t built into Scala’s List class. Further imagine that you’re not worried

about all lists, you just want a map function for a List[Int].

Knowing that life is better with map, you sit down to write your own map method.

First steps

As I got better at I'P, I came to learn that my first actions in writing most functions

are:

1. Accurately state the problem as a sentence

2. Sketch the function signature

I'll follow that approach to solve this problem.

231
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Accurately state the problem

For the first step, I'll state the problem like this:

I want to write a map function that can be used to apply other functions
to each element in a List[Int] that it’s given.

Sketch the function signature

My second step is to sketch a function signature that matches that statement. A blank

canvas 1s always hard to look at, so I start with the obvious; I want a map function:
def map

Looking back at the problem statement, what do I know? Well, first, I know that
map 1s going to take a function as an input parameter, and it’s also going to take a
List[Int]. Without thinking too much about the input parameters just yet, I can
now sketch this:

def map(f: (?) => 7, list: List[Int]): ?77?

Knowing how map works, I know that it should return a List that contains the same
number of elements that are in the input List. For the moment, the important part

about this is that this means that map will return a List of some sort:

def map(f: (?) => 7, list: List[Int]): List...

Given how map works — it applies a function to every element in the input list — the
type of the output List can be anything: a List[Double], List[Float], List[Foo],
etc. This tells me that the List that map returns needs to be a generic type, so I add
that at the end of the function declaration:

def map(f: (?) => 7, list: List[Int]): List[A]
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Because of Scala’s syntax, I need to add the generic type before the function signature
as well:

def map[AJ(f: (?) => 7, list: List[Int]): List[A]

Going through that thought process tells me everything I need to know about the
signature for the function input parameter f:

* Because f’s input parameter will come from the List[Int], the parameter type
must be Int

* Because the overall map function returns a List of the generic type A, f must
also return the generic type A

The first statement lets me make this change to the definition of f:

def map[A]J(f: (Int) => 7, 1list: List[Int]): List[A]

and the second statement lets me make this change:

def map[A](f: (Int) => A, Tlist: List[Int]): List[A]

When I define a FIP that has only one input parameter I can leave the parentheses
off, so if you prefer that syntax, the finished function signature looks like this:

def map[A]J(f: Int => A, list: List[Int]): List[A]

Cool. That seems right. Now let’s work on the function body.

The map function body

A map function works on every element in a list, and because I haven’t covered recur-
sion yet, this means that we’re going to need a for loop to loop over every element
in the input list.
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Because I know that map returns a list that has one element for each element in the
input list, I further know that this loop is going to be a for/yield loop without any
filters:

def map[A]J(f: (Int) => A, 1list: List[Int]): List[A] = {

for {
x <- list
} yield 777

The only question now is, what exactly should the loop yeeld?
(I’ll pause for a moment here to let you think about that.)

The answer is that the for loop should yield the result of applying the input function
f to the current element in the loop. Therefore, I can finish the yield expression like
this:

def map[A](f: (Int) => A, 1list: List[Int]): List[A] = {
for {
x <- list

} yield f(x) //<-- apply 'f' to each element 'x'

And that 1s the solution for the problem that was stated.

You can use the REPL to confirm that this solution works as desired. First, paste the

map function into the REPL. Then create a list of integers:

scala> val nums
nums: List[Int]

List(1,2,3)
List(1l, 2, 3)

Then write a function that matches the signature map expects:

scala> def double(i: Int): Int =1 * 2
double: (i: Int)Int
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Then you can use map to apply double to each element in nums:

scala> map(double, nums)
res@: List[Int] = List(2, 4, 6)

The map function works.

Bonus: Make it generic

I started off by making map work only for a List[Int], but at this point it’s easy to
make it work for any List. This is because there’s nothing inside the map function
body that depends on the given List being a List[Int]:

for {
X <- list
} yield f(x)

That’s as “generic” as code gets; there are no Int references in there. Therefore,
you can make map work with generic types by replacing each Int reference in the
function signature with a generic type. Because this type appears before the other

generic type in the function signature, I’ll first convert the old A’s to B’s:

def map[B](f: (Int) => B, 1list: List[Int]): List[B] = ...

Then I replace the Int references with A, and put an A in the opening brackets,

resulting in this signature:

def map[A,B](f: (A) => B, list: List[A]): List[B] = {

If you want to take this even further, there’s also nothing in this code that depends on
the input “list” being a List. Because map works its way from the first element in the
list to the last element, it doesn’t matter if the Seq is an IndexedSeq or a LinearSeq,

so you can use the parent Seq class here instead of List:
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def map[A,B](f: (A) => B, list: Seq[A]): Seq[B] = {

With this new signature, the complete, generic map function looks like this:

def map[A,B](f: (A) => B, list: Seq[A]): Seq[B] = {
for {
x <- list
} yield f(x)

I hope you enjoyed that process. It’s a good example of how I design functions these

days, starting with the signature first, and then implementing the function body.

Exercise: Write a filter function

Now that you’ve seen how to write a map function, I encourage you to take the time
to write a filter function. Because filter doesn’t return a sequence that’s the same
size as the input sequence, its algorithm will be a little different, but it still needs to

return a sequence in the end.

What's next

While this lesson provided a detailed example of how to write a function that takes
other functions as an input parameter, the next lesson will show how to write func-
tions that take “blocks of code” as input parameters. That technique and syntax is
similar to what I just showed, but the “use case” for this other technique — known

as “by-name parameters” — is a little different.

After that lesson, I'll demonstrate how to combine these techniques with a Scala

feature that lets a function have multiple input parameter groups.
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Introduction

In previous lessons I showed how to pass a function into another function. I showed
how to do that (the syntax), and I also showed why to do that (to easily pass in new
algorithms).

While that’s a great feature, sometimes you just want to write a function that takes a
more general “block of code.” I typically do this when I'm writing a custom control

structure, and as it turns out it’s also common technique in FP.

In Scala we say that a function that defines an input parameter like this is a “by-

name” parameter, which is also referred to as a “call by-name” parameter.

Goals

Given that introduction, my goals for this lesson are to show:

 The differences between by-value and by-name parameters
* The by-name syntax
* How to use by-name parameters

* Examples of when they are appropriate
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» A comparison of by-name parameters and higher-order functions

Background: By-value parameters

If you define a Person class like this:

case class Person(var name: String)

and then pass it into a Scala function, it’s said to be a “call by-value” argument. You
can read much more about this on Wikipedia’s “evaluation strategy” page, but in

short, I think of this as the function receiving a pointer to the object that’s passed in.

This has a few repercussions. First, it means that there’s no copy of the object. Under
the covers, the function essentially receives a pointer that says, “You can find this
Person instance at so-and-so memory address in the computer’s RAM.”

Second, if the object has mutable fields, the function can mutate those fields. When
a function receives a Person instance and the name field is a var, the function can

change the name:
def changeName(p: Person) = {
p.name = "Al"
This change affects the Person instance that was passed in.

In regards to the name “by-value,” the book, Programming Scala, makes this state-

ment:

“Typically, parameters to functions are by-value parameters; that is, the
value of the parameter is determined before it is passed to the function.”

In summary, in Scala the term “call by-value” means that the value is either:

A primitive value (like an Int) that can’t be changed


https://en.wikipedia.org/wiki/Evaluation_strategy
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* A pointer to an object (like Person)

Background: By-name parameters

“By-name” parameters are quite different than by-value parameters. Rob Norris,
(aka, “tpolecat”) makes the observation that you can think about the two types of
parameters like this:

* A by-value parameter is like receiving a val field; its body is evaluated once,
when the parameter is bound to the function.

* A by-name parameter is like receiving a def method; its body is evaluated when-
ever it is used inside the function.

Those statements aren’t 100% accurate, but they are decent analogies to start with.

A little more accurately, the book Scala Puzzlers says that by-name parameters are
“evaluated only when they are referenced inside the function.” The Scala Language
Specification adds this:

This (by-name) indicates that the argument is not evaluated at the point
of function application, but instead is evaluated at each use within the
function.

According to Wikipedia these terms date back to a language named ALGOL 60
(yes, the year 1960). But for me, the term “by-name” isn’t very helpful. When you
look at those quotes from the Puzzlers book and the Language Specification, you
see that they both say, “a by-name parameter is only evaluated when it’s accessed
inside a function.” Therefore, I find that the following names are more accurate and

meaningful than “by-name”:

e (Call on access
e Evaluate on access
* Evaluate on use

* Evaluate when accessed
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e Evaluate when referenced

However, because I can’t change the universe, I'll continue to use the terms “by-
name” and “call by-name” in this lesson, but I wanted to share those alternate names,

which I think are more meaningful.

Example: Creating a timer

Okay, that’s enough background about the names. Let’s look at some code that
shows how to create a by-name parameter, and what it gives you.

On Unix systems you can run a time command (timex on some systems) to see how

long commands take to execute:
$ time find . -name "*.scala"

That command returns the results of the find command it was given, along with the

time it took to run. The time portion of the output looks like this:

real Om4.351s
user 0m0@.491s
sys  0ml.341ls

This 1s cool, and it can be a helpful way to troubleshoot performance problems.
In fact, seeing how cool it is, you decide that you’d like to create a similar “timer”

method in Scala.

Designing a Scala tumer

Thinking in advance about how your new timer function should work, you decide
that a nice API will let you write code like this:

val (result, time) = timer(somelLongRunningAlgorithm)
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and this:

val (result, time) = timer {

A timer like this gives you both the result of the algorithm and the time it took to

run.

Assuming you already have a working timer, you can see how this works by running
an example in the REPL:

scala> val (result, time) = timer{ Thread.sleep(500); 1 }
result: Int = 1
time: Double = 500.32

As expected, the code block returns the value 1, with an execution time of about 500

ms.

Trying to define a function signature

Having just seen how to define signatures for function input parameters in the pre-
vious lessons, you realize that you know how to write a timer ... or at least you think

you can.

The problem you run into right away is, “Just what is that algorithm that’s being
passed in?” It could look like this:

def timer(f:(Int) => Int) ...
or this:

def timer(f:(Double) => Double) ...
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or anything else:

def timer(f:() => Unit) ...

def timer(f:(Person) => String) ...

def timer(f:(Pizza, Order) => Double) ...

def timer(f:(Pizza, Order, Customer, Discounts) => Currency) ...

“Hmm,” you begin thinking, “this is quite a problem ...”

Fortunately the Scala creators gave us a nice solution for problems like these.

By-name syntax

The solution for situations like this is to use Scala’s by-name syntax. It’s similar to

defining function input parameters, but it also makes problems like this simple.
The general syntax for defining a by-name parameter looks like this:
def timer(blockOfCode: => theReturnType) ...

If you look back at the function input parameter examples, you’ll see that the by-

name syntax is similar to this example:
def timer(f:() => Unit) ...
The main difference is that you leave off the () after the input parameter.

Given that briefintroduction to the by-name syntax, to create a timer that can accept
a block of code that returns any type, you make the return type generic. Therefore,

I can sketch the timer signature like this:
def timer[A](blockOfCode: => A) = ?77?

With that signature in hand, I can then complete the timer function like this:
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def timer[A](blockOfCode: => A) = {
val startTime = System.nanoTime
val result = blockOfCode
val stopTime = System.nanoTime
val delta = stopTime - startTime
(result, delta/1000000d)

The timer method uses the by-name syntax to accept a block of code as an input
parameter. Inside the timer function there are three lines of code that deal with
determining how long the blockOfCode takes to run, with this line sandwiched in
between those time-related expressions:

val result = blockOfCode

That line (a) executes blockOfCode and (b) assigns its return value to result. Because
blockOfCode is defined to return a generic type (A), it may return Unit, an Int, a

Double, a Seq[Person], a Map[Person, Seq[Person]], whatever.

Now you can use the timer function for all sorts of things. It can be used for some-
thing that isn’t terribly useful, like this:

scala> val (result, time) = timer(println("Hello™"))
Hello
result: Unit

O
0.160

time: Double

It can be used for an algorithm that reads a file and returns an iterator:

scala> def readFile(filename: String) = i0.Source.fromFile(filename).getlLines

readFile: (filename: String)Iterator[String]

scala> val (result, time) = timer(readFile("/etc/passwd™))
result: Iterator[String] = non-empty iterator
time: Double = 32.119
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Or it can be used for just about anything else:

val (result, time) = timer{ someLongRunningAlgorithmThatReturnsSomething }

“When s my code block run?>

A great question right now 1s, “When are my by-name parameters executed?”

In the case of the timer function, it executes the blockOfCode when the second line of
the function is reached. But if that doesn’t satisfy your curious mind, you can create

another example like this:

def test[A](codeBlock: => A) = {
println("before 1st codeBlock")
val a = codeBlock
printlnCa)
Thread.sleep(10)

println("before 2nd codeBlock")
val b = codeBlock

println(b)

Thread.sleep(10)

println("before 3rd codeBlock")
val ¢ = codeBlock
println(c)
If you paste that code into the Scala REPL, you can then test it like this:

scala> test( System.currentTimeMillis )

That line of code will produce output like this:
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before 1st codeBlock
1480206447942
before 2nd codeBlock
1480206447954
before 3rd codeBlock
1480206447966

As that output shows, the block of code that is passed in is executed each time it’s

referenced inside the function.

Another example: A Swing utility

As another example of how I use this technique, when I was writing a lot of Swing
(GUI) code with Scala, I wrote this invokeLater function to accept blocks of code
that should be run on the JVM’s Event Dispatch Thread (EDT):

def invokelLater(codeBlock: => Unit) {
SwingUtilities.invokelLater(new Runnable() {
def run() {
codeBlock

s

invokelLater defines codeBlock as a by-name input parameter, and codeBlock is ex-
pected to return Unit (nothing). I defined it like that because every block of code it
accepts is intended to update the Swing GUI, which means that each code block is

used to achieve that side effect.

As an example, here are two example calls to invokeLater from my Sarah applica-

tion:

invokelLater(mainFrame.setSarahIsSleeping())

invokelLater(mainFrame.setSarahIslListening())

In these examples, mainFrame.setSarahIsSleeping() and


http://alvinalexander.com/sarah
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mainFrame.setSarahIsListening() are both function calls, and those functions do
whatever they need to do to update the Sarah’s Swing GUL

Knowing how those functions work, if for some reason I didn’t have them written
as functions, I could have passed this block of code into invokeLater to achieve the

same effect as the first example:

invokelLater {
val controller = mainController.getMainFrameController()
controller.setBackground(SARAH_IS_SLEEPING_COLOR)

Either approach — passing in a function, or passing in a block of code — is valid.

Why have by-name parameters?

Programming in Scala, written by Martin Odersky and Bill Venners, provides a great
example of why by-name parameters were added to Scala. Their example goes like
this:

1. Imagine that Scala does not have an assert function, and you want one.
2. You attempt to write one using function input parameters, like this:
def myAssert(predicate: () => Boolean) =
if (assertionsEnabled && !predicate())

throw new AssertionError

That code uses the “function input parameter” techniques I showed in previous
lessons, and assuming that the variable assertionsEnabled is in scope, it will com-

pile just fine.
The problem is that when you go to use it, you have to write code like this:
myAssert(() => 5 > 3)

Because myAssert states that predicate is a function that takes no input parameters
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and returns a Boolean, that’s how you have to write this line of code. It works, but

it’s not pleasing to the eye.
The solution is to change predicate to be a by-name parameter:
def byNameAssert(predicate: => Boolean) =

if (assertionsEnabled && !predicate)

throw new AssertionError

With that simple change, you can now write assertions like this:
byNameAssert(5 > 3)
That’s much more pleasing to look at than this:

myAssert(() => 5 > 3)

Programming in Scala states that this is the primary use case for by-name parame-

ters:

The result is that using byNameAssert looks exactly like using a built-in

control structure.

If you want to experiment with this code, here’s the source code for a small but
complete test class I created from their example:

object ByNameTests extends App {
var assertionsEnabled = true
def myAssert(p: () => Boolean) =
if (assertionsEnabled && !p())
throw new AssertionError

myAssert(() => 5 > 3)

def byNameAssert(p: => Boolean) =
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if (assertionsEnabled && !p)

throw new AssertionError

byNameAssert(5 > 3)

As you can see from that code, there’s only a small syntactical difference between

defining a function input parameter that takes no input parameters and a by-name

parameter:
p: (O => Boolean // a function input parameter
p: => Boolean // a by-name parameter

As you can also tell from these two lines:

myAssert(() => 5 > 3)
byNameAssert(5 > 3)

you need to call them differently.

Summary

This lesson showed:

The differences between by-value and by-name parameters
» Examples of the by-name syntax

* How to use by-name parameters in your functions

* Examples of when by-name parameters are appropriate

* Some comparisons of by-name parameters and higher-order functions
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See also

* On StackOverflow, Daniel Sobral has a nice answer to a question about the
difference between (f: A => B) and (f: (O = A)

* Scala Puzzlers comments about function input parameters

* Evaluation strategy on Wikipedia


http://stackoverflow.com/questions/4543228/whats-the-difference-between-and-unit
http://stackoverflow.com/questions/4543228/whats-the-difference-between-and-unit
https://www.safaribooksonline.com/library/view/scala-puzzlers/9780981531670/adaptive-reasoning.html
https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_value

250 How to Use By-Name Parameters



Functions Can Have Multiple Parameter Groups

Introduction
Scala lets you create functions that have multiple input parameter groups, like this:
def foo(a: Int, b: String)(c: Double)

Because I knew very little about FP when I first started working with Scala, I orig-
inally thought this was just some sort of syntactic nicety. But then I learned that
one cool thing this does is that it enables you to write your own control structures.
For instance, you can write your own while loop, and I show how to do that in this

lesson.

Beyond that, the book Scala Puzzlers states that being able to declare multiple pa-
rameter groups gives you these additional benefits (some of which are advanced and

I rarely use):

* They let you have both implicit and non-implicit parameters
* They facilitate type inference

* A parameter in one group can use a parameter from a previous group as a

default value

I demonstrate each of these features in this lesson, and show how multiple parameter

251


http://amzn.to/21ScXJc

252 Functions Can Have Multiple Parameter Groups

groups are used to create partially-applied functions in the next lesson.

Goals

The goals of this lesson are:

* Show how to write and use functions that have multiple input parameter
groups
* Demonstrate how this helps you create your own control structures, which in

turn can help you write your own DSLs

* Show some other potential benefits of using multiple input parameter groups

First example

Writing functions with multiple parameter groups is simple. Instead of writing a

“normal” add function with one parameter group like this:
def add(a: Int, b: Int, c: Int) =a + b + c

just put your function’s input parameters in different groups, with each group sur-

rounded by parentheses:
def sum(a: Int)(b: Int)(c: Int) =a + b + c
After that, you can call sum like this:

scala> sum(1)(2)(3)
resd: Int = 6

That’s all there is to the basic technique. The rest of this lesson shows the advantages

that come from using this approach.
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A few notes about this technique

Note that when you write sum with three input parameter groups like this, trying to

call it with three parameters in one group won’t work:

scala> sum(1,2,3)
<console>:12: error: too many arguments for method
sum: (a: Int)(b: Int)(c: Int)Int

sum(1,2,3)

A

You must supply the input parameters in three separate input lists.

Another thing to note is that each parameter group can have multiple input param-
eters:

def doFoo(firstName: String, lastName: String)(age: Int) = 777

How to write your own control structures

To show the kind of things you can do with multiple parameter groups, let’s build a
control structure of our own. To do this, imagine for a moment that you don’t like
the built-in Scala while loop — or maybe you want to add some functionality to it

— so you want to create your own whilst loop, which you can use like this:

var i = 0
whilst (i < 5) {
println(i)

14+=1

Note: I use a var field here because I haven’t covered recursion yet.

A thing that your eyes will soon learn to see when looking at code like this is that

whilst must be defined to have two parameter groups. The first parameter group is i
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< 5, which 1s the expression between the two parentheses. Note that this expression
yields a Boolean value. Therefore, by looking at this code you know whilst must be
defined so that it’s first parameter group is expecting a Boolean parameter of some

sort.

The second parameter group is the block of code enclosed in curly braces immedi-
ately after that. These two groups are highlighted in Figure 27.1.

whilst (1 < 5) {
println(i)
1 +=1

Figure 27.1: The second parameter group is enclosed in the curly braces

You’'ll see this pattern a lot in Scala/FP code, so it helps to get used to it.

I demonstrate more examples in this chapter, but the lesson for the moment is that

when you see code like this, you should think:

* I'see a function named whilst that has two parameter groups
* The first parameter group must evaluate to a Boolean value

* The second parameter group appears to return nothing (Unit), because the

last expression in the code block (i += 1) returns nothing

How to create whilst

To create the whilst control structure, define it as a function that takes two parameter
groups. As mentioned, the first parameter group must evaluate to a Boolean value,

and the second group takes a block of code that evaluates to Unit; the user wants
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to run this block of code in a loop as long as the first parameter group evaluates to

true.

When I write functions these days, the first thing I like to do 1s sketch the function’s
signature, and the previous paragraph tells me that whilst’s signature should look
like this:

def whilst(testCondition: => Boolean)(codeBlock: => Unit) = ?777?

The two parameters groups are highlighted in Figure 27.2.

def whilst(testCondition: => Boolean)(codeBlock: => Unit) {

Figure 27.2: The two parameter groups in whilst’s function signature

Using by-name parameters

Notice that both parameter groups use by-name parameters. The first parameter
(testCondition) must be a by-name parameter because it specifies a test condition
that will repeatedly be tested inside the function. If this wasn’t a by-name parameter,

the i < 5 code shown here:

var i = 0
whilst (i < 5) ...

would immediately be translated by the compiler into this:
whilst (0 < 5) ...
and then that code would be further “optimized” into this:

whilst (true) ...
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If this happens, the whilst function would receive true for its first parameter, and
the loop will run forever. This would be bad.

But when testConditionis defined as a by-name parameter, the i < 5 test condition

code block is passed into whilst without being evaluated, which is what we desire.

Using a by-name parameter in the /ast parameter group when creating control struc-
tures is a common pattern in Scala/FP. This is because as I just showed, a by-name
parameter lets the consumer of your control structure pass in a block of code to solve
their problem, typically enclosed in curly braces, like this:

customControlStructure(...) {

// custom code block here

T he final code

So far, I showed that the whilst signature begins like this:
def whilst(testCondition: => Boolean)(codeBlock: => Unit) = 7?77

In FP, the proper way to implement whilst’s body is with recursion, but because
I haven’t covered that yet, I'm going to cheat here and implement whilst with an
innerwhileloop. Admittedly that’s some serious cheating, but for the purposes of this
lesson I’'m not really interested in the body of whilst; I'm interested in its signature,
along with what this general approach lets you accomplish.

Therefore, having defined whilst’s signature, this is what whilst looks like as a wrap-
per around a while loop:
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def whilst(testCondition: => Boolean)(codeBlock: => Unit) {
while (testCondition) {
codeBlock

Note that whilst doesn’t return anything. That’s implied by the current function
signature, and you can make it more explicit by adding a Unit return type to the

function signature:

def whilst(testCondition: => Boolean)(codeBlock: => Unit): Unit = {

With that change, the final whilst function looks like this:

def whilst(testCondition: => Boolean)(codeBlock: => Unit): Unit = {
while (testCondition) {
codeBlock

Using whilst

Because I cheated with the function body, that’s all there is to writing whilst. Now
you can use it anywhere you would use while. This is one possible example:

var i =1
whilst(i < 5) {
println(i)

1 +=1
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Exercise: Write a control structure using three parameter groups

The whilst example shows how to write a custom control structure using two pa-

rameter groups. It also shows a common pattern:

* Use one or more parameter groups to break the input parameters into differ-
ent “compartments”

* Specifically define the parameter in the last parameter group as a by-name
parameter so the function can accept a custom block of code

Control structures can have more than two parameter lists. As an exercise, imagine
that you want to create a control structure that makes it easy to execute a condition if
two test conditions are both true. Imagine the control structure is named ifBothTrue,
and it will be used like this:

ifBothTrue(age > 18)(numAccidents == @) {
println("Discount!™)

Just by looking at that code, you should be able to answer these questions:

* How many input parameter groups does ifBothTrue have?

What is the type of the first group?
* What 1s the type of the second group?
* What is the type of the third group?

Sketch the signature of the ifBothTrue function. Start by sketching on/y the function
signature, as I did with the whilst example:
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Once you’re confident that you have the correct function signature, sketch the func-
tion body here:

Solution

In this case, because ifBothTrue takes two test conditions followed by a block of code,
and it doesn’t return anything; its signature looks like this:

def ifBothTrue(testl: => Boolean)(test2: => Boolean)(codeBlock: => Unit): Unit = 77?

Because the code block should only be run if both test conditions are true, the com-

plete function should be written like this:

def ifBothTrue(testl: => Boolean)(test2: => Boolean)(codeBlock: => Unit): Unit = {
if (testl && test2) {

codeBlock

You can test ifBothTrue with code like this:

val age = 19

val numAccidents = 0

ifBothTrueCage > 18)(humAccidents == @) { println("Discount!") }

This also works:

ifBothTrue(2 > 1)(3 > 2)(println("hello"))
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A favorite control structure

One of my favorite uses of this technique is described in the book, Beginning Scala.
In that book, David Pollak creates a using control structure that automatically calls
the close method on an object you give it. Because it automatically calls close on

the object you supply, a good example is using it with a database connection.

The using control structure lets you write clean database code like the following
example, where the database connection conn is automatically close after the save

call:

def saveStock(stock: Stock) {
using(MongoFactory.getConnection()) { conn =>
MongoFactory.getCollection(conn).save(buildMongoDbObject(stock))

In this example the variable conn comes from the MongoFactory.getConnection()
method. conn is an instance of a MongoConnection, and the MongoConnection class
defines close method, which is called automatically by using. (If MongoConnection

did not have a close method, this code would not work.)

If you want to see how using is implemented, I describe it in my article, Using the

using control structure from Beginning Scala

Benefit: Using implicit values

A nice benefit of multiple input parameter groups comes when you use them with
implicit parameters. This can help to simplify code when a resource 1s needed, but
passing that resource explicitly to a function makes the code harder to read.

To demonstrate how this works, here’s a function that uses multiple input parameter

groups:

def printIntIfTrue(a: Int)(implicit b: Boolean) = if (b) println(a)


http://amzn.to/1MRH8tp
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Notice that the Boolean in the second parameter group is tagged as an implicit
value, but don’t worry about that just yet. For the moment, just note that if you
paste this function into the REPL and then call it with an Int and a Boolean, it does
what it looks like it should do, printing the Int when the Boolean is true:

scala> printIntIfTrue(42)(true)
42

Given that background, let’s see what that implicit keyword on the second param-
eter does for us.

Using implicit values

Because b is defined as an implicit value in the last parameter group, if there is an
implicit Boolean value in scope when printIntIfTrue is invoked, printIntIfTrue
can use that Boolean without you having to explicitly provide it.

You can see how this works in the REPL. First, as an intentional error, try to call
printIntIfTrue without a second parameter:

scala> printIntIfTrue(l)
<console>:12: error: could not find implicit value for parameter b: Boolean
printIntIfTrue(l)

A

Of course that fails because printIntIfTrue requires a Boolean value in its second
parameter group. Next, let’s see what happens if we define a regular Boolean in the

current scope:

scala> val boo = true

boo: Boolean = true

scala> printIntIfTrue(l)
<console>:12: error: could not find implicit value for parameter b: Boolean
printIntIfTrue(l)
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Calling printIntIfTrue still fails, and the reason it fails is because there are no umplicit
Boolean values in scope when it’s called. Now note what happens when boo is defined

as an implicit Boolean value and printIntIfTrue is called:

scala> implicit val boo = true
boo: Boolean = true

scala> printIntIfTrue(33)
33

printIntIfTrue works with only one parameter!

This works because:

1. The Boolean parameter in printIntIfTrue’s last parameter group is tagged

with the implicit keyword

2. boo is declared to be an implicit Boolean value
The way this works is like this:

1. The Scala compiler knows that printIntIfTrue is defined to have two param-
eter groups.

2. It also knows that the second parameter group declares an implicit Boolean
parameter.

3. When printIntIfTrue(33) is called, only one parameter group is supplied.

4. At this point Scala knows that one of two things must now be true. Either (a)
there better be an implicit Boolean value in the current scope, in which case
Scala will use it as the second parameter, or (b) Scala will throw a compiler

CITOor.

Because boo is an implicit Boolean value and it’s in the current scope, the Scala
compiler reaches out and automatically uses it as the input parameter for the second
parameter group. That is, boo is used just as though it had been passed in explicitly.
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T he benefit

If that code looks too “magical,” I’ll say two things about this technique:

* It works really well in certain situations

* Don’t overuse it, because when it’s used wrongly it makes code hard to under-
stand and maintain (which 1s pretty much an anti-pattern)

An area where this technique works really well is when you need to refer to a shared
resource several times, and you want to keep your code clean. For instance, if you
need to reference a database connection several times in your code, using an implicit
connection can clean up your code. It tends to be obvious that an implicit connection
is hanging around, and of course database access code isn’t going to work without a

connection.

An implicit execution context

A similar example is when you need an “execution context” in scope when you’re
writing multi-threaded code with the Akka library. For example, with Akka you can
create an implicit ActorSystem like this early in your code:

implicit val actorSystem = ActorSystem("FutureSystem")

Then, at one or more places later in your code you can create a Future like this, and

the Future “just works”:

val future = Future {
1+1

The reason this Future works is because it is written to look for an implicit Execu-
tionContext. If you dig through the Akka source code you’ll see that Future’s apply
method is written like this:
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def apply [T] (body: => T)(implicit executor: ExecutionContext) ...

As that shows, the executor parameter in the last parameter group is an implicit
value of the ExecutionContext type. Because an ActorSystem is an instance of an

ExecutionContext, when you define the ActorSystem as being implicit, like this:

implicit val actorSystem = ActorSystem("FutureSystem")

Future’s apply method can find it and “pull it in” automatically. This makes the
Future code much more readable. If Future didn’t use an implicit value, each
invocation of a new Future would have to look something like this:

val future = Future(actorSystem) {

code to run here ...

That’s not too bad with just one Future, but more complicated code is definitely
cleaner without it repeatedly referencing the actorSystem.

If you’re new to Akka Actors, my article, A simple working Akka Futures
example, explains everything I just wrote about actors, futures, execu-

tion contexts, and actor systems.

If you know what an ExecutionContext is, but don’t know what an ActorSystem is,
it may help to know that you can also use an ExecutionContext as the implicit value
in this example. So instead of using the ActorSystem as shown in the example, just
create an implicit ExecutionContext, like this:

val pool = Executors.newCachedThreadPool()

implicit val ec = ExecutionContext.fromExecutorService(pool)

After that you can create a Future as before:


http://alvinalexander.com/scala/scala-akka-futures-example-simple-working
http://alvinalexander.com/scala/scala-akka-futures-example-simple-working
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val future = Future { 1 + 1 }

Limits on implicit parameters

The Scala language specification tells us these things about implicit parameters:

* A method or constructor can have only one implicit parameter list, and it must
be the last parameter list given

o If there are several eligible arguments which match the implicit parameter’s
type, a most specific one will be chosen using the rules of static overloading

resolution

I'll show some of what this means in the following “implicit parameter FAQs”.

FAQ: Can you use implicit more than once in your parameter lists?

No, you can’t. This code will not compile:
def printIntIfTrue(implicit a: Int)(implicit b: Boolean) = if (b) println(a)
The REPL shows the error message you’ll get:

scala> def printIntIfTrue(implicit a: Int)(implicit b: Boolean) = if (b) println(a)

<console>:1: error: '=' expected but '(' found.
def printIntIfTrue(implicit a: Int)(implicit b: Boolean) = if (b) println(a)
A

FAQ: Does the implicit have to be in the last parameter list?

Yes. This code, with an implicit in the first list, won’t compile:


http://www.scala-lang.org/files/archive/spec/2.11/07-implicit-parameters-and-views.html#implicit-parameters
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def printIntIfTrue(implicit b: Boolean)(a: Int) = if (b) println(a)
The REPL shows the compiler error:

scala> def printIntIfTrue(implicit b: Boolean)(a: Int) = if (b) println(a)
<console>:1: error: '=' expected but '(' found.
def printIntIfTrue(implicit b: Boolean)(a: Int) = if (b) println(a)

A

FAQ: What happens when multiple implicit values are in scope and can match the

parameter?

In theory, as the Specification states, “a most specific one will be chosen using the
rules of static overloading resolution.” In practice, if you find that you’re getting

anywhere near this situation, I wouldn’t use implicit parameters.
A simple way to show how this fails is with this series of expressions:

def printIntIfTrue(a: Int)(implicit b: Boolean) = if (b) println(a)
implicit val x = true

implicit val y = false

printIntIfTrue(42)

When you get to that last expression, can you guess what will happen?

What happens is that the compiler has no idea which Boolean should be used as the

implicit parameter, so it bails out with this error message:

scala> printIntIfTrue(42)
<console>:14: error: ambiguous implicit values:
both value x of type => Boolean
and value y of type => Boolean
match expected type Boolean
printIntIfTrue(42)



267

This is a simple example of how using implicit parameters can create a problem.

A more complicated example

If you want to see a more complicated example of how implicit parameters can create
a problem, read this section. Otherwise, feel free to skip to the next section.

Here’s another example that should provide fair warning about using this technique.

Given (a) the following trait and classes:

trait Animal

class Person(name: String) extends Animal {
override def toString = "Person"

}

class Employee(name: String) extends Person(name) {

override def toString = "Employee"

(b) define a method that uses an implicit Person parameter:

// uses an “implicit® Person value

def printPerson(b: Boolean)(implicit p: Person) = if (b) println(p)
and then (c) create implicit instances of a Person and an Employee:

implicit val p = new Person("person")

implicit val e = new Employee("employee")
Given that setup, and knowing that “a most specific one (implicit instance) will be
chosen using the rules of static overloading resolution,” what would you expect this

statement to print?:

printPerson(true)
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If you guessed Employee, pat yourself on the back:

scala> printPerson(true)

Employee
(I didn’t guess Employee.)

If you know the rules of “static overloading resolution” better than I do, what do you

think will happen if you add this code to the existing scope:

class Employer(name: String) extends Person(name) {
override def toString = "Employer"

}

implicit val r = new Employer("employer")
and then try this again:
printPerson(true)

If you said that the compiler would refuse to participate in this situation, you are

correct:

scala> printPerson(true)

<console>:19: error: ambiguous implicit values:
both value e of type => Employee

and value r of type => Employer

match expected type Person

printPerson(true)

A

As a summary, I think this technique works great when there’s only one implicit
value in scope that can possibly match the implicit parameter. If you try to use this
with multiple implicit parameters in scope, you really need to understand the rules
of application. (And I further suggest that once you get away from your code for
a while, you’ll eventually forget those rules, and the code will be hard to maintain.

This is nobody’s goal).
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Using default values

As the Scala Puzzlers book notes, you can supply default values for input parameters
when using multiple parameter groups, in a manner similar to using one parameter

group. Here I specify default values for the parameters a and b:

scala> def f2Ca: Int = 1)(b: Int =2) = {a+ b}
f2: (a: Int)(b: Int)Int

That part is easy, but the “magic” in this recipe is knowing that you need to supply
empty parentheses when you want to use the default values:

scala> 200
res@: Int = 3

scala> f2(10)0O
resl: Int = 12

scala> f20)(10)
resZ2: Int = 11

As the Puzzlers book also notes, a parameter in the second parameter group can use
a parameter from the first parameter group as a default value. In this next example
I assign a to be the default value for the parameter b:

def f2Ca: Int = 1)(b: Int =a) ={a+ b}

Figure 27.3 makes this more clear.

def f2{a: Int = 1){b: Int = a) = { a + b }

Figure 27.3: a in the second parameter group s the same a in the first parameter group
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The REPL shows that this works as expected:

scala> def f2Ca: Int = 1)(b: Int =a) = { a + b }
f2: (a: Int)(b: Int)Int

scala> 200
res@: Int = 2

I haven’t had a need for these techniques yet, but in case you ever need them, there

you go.

Summary

In this lesson I covered the following:

* I showed how to write functions that have multiple input parameter groups.
* I showed how to call functions that have multiple input parameter groups.

* I showed to write your own control structures, such as whilst and ifBothTrue.
The keys to this are (a) using multiple parameter groups and (b) accepting a
block of code as a by-name parameter in the last parameter group.

* I showed how to use implicit parameters, and possible pitfalls of using them.

* I showed how to use default values with multiple parameter groups.

What's next

The next lesson expands on this lesson by showing what “Currying” is, and by show-

ing how multiple parameter groups work with partially-applied functions.

See Also

* My article, Using the using control structure from Beginning Scala
¢ Joshua Suereth’s scala-arm project is similar to the using control structure

* The Scala “Breaks” control structure is created using the techniques shown in


http://alvinalexander.com/scala/using-control-structure-beginning-scala-david-pollak
https://github.com/jsuereth/scala-arm
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this lesson, and I describe it in my article, How to use break and continue in

Scala


http://alvinalexander.com/scala/break-continue-for-while-loops-in-scala-examples-how-to
http://alvinalexander.com/scala/break-continue-for-while-loops-in-scala-examples-how-to
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Partially-Applied Functions (and Currying)

Motivation

My motivations for writing this lesson are a little different than usual. Typically I
think, “You’ll want to know this feature so you can use it like ___,” but the first
motivation for this lesson goes like this: You’ll want to know about the concept of
“currying” because experienced FP developers talk about it a lot, especially if they
have Haskell programming experience. (I did mention that Haskell was named after
Haskell Curry, didn’t I?)

A second motivation is that the concept of currying is related to the multiple param-
eter groups I showed in the previous lesson come from.

The primary motivation for writing this lesson is that having multiple parameter
groups make it a little easier to create partially-applied functions, and these can be useful

in your IP code.

I'll cover all of these topics in this lesson.

Goals

Given that introduction, the goals of this lesson are:

* Provide a definition of currying

» Show how to create partially-applied functions from functions that have (a)

multiple parameter groups or (b) single parameter groups

I'll also show how to create “curried” functions from regular functions, and show
how Scala gets these features to work with the JVM.

273



274 Partially-Applied Functions (and Currying)

Currying

When [ first got started in FP, I got lost in some of the nomenclature, and “curry-
ing” was a particularly deep rabbit’s hole of “T'ime in My Life I Wish I Had Spent
Differently.”

All that the theory of currying means is that a function that takes multiple arguments
can be translated into a series of function calls that each take a single argument. In

pseudocode, this means that an expression like this:

result = f(x)(y)(2)

is mathematically the same as something like this:

fl = f(x)
f2 = f1(y)
result = f2(z)

That’s all it means. The Wikipedia page on Currying describes the theory of curry-
ing like this:

In mathematics and computer science, currying is the technique of
translating the evaluation of a function that takes multiple arguments

into evaluating a sequence of functions, each with a single argument.
They later state:

There are analytical techniques that can only be applied to functions
with a single argument. Practical functions frequently take more argu-

ments than this.

What this means

In my daily working life, this sort of theory usually isn’t important. It’s one of those

things that’s “nice to know,” but the important things are really (a) how this impacted


https://en.wikipedia.org/wiki/Currying
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the design of the Scala language, and (b) what you can do because of this theory.

In Scala this seems to fit most naturally with functions that have multiple input pa-
rameters groups, and I'll demonstrate that in this lesson.

A terminology note

In the remainder of this lesson I'll occasionally use the acronym “PAF” to mean
“partially-applied function.”

Partially-applied functions

To understand PAFs, I’ll start with two definitions from this online JavaScript course:

1) Application: The process of applying a function to its arguments in order to
produce a return value.

As in algebra, in FP you say that “a function is applied to its arguments,” so
‘“Application” in this context can also be called “Full Application,” or “Com-
plete Application.”

2) Partial Application: This is the process of applying a function to some of its argu-
ments. A partially-applied function gets returned for later use. In other words,
a PAF 1s a function that takes a function with multiple parameters and returns

a function with fewer parameters.

The best way to explain PAFs is with examples, so let’s look at a few.

Example 1 (partially-applied functions)

The following example shows how PAFs work. In the first step, you define a function
with multiple parameter groups:


https://github.com/learn-javascript-courses/javascript-questions/issues/7
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scala> def plusCa: Int)(b: Int) = a + b
plus: (a: Int)(b: Int)Int

Next, rather than giving the function all of the parameters in the two parameter
groups it specifies, you give it (a) the parameter for the first group (a), and (b) a place-
holder for the parameter in the second list, the ubiquitous underscore character:

scala> def plus2 = plus(2)()
plusZ2: Int => Int

The REPL output shows that this creates a new function named plus2 which has
the type Int => Int. This means that plus2 takes an Int as input, and returns an

Int as a result.
At this point you can think of plus2 as looking like this:
def plus(b: Int) =2 + b

plus2 has been “seeded” with the initial Int value 2, and now it’s just sitting there,

waiting for another Int value that it can add to it. Let’s give it another 2:

scala> plus2(2)
resd: Int = 4

Here’s what it looks like when you give it a 3:

scala> plus2(3)
resl: Int =5

As this shows, plus2 gladly adds 2 to any Int it is given.

Before I move on to another example, note that you can create plus2 in either of
these ways:

def plus2 = plus(2)(L)
def plus2 = plus(2)_
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I prefer the first approach, but some people prefer the second approach.

Example 2 (partially-applied functions)

The general benefit that this approach gives you is that it’s a way to create specialized
methods from more general methods. I demonstrate that in the Scala Cookbook,

and I’ll share a variation of that example here.

When you’re emitting HI'ML from Scala code, a wrap function that adds a prefix
and a suffix to an HT'ML snippet can be really useful:

def wrap(prefix: String)(html: String)(suffix: String) = {

prefix + html + suffix

You can use that function to do something like this, where I wrap a string in opening
and closing <div> tags:

val hello = "Hello, world"
val result = wrap("<div>")(hello)("</div>")

Of course that <div> tag can be more complicated, such as specifying a CSS class

or id, but I'm keeping this simple.

It turns out that wrap is a really nice, general function, so you can wrap text in DIV
tags, P tags, SPAN tags, etc. But if you're going to be wrapping a lot of strings with
DIV tags, what you probably want is a more specific wrapWithDiv function. This is a
great time to use a partially-applied function, because that’s what they do, helping

you create a specific function from a general function:
val wrapWithDiv = wrap("<div>")(_: String)("</div>")
Now you can call wrapWithDiv, just passing it the HTML you want to wrap:

scala> wrapWithDiv("<p>Hello, world</p>")

res@: String = <div><p>Hello, world</p></div>


http://amzn.to/24ivK4G
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scala> wrapWithDiv("<img src=\"/images/foo.png\" />")

resl: String = <div><img src="/images/foo.png" /></div>

As a nice benefit, you can still call the original wrap function:

wrap("<pre>", "val x = 1", "</pre>")

and you can also create other, more-specific functions:

val wrapWithPre = wrap("<pre>")(_: String)("</pre>")

It’s worth noting that you make a more specific function by “seeding” the more

general function with one or more initial parameters. That is, you partially-apply
parameters to the general function to make the specific function.

Handling the missing parameter

It’s necessary to specify the type of the missing parameter, as I did in this code:

val wrapWithDiv = wrap("<div>")(_: String)("</div>")

If you don’t specify the type, you’ll get a compiler error that looks like this:

scala> val wrapWithDiv = wrap("<div>")(_)("</div>")
<console>:11: error: missing parameter type for
expanded function ((x$1) => wrap("<div>")(x$1)("</div>"))

val wrapWithDiv = wrap("<div>")()("</div>")
A

Summary: Partially-applied functions

As a summary, PAFs give you this capability:
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* You write a general function
* You create a specific function from the general function

* You still have access to both functions, and you kept your code “DRY” — you
didn’t copy and paste code to make the new function

Creating curried functions from regular functions

As a fun example of some things you can do with PAFs, the “partially-applied func-
tions” section of the Scala Exercises website demonstrates that you can create curried
functions from “normal” Scala functions. For instance, you can start with a “normal”

one-parameter group function like this:
def add(x: Int, y: Int) = x +y

Then they show that you can create a Function2 instance from add by adding an

underscore after it, like this:

scala> val addFunction = add _
addFunction: (Int, Int) => Int = <function2>

They then prove that it’s a Function?2 instance like this:

(add _).isInstanceOf[Function2[_, _, _1]
This technique of converting a def method into a true function uses a Scala technology
known as “Eta Expansion.” | mentioned this in the previous lessons, and | also discuss
itin depth in the appendix titled, “The Differences Between ‘def’ and ‘val’ When Defining
Functions.”

Then they create a “curried” function from that Function2 instance:

val addCurried = (add _).curried

Now you can use the new curried function like this:


http://scala-exercises.47deg.com/koans#partiallyappliedfunctions
http://scala-exercises.47deg.com/koans#partiallyappliedfunctions
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addCurried(1)(2)

As this shows, calling the curried method on the add function instance creates a new
function that has two parameter groups. (So, a curried function can be thought of

as a function with multiple parameter groups.)

It’s also easy to create a partially-applied function from the curried function, like
this:

val addCurriedTwo = addCurried(2) // create a PAF
addCurriedTwo(10) // use the PAF

See 1t in the REPL

You can see how all of those steps work by pasting the code into the REPL:

scala> def add(x: Int, y: Int) = x + Yy
add: (x: Int, y: Int)Int

scala> (add _).isInstanceOf[Function2[_, _, _1]

res@: Boolean = true

scala> val addCurried = (add _).curried
addCurried: Int => (Int => Int) = <functionl>

scala> addCurried(1)(2)
resl: Int = 3

scala> val addCurriedTwo = addCurried(2)

addCurriedTwo: Int => Int = <functionl>

scala> addCurriedTwo(10)
resZ2: Int = 12
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Personally, I mostly use curried functions to create control structures — as I demon-
strated with whilst and ifBothTrue in the previous lesson. So, at the moment, this

is a technique I know about, but have not used.

Partially-applied functions without multiple parameter groups

So far I've shown that you can create a partially-applied function with functions that
have multiple parameter groups, but because Scala is really convenient, you can

create PAF's with single parameter group functions as well.
To do this, first define a function as usual, with one parameter group:

def wrap(prefix: String, html: String, suffix: String) = {

prefix + html + suffix

Then create a PAF by applying the first and third parameters, but not the second:
val wrapWithDiv = wrap("<div>", _: String, "</div>")

The wrapWithDiv function you create in this manner works the same as the wrap-

WithDiv function created in the previous example:

scala> val wrapWithDiv = wrap("<div>", _: String, "</div>")

wrapWithDiv: String => String = <functionl>

scala> wrapWithDiv("Hello, world")

resl: String = <div>Hello, world</div>

Extra credit;: How can all of this work with the JVM?

If you’re interested in how things work under the covers, a good question at this
point is, “How can this stuft possibly work with the JVM?” The JVM certainly wasn’t

written to account for things like currying and PAFs, so how does any of this work?

A short answer is that (a) the Scala compiler “uncurries” your code, and (b) you can
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see this during the compilation process. For example, write a little Scala class like
this:

class Currying {
def f1Ca: Int, b: Int)
def f2Ca: Int)(b: Int)

{a+b} // 1 param group
{a+b} // 2 param groups

Then compile that class with this command:
$ scalac -Xprint:all Currying.scala

if you dig through the end of that output, you'll see that the Scala compiler has an
“uncurry” phase. A short version of the tail end of the compiler output looks like
this:

[[syntax trees at end of typer]] // Currying.scala
package <empty> {
class Currying extends scala.AnyRef {
def <init>(): Currying = {

Currying.super.<init>(Q);

O
s
def f1(a: Int, b: Int): Int = a.+(b);
def f2Ca: Int)(b: Int): Int = a.+(b)

[[syntax trees at end of uncurry]] // Currying.scala
package <empty> {
class Currying extends Object {
def <init>(): Currying = {
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Currying.super.<init>(Q);

O
s
def f1(a: Int, b: Int): Int = a.+(b);
def f2Ca: Int, b: Int): Int = a.+(b)

As that output shows, I wrote the two functions f1 and f2 differently, but after the
compiler’s “uncurry” phase they end up looking the same.

Things might look more interesting in the output if I had created a
partially-applied function, but I’ll leave that as an exercise for the reader.

Compiler phases

If you want to dig into this more, it can also help to know what the Scala compiler

phases are. This command:
$ scalac -Xshow-phases

shows that the phases in Scala 2.11 are:

phase name 1id description
parser 1 parse source into ASTs, perform simple desugaring
namer 2 resolve names, attach symbols to named trees
packageobjects 3 load package objects
typer 4 the meat and potatoes: type the trees
patmat 5 +translate match expressions
superaccessors 6 add super accessors in traits and nested classes
extmethods 7 add extension methods for inline classes
pickler 8 serialize symbol tables
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refchecks 9 reference/override checking, translate nested objects
uncurry 10 uncurry, translate function values to anonymous classes
tailcalls 11 replace tail calls by jumps
specialize 12 @specialized-driven class and method specialization
explicitouter 13 this refs to outer pointers
erasure 14 erase types, add interfaces for traits
posterasure 15 clean up erased inline classes
lazyvals 16 allocate bitmaps, translate lazy vals into lazified defs
lambdalift 17 move nested functions to top level
constructors 18 move field definitions into constructors
flatten 19 eliminate inner classes
mixin 20 mixin composition
cleanup 21 platform-specific cleanups, generate reflective calls
delambdafy 22 remove lambdas
icode 23 generate portable intermediate code
jvm 24 generate JVM bytecode

terminal 25 the last phase during a compilation run

As that shows, the “uncurry” phase “translates function values to anonymous

classes.”

Currying vs partially-applied functions

The concepts of currying and partially-applied functions are closely related, but they
aren’t exactly the same. As I wrote at the beginning, currying is defined like this:

A function that takes multiple arguments can be translated into a series

of function calls that each take a single argument.

This is particularly important in a language like Haskell, where all functions are
technically curried functions. In Scala this is generally a theoretical thing that’s good
to know about, and it’s good to know that you can create a curried function from an
uncurried function, but these aren’t “core” features you absolutely need to know to

write code in Scala.

A partially-applied function on the other hand is a function that you manually create
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by supplying fewer parameters than the initial function defines. As I showed in this
lesson, you can create the PAF plus2 like this:

def plus(a: Int)(b: Int) =a + b
def plus2 = plus(2)()

and you can create wrapWithDiv as a PAF like this:
val wrapWithDiv = wrap("<div>")(_: String)("</div>")

If for some reason you want to partially-apply one parameter out of three, you can
also do this:

def add(a: Int)(b: Int)(c: Int) =a + b + c
val addZNumbersTol® = add(10)(_: Int)(_: Int)

So both concepts are related to multiple parameter groups, but in general, I use PAFs
more often than I concern myself with curried functions.

Don'’t get bogged down in terminology

As I mentioned at the beginning of this lesson, don’t get bogged down in the precise
meaning of things like “curried functions.” It is good to know how multiple input pa-
rameter groups work because it’s a technique that is used a lot in Scala/FP, but don’t

get lost in worrying about the exact meaning of currying like I did. Understanding
how multiple parameter groups work is the important thing;

Summary

This lesson covered the following topics:

* It provides a definition of currying

* It shows how to create partially-applied functions from functions that have (a)

multiple parameter groups or (b) single parameter groups
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It also shows how to create “curried” functions from regular functions, and provided
a little look at how Scala gets these features to work with the JVM.

What's next

I've covered a lot of Scala/FP background material so far, but occasionally I had to
mix in a few var fields in my examples because that’s the only way to solve certain

problems with the tools I've shown so far.
Well, no more of that.

In the next few lessons things are going to be fun, as I get to cover recursion. Once
you understand recursive calls, I think you’ll find that they’re a natural way to think

about writing iterative algorithms.

Once I cover recursion you'll then be very close to handling many more IP concepts,
the first of which will be how to handle “state” in FP applications. But to handle state

in an FP manner, you’ll need to know how to write recursive functions ...

See Also

Here are a few more resources related to currying and partially-applied functions.

* Daniel Westheide’s article, Currying and Partially Applied Functions is a good

resource.

These discussions on StackOverflow and StackExchange also provide a little more
insight:

* With curried functions you get easier reuse of more abstract functions, since
you get to specialize.

* “It’s common to mistake partial function application for currying ... I've al-
most never seen anyone use currying in practice. Partial function application

on the other hand is quite useful in many languages.”

e “There is a slight difference between currying and partial application,


http://danielwestheide.com/blog/2013/01/30/the-neophytes-guide-to-scala-part-11-currying-and-partially-applied-functions.html
http://programmers.stackexchange.com/questions/185585/what-is-the-advantage-of-currying
http://programmers.stackexchange.com/questions/185585/what-is-the-advantage-of-currying
http://stackoverflow.com/questions/5301181/what-are-the-practical-advantages-of-currying
http://stackoverflow.com/questions/5301181/what-are-the-practical-advantages-of-currying
http://stackoverflow.com/questions/5301181/what-are-the-practical-advantages-of-currying
http://stackoverflow.com/questions/12413495/what-are-the-benefits-of-currying
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although they’re closely related; since they’re often mixed together, I'll deal
with both terms.”


http://stackoverflow.com/questions/12413495/what-are-the-benefits-of-currying
http://stackoverflow.com/questions/12413495/what-are-the-benefits-of-currying
http://stackoverflow.com/questions/12413495/what-are-the-benefits-of-currying
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Recursion: Introduction

As you may have noticed from this book’s index, you’re about to jump into a series of
lessons on recursive programming. [ separated this text into a series of small lessons

to make the content easier to read initially, and then easier to refer to later.

Please note that some of these lessons may be overkill for some people. This is, after
all, the first draft of this book, and I'm trying to find the best ways to teach recur-
sive programming. I start by reviewing the List class, then show a straightforward,
“Here’s how to write a recursive function” lesson. After that I add a few more lessons

to explain recursion in different ways.

If at any point you feel like you understand how to write recursive functions, feel free
to skip any or all of these lessons. You can always come back to them later if you

need to.
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Recursion: Motivation

What is recursion?

Before getting into the motivation to use recursion, a great question is, “What is
recursion?”

Simply stated, a recursive function is a function that calls itself. That’s it.

As you’ll see in this lesson, a common use of recursive functions is to iterate over the

elements in a list.

Why do | need to write recursive functions?

The next question that usually comes up right about now 1s, “Why do I need to write
recursive functions? Why can’t I use for loops to iterate over lists?”

The short answer is that algorithms that use for loops require the use of var fields,

and as you know from our rules, functional programmers don’t use var fields.

(Read on for the longer answer.)
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If you had var fields

Of course if you could use mutable variables in your programming language, you

might write a “sum the integers in a list” algorithm like this:

def sum(xs: List[Int]): Int = {
var sum = @
for (x <- xs) {

sum += X

sum

That algorithm uses a var field named sum and a for loop to iterate through every
element in the given list to calculate the sum of those integers. From an imperative
programming standpoint, there’s nothing wrong with this code. I wrote imperative

code like this in Java for more than fifteen years.

But from a functional programmer’s point of view, there are several problems with
this code.

Problem 1: We can only keep so much in our brains

One problem is that reading a lot of custom for loops dulls your brain.

As an OOP/imperative programmer I never noticed it, but if you think about the way
you thought when you read that function, one of the first things you thought is, “Hmm,
here’s a var field named sum, so Al is probably going to modify that field in the rest
of the algorithm.” Then you thought, “Okay, here’s a for loop ... he’s looping over
xs ... ah, yes, he’s using +=, so this really is a ‘sum’ loop, so that variable name makes
sense.” Once you learn FP — or even if you just learn the methods available on
Scala collections classes — you realize that’s a lot of thinking about a little custom for

loop.

If you’re like me a few years ago, you may be thinking that what I just wrote is
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overkill. You probably look at mutable variables and for loops all the time. But
studies show that we can only keep just so much information in our brains at one time,

therefore:

* The less information we Aave to keep in there is a win, and

* Boilerplate for loop code is a waste of our brain’s RAM

Maybe this seems like a small, subtle win at the moment, but speaking from my own
experience, anything I can do to keep my brain’s RAM free for important things is

a win.

See the Wikipedia article, The Magical Number 7 (Plus or Minus 2) for a good
discussion on how much information we humans can keep in our brains at any one

time.

Problem #2: It’s not algebraic

Another problem is that this code doesn’t look or feel like algebra. I discussed this
in the “Functional Programming is Like Algebra” lesson, so I won’t repeat that dis-

cussion here.

Problem #3: There are no var fields in FP

Of course from our perspective as functional programmers, the fuge problem with
this code is that it requires a var field, and Scala/FP developers don’t use those. A
var field is a crutch, and the best thing you can do to expedite your FP education is
to completely forget that they exist.

In my own FP experience, I learned that there’s a different way to solve iterative

problems once I let go of var fields and for loops.
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What to do?

Because we can’t use var fields, we need to look at a different tool to solve problems

like this. That tool is recursion.

If you’re like me, at first you’ll need to write recursive functions (because that’s all you

can do), but after a while you’ll want to write recursive functions.



Recursion: Let’s Look at Lists

Wikipedia’s Linked List entry

Visualizing lists

Because the List data structure — and the Aead and fa:l components of a List —
are so important to recursion, it helps to visualize what a list and its head and tail

components look like. Figure 31.1 shows one way to visualize a List.

Figure 31.1: One way to visualize the head and tail elements of a list.

This creative imagery comes from the online version of “Learn You a Haskell for
Great Good”, and it does a great job of imprinting the concept of head and tail
components of a list into your brain. As shown, the “head” component is simply the
first element in the list, and the “tail” is the rest of the list.

A slightly more technical way to visualize the head and tail of a list is shown in
Figure 31.2.
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head

tail

Figure 31.2: A slightly more technical way to visualize a lst.

An even more accurate way to show this is with a Nil value at the end of the List,

as shown in Figure 31.3, because that’s what it really looks like:

Linked lists and “cons” cells

To be clear, the List that I’'m talking about is a linked list— scala.collection.immutable. List,
which 1s the default list you get if you type List in your IDE or the REPL. This List

1s a series of cells, where each cell contains two things: (a) a value, and (b) a pointer

to the next cell. This is shown in Figure 31.4.

As shown, the last cell in a linked list contains the Nil value. The Nil in the last cell
1s very important: it’s how your recursive Scala code will know when it has reached
the end of a List.

When drawing a list like this, Figure 31.5 clearly shows the head element of a list,
and Figure 31.6 shows the tail elements.

Just like Haskell — and Lisp before it — the default Scala List works with these
head and tail components, and I’ll use them extensively in the examples that follow.


http://www.scala-lang.org/api/current/#scala.collection.immutable.List
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Figure 31.3: A more accurate way to visualize a list.
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Figure 31.5: The head element of a list.
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Figure 31.6: The tail elements of a list.
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For historical reasons these cells are known as “cons cells.” That name

comes from Lisp, and if you like history, you can read more about it on
Wikipedia.

Note 1: The empty List

As afirst note about Lists, a List with no elements in it is an emply list. An empty List
contains only one cell, and that cell contains a Nil element, as shown in Figure 31.7.

Wil

Figure 31.7: A list with no elements contains only one cell, which contains a Nil element.

You can create an empty List in Scala in two ways:

scala> val empty = List()
empty: List[Nothing] = List()

scala> val empty = Nil

empty: scala.collection.immutable.Nil.type = List()

Because I haven’t given those lists a data type (like Int), the results look a little dif-
ferent, but if I add a type to those expressions, you’ll see that the result is exactly the

same:

scala> val emptyl: List[Int] ListO)

empty: List[Int] = List(Q)

scala> val empty2: List[Int] = Nil
empty: List[Int] = List()

scala> emptyl == empty2

res@: Boolean = true


https://en.wikipedia.org/wiki/Cons
https://en.wikipedia.org/wiki/Cons

300 Recursion: Let’s Look at Lusts
In summary:

List() == Nil

Note 2: Several ways to create Lists

There are several ways to create non-empty Lists in Scala, but for the most part I'll

use two approaches. First, here’s a technique you’re probably already familiar with:
val list = List(1,2,3)

Second, this is an approach you may not have seen yet:

val list =1 :: 2 :: 3 :: Nil

These two techniques result in the exact same List[Int], which you can see in the

REPL:

scala> val listl = List(1,2,3)
list: List[Int] = List(1, 2, 3)

scala> val list2 =1 :: 2 :: 3 :: Nil
list: List[Int] = List(1, 2, 3)

scala> listl == list2

resl: Boolean = true

The second approach is known as using “cons cells.” As you can see, it’s a very literal
approach to creating a List, where you specify each element in the List, including
the Nil element, which must be in the last position. If you forget the Nil element at

the end, the Scala compiler will bark at you:

scala> val list =1 :: 2 :: 3
<console>:10: error: value :: is not a member of Int
val list =1 :: 2 :: 3
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I show this because it’s important — very important — to know that the last element
in a List must be the Nil element. (I like to say that the Nil elementisto a List asa
caboose 1s to a train.) We’re going to take advantage of this knowledge as we write
our first recursive function.
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Recursion: How to Write a ‘sum’ Function

With all of the images of the previous lesson firmly ingrained in your brain, let’s write
a sum function using recursion!

Source code

You can follow along with the source code in this lesson by cloning my project from
this Github URL:

* My Recursive Sum example

Sketching the sum function signature
Given a List of integers, such as this one:
val list = List(1, 2, 3, 4)

let’s start tackling the problem in the usual way, by thinking, “Write the function
signature first.”

What do we know about the sum function we want to write? Well, we know a couple
of things:

* It will take a list of integers as input

* Because it returns a sum of those integers, the function will return a single
value, an Int

Armed with only those two pieces of information, I can sketch the signature for a
sum function like this:
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def sum(list: List[Int]): Int = ??7?

Note: For the purposes of this exercise I'm assuming that the integer
values will be small, and the list size will also be small. That way we

don’t have to worry about all of the Ints adding up to a Long.

The sum function body

At this point a functional programmer will think of a “sum” algorithm as follows:

1. Ifthe sumfunction is given an empty list of integers, it should return @. (Because

the sum of nothing is zero.)

2. Otherwise, if the list is not empty, the result of the function is the combination
of (a) the value of its head element (1, in this case), and (b) the sum of the
remaining elements in the list (2,3,4).

A slight restatement of that second sentence 1is:

“The sum of a list of integers is the sum of the /ead element, plus the

sum of the tail elements.”

As Eckhart Tolle is fond of saying, “That statement is true, is it not?”
(Yes, it 1s.)

Thinking about a List in terms of its head and tail elements is a standard way of

thinking when writing recursive functions.

Now that we have a little idea of how to think about the problem recursively, let’s see
how to implement those sentences in Scala code.
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Implementing the first sentence in code

The first sentence above states:
If the sum function is given an empty list of integers, it should return 0.

Recursive Scala functions are often implemented using match expressions. Using
(a) that information and (b) remembering that an empty list contains only the Nil
element, you can start writing the body of the sum function like this:

def sum(list: List[Int]): Int = list match {

case Nil => 0

This i1s a Scala way of saying, “If the List is empty, return @.” If you’re comfortable

with match expressions and the List class, I think you’ll agree that this makes sense.

Note 1: Using return

If you prefer using return statements at this point in your programming career, you
can write that code like this:

def sum(list: List[Int]): Int = list match {

case Nil => return 0
Because a pure function doesn’t “return” a value as much as it “evaluates” to a result,

you’ll want to quickly drop return from your vocabulary, but ... I also understand

that using return can help when you first start writing recursive functions.

Note 2: Using if/then instead

You can also write this function using an if/then expression, but because pattern match-

wng 1s such a big part of functional programming, I prefer match expressions.
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Note 3: Can also use List()

Because Nil is equivalent to List(), you can also write that case expression like this:
case List() => 0

However, most functional programmers use Nil, and I'll continue to use Nil in this
lesson.

Implementing the second sentence in code

That case expression is a Scala/FP implementation of the first sentence, so let’s move
on to the second sentence.

The second sentence says, “If the list is not empty, the result of the algorithm 1s the
combination of (a) the value of'its head element, and (b) the sum of its tail elements.”

To split the list into head and tail components, I start writing the second case expres-
sion like this:

case head :: tail = ?7?

If you know your case expressions, you know that if sum is given a list like
List(1,2,3,4), this pattern has the result of assigning head to the value 1, and
assigning tail the value List(2,3,4):

head
tail

1
List(2,3,4)

(If you don’t know your case expressions, please refer to the match/case
lessons in Chapter 3 of the Scala Cookbook.)

This case expression is a start, but how do we finish it? Again I go back to the second
sentence:


http://amzn.to/24ivK4G
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If the list 1s not empty, the result of the algorithm is the combination of

(a) the value of its head element, and (b) the sum of the tail elements.

The “value of its head element” is easy to add to the case expression:
case head :: tail => head ...

But then what? As the sentence says, “the value of its head element, and the sum of

the tail elements,” which tells us we’ll be adding something to head:
case head :: tail => head + 777

What are we adding to head? 7he sum of the list’s tail elements. Hmm, now how can we

get the sum of a list of tail elements? How about this:

case head :: tail => head + sum(tail)

Whoa. That code is a straightforward implementation of the sentence, isn’t it?
(I’ll pause here to let that sink in.)

If you combine this new case expression with the existing code, you get the following

sum function:

def sum(list: List[Int]): Int = list match {
case Nil => 0

case head :: tail => head + sum(tail)

And that is a recursive “sum the integers in a List” function in Scala/FP. No var’s,

no for loop.

A note on those names

If you’re new to case expressions, it’s important to note that the head and tail vari-

able names in the second case expression can be anything you want. I wrote it like
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this:

case head :: tail => head + sum(tail)

but I could have written this:

case h :: t => h + sum(t)
or this:
case x :: XS => X + sum(xs)

This last example uses variable names that are commonly used with FP, lists, and
recursive programming. When working with a list, a single element is often referred
to as x, and multiple elements are referred to as xs. It’s a way of indicating that x is
singular and xs is plural, like referring to a single “pizza” or multiple “pizzas.” With
lists, the head element is definitely singular, while the tail can contain one or more
elements. I'll generally use this naming convention in this book.

Proof that sum works

To demonstrate that sum works, you can clone my RecursiveSum project on Github
— which uses ScalaTest to test sum— or you can copy the following source code that

extends a Scala App to test sum:
object RecursiveSum extends App {

def sum(list: List[Int]): Int = list match {
case Nil => 0

case X :: xXs => X + sum(xs)

val list = List(1, 2, 3, 4)
val sum = sum(list)

println(sum)


https://github.com/alvinj/RecursiveSum

309

When you run this application you should see the output, 10. If so, congratulations

on your first recursive function!

“That’s great,” you say, “but how exactly did that end up printing 10?”

To which I say, “Excellent question. Let’s dig into that!”

As I've noted before, | tend to write verbose code that's hopefully easy to understand,
especially in books, but you can shrink the last three lines of code to this, if you prefer:

println(sum(List(1,2,3,4)))



310 Recursion: How to Write a ‘sum’ Function



Recursion: How Recursive Function Calls Work

An important point to understand about recursive function calls is that just as they
“wind up” as they are called repeatedly, they “unwind” rapidly when the function’s

end condition 1s reached.

In the case of the sum function, the end condition is reached when the Nil element
in a List is reached. When sum gets to the Nil element, this pattern of the match

expression is matched:
case Nil => 0
Because this line simply returns @, there are no more recursive calls to sum. This is

a typical way of ending the recursion when operating on all elements of a List in

recursive algorithms.

Lists end with Ni1

As I wrote in the earlier List lesson, a literal way to create a List 1s like this:
1::02 03 04 0Nl

This is a reminder that with any Scala List you are guaranteed that the last List
elementis Nil. Therefore, if your algorithm is going to operate on the entire list, you
should use:

case Nil => 777

as your function’s end condition.

This is the first clue about how the unfolding process works.
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Note 1: This is a feature of the Scala List class. You’ll have to change
the approach if you work with other sequential collection classes like
Vector, ArrayBuffer, etc. (More on this later in the book.)

Note 2: Examples of functions that work on every element in a list are
map, filter, foreach, sum, product, and many more. Examples of func-

tions that don’t operate on every list element are take and takeWhile.

Understanding how the sum example ran

A good way to understand how the sum function example ran is to add println

statements inside the case expressions.
First, change the sum function to look like this:
def sum(list: List[Int]): Int = list match {

case Nil => {

println("casel: Nil was matched™)

0

3

case head :: tail => {
println(s"case2: head = $head, tail = $tail™)
head + sum(tail)

3

Now when you run it again with a List(1,2,3,4) as its input parameter, you’ll see

this output:

case2: head = 1, tail = List(2, 3, 4)
case2: head = 2, tail = List(3, 4)
case?2: head = 3, tail = List(4)
case2: head = 4, tail = List()

casel: Nil was matched
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That output shows that sum is called repeatedly until the list is reduced to List()
(which is the same as Nil). When List() is passed to sum, the first case is matched
and the recursive calls to sum come to an end. (I'll demonstrate this visually in the
next lesson.)

The book, Land of Lisp states, “recursive functions are list eaters,” and this output
shows why that statement is true.

How the recursion works (“going down”)

Keeping in mind that List(1,2,3,4) is the same as 1::2::3::4::Nil, you can read
the output like this:

1. The first time sumis called, the match expression sees that the given List doesn’t

match the Nil element, so control flows to the second case statement.

2. The second case statement matches the List pattern, then splits the incoming
listof 1::2::3::4::Nil into (a) a head element of 1 and

(b) the remainder of the list, 2::3::4::Nil. The remainder — the tail —is

then passed into another sum function call.

3. A new instance of sum receives the list 2::3::4::Nil. It sees that this list does

not match the Nil element, so control flows to the second case statement.

4. That statement matches the List pattern, then splits the list into a head ele-
ment of 2 and a tail of 3::4::Nil. The tail is passed as an input parameter to

another sum call.

5. A new instance of sum receives the list 3: :4: :Nil. This list does not match the

Nil element, so control passes to the second case statement.

6. The list matches the pattern of the second case statement, which splits the list
into a head element of 3 and a tail of 4::Nil. The tail is passed as an input
parameter to another sum call.

7. A new instance of sum receives the list 4: :Nil, sees that it does not match Nil,

and passes control to the second case statement.
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. The list matches the pattern of the second case statement. The list is split into

a head element of 4 a tail of Nil. The tail is passed to another sum function

call.

. The new instance of sum receives Nil as an input parameter, and sees that it

does match the Nil pattern in the first case expression. At this point the first

case expression 1s evaluated.

The first case expression returns the value @. This marks the end of the recur-

sive calls.

At this point — when the first case expression of this sum instance returns @ — all of

the recursive calls “unwind” until the very first sum instance returns its answer to the
code that called it.

How the unwinding works (“coming back up”)

That description gives you an idea of how the recursive sum function calls work until

they reach the end condition. Here’s a description of what happens affer the end

condition is reached:

. The last sum instance — the one that received List() — returns @. This hap-

pens because List() matches Nil in the first case expression.

. This returns control to the previous sum instance. The second case expression

of that sum function has return 4 + sum(Nil) as its return value. This is
reduced to return 4 + 0, so this instance returns 4. (I didn’t use a return

statement in the code, but it’s easier to read this now if I say “return.”)

. Again, this returns control to the previous sum instance. That sum instance has

return 3 + sum(List(4)) as the result of its second case expression. You just
saw that sum(List(4)) returns 4, so this case expression evaluates to return 3

+ 4,0r7.

Control is returned to the previous sum instance. Its second case expression
hasreturn 2 + sum(List(3,4)) asits result. You just saw that sum(List(3,4))

returns 7, so this expression evaluates to return 2 + 7, or 9.

. Finally, control is returned to the original sum function call. Its second

case expression is return 1 + sum(List(2,3,4)). You just saw that
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sum(List(2,3,4)) returns 9, so this call is reduced to return 1 + 9, or 10.

This value 1s returned to whatever code called the first sum instance.

Initial visuals of how the recursion works

bl

One way to visualize how the recursive sum function calls work — the “going down’

part — is shown in Figure 33.1.

sum(List(l,2,3,4))
=> sum{List(Z,3,4))
-»> sum(List(3,4))
=» sum{List(4))
-> sum(List())

Figure 35.1: How the original sum call leads to another; then to another ...

After that, when the end condition is reached, the “coming back up” part — what I
call the unwinding process — 1s shown in Figure 33.2.

-> sum(Nil) S/ return @

-= sum(List(4)) £ return 4 + sum(List()) == return 4 + @ => 4

-> sum{List(3,4)) £F return 3 4+ sum(List(4)) == return 3 + 4 = 7

=> sum(List(Z,3,4)) A return 2 + sumCList(3, 4)) = return 2 + 7 = 9
sum(List(l,2,3,4)) £ return 1 + sum(List(2, 3, 4)) = return 1 + 9 == 18

Figure 33.2: How sum function calls unwind, starting with the last sum call.

If this 1sn’t clear, fear not, in the next lesson I’ll show a few more visual examples of

how this works.
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Visualizing the Recursive sum Function

Another way to view recursion is with visual diagrams. To demonstrate this, I'll use

the rectangular symbol shown in Figure 34.1 to represent a function.

4— Tunction name and params
+——— Tunction body
+— function result

Figure 34.1: This rectangular symbol will be used to represent functions in this lesson.

The first step

Using that symbol and a list with only three elements, Figure 34.2 shows a represen-
tation of the first sum function call.

sum [1,?,3)‘ - sum(1,2,3)

——e Sa—_—

h=4, t=(2;3)

(d'um 1+ sum fl,i\)

¥

Figure 34.2: A visual representation of the first sum call.

The top cell in the rectangle indicates that this first instance of sumis called with the
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parameters 1,2,3. Note that I'm leaving the “List” name off of these diagrams to

make them more readable.

The body of the function is shown in the middle region of the symbol, and it’s shown
as return 1 + sum(2,3). As I mentioned before, you don’t normally use the return

keyword with Scala/FP functions, but in this case it makes the diagram more clear.

In the bottom region of the symbol I've left room for the final return value of the
function. At this ime we don’t know what the function will return, so for now I just

leave that spot empty.

T he next steps

For the next step of the diagram, assume that the first sum function call receives
the parameter list (1,2,3), and its body now calls a new instance of sum with the
input parameter sum(2,3) (or sum(List(2,3)), if you prefer). You can imagine the
second case expression separating the List into head and tail elements, as shown in
Figure 34.3.

sum Elj-?,a,: 2 SUMJ’I“?‘E.)
3 S £ e s e e e
h=d, = (2) sum (2,3) ;
h : -I
Cetuen 1 + sum I'fz-ﬁ-"'-) h L 8 ;
1
!
- | i
]
S

Figure 34.3: The first sum function invokes a second sum function call.

Then this sum instance makes a recursive call to another sum instance, as shown in
Figure 34.4.
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sum E'Ii?j] - sum(1,2,3)
| k=i, #=0) cum (2,3)
ff_+u.nh, 1 + Sum !113‘) ‘, = 2' 1= {3:‘

return 2+ sum| f:!

H

R

——e i

P ! e ) Ul [ A |

Figure 34.4: The second sum function call begins to invoke the third sum instance.

Again I leave the return value of this function empty because I don’t know what it
will be until its sum call returns.

It’s important to be clear that these two function calls are completely different in-
stances of sum. They have their own input parameter lists, local variables, and return
values. It’s just as if you had two different functions, one named sum3elements and
one named sum2elements, as shown in Figure 34.5.

sum3elementsi(l,2,3)

| sumZelements(2,3)
returnm 1 +

sumEElements{2,3]|

return 1 +

sumlelement(3)

L -~ =

Figure 34.5: One sum function calling another sum instance is just like calling a different function.

Just as the variables inside of sum3elements and sum2elements have completely dif-
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ferent scope, the variables in two different instances of sum also have completely

different scope.

Getting back to the sum example, you can now imagine that the next step will proceed

just like the previous one, as shown in Figure 34.6.

5um 3) = wmi1,2,3)
{1 STAM, (:‘ J T
ka1 4 A he2 t2 (3 U1 lsiadtis | |
—— T e t et it | B 1 M
— |
3 L o A T T I'IH

Figure 34.6: The third sum function has now been called.

The last recursive sum call

Now we’re at the point where we make the last recursive call to sum. In this case,
because 3 was the last integer in the list, a new instance of sum is called with the Nil

value. This is shown in Figure 34.7.

With this last sum call, the Nil input parameter matches the first case expression,
and that expression simply returns @. So now we can fill in the return value for this

function, as shown in Figure 34.8.

Now this sum instance returns @ back to the previous sum instance, as shown in Fig-
ure 34.9.

The result of this function call is 3 + @ (which 1s 3), so you can fill in its return value,
and then flow it back to the previous sum call. This is shown in Figure 34.10.

The result of this function callis 2 + 3 (5), so that result can flow back to the previous

function call, as shown in Figure 34.11.



Sm f?,33

b~

h22, t=(3)

rehiarss 21+ bami(2])]

Sum(3)

hz3,tz2HMil

return 34 s (1)

= (Ha.f)

+ patehes end
C#m:l -'I'ii:'n

* return @

-
-
e

Figure 34.7: Nil s passed into the final sum function call.

Som [Nil)

| fum(23)
EETPEE Sum(3)
ERREEE| ehuen 3 1+
- LLLLLL]

o patihes end
:&Mf-hbn

¢ return @

=

Figure 34.8: The return value of the last sum call is 0.

Zow (Nl )

Tl f?,?-)
return 2+ FOTED!
1 | retuen 3 4+
1 N o I
il ‘lr-..':
2 S i deond. 23 B

v patehes end
:ﬂnrf:"'ibﬂ

K return ﬁ

= @

—

Figure 34.9: @ s returned back to the previous sum call.
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; 5
Sum [1,T3] =¥

sum [11,3) =

Sum(1,3,3)

retwnn 4+

Visualizing the Recursive sum Function

Suf1,7,3)

retern 4+

| i

Tum (3]
retum 3 + e i)
_,:'Zf__—: bt chas il
= Aidibtis
PO 1] ek &
B
Figure 34.10: The third sum call returns to the second.
fum(z )
refuen 2+ Zum {3l
[ 3 retusn 3+ Zown i)
= & = aondHuon
='2 *pebum &
= B

Figure 34.11: The second sum call returns to the furst.
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Finally, the result of this suminstance is 1 + 5 (6). This was the first sum function call,

so it returns the value 6 back to whoever called it, as shown in Figure 34.12.

—1

-

| ) |
I 1
| return T+ Lo w30
| e S
| 2 . , : —
___.\ St | K] ek refaem 2 ,...-'4! |
! i— ] | & - " m |
- { |
C |
4 B I
| .
I

snnd f

Figure 34.12: The furst sum call returns to the final result.

Other visualizations

There are other ways to draw recursive function calls. Another nice approach is to
use a modified version of a UML “Sequence Diagram,” as shown in Figure 34.13.

Note that in this diagram “time” flows from the top to the bottom.

This diagram shows that the main method calls sum with the parameter List(1,2,3), where
I again leave off the List part; it calls sum(2,3), and so on, until the Nil case is
reached, at which point the return values flow back from right to left, eventually

returning 6 back to the main method.

You can write the return values like that, or with some form of the function’s equation,

as shown in Figure 34.14.

Personally, I use whatever diagram seems to help the most.

Summary

Those are some visual examples of how recursive function calls work. If you find
yourself struggling to understand how recursion works, I hope these diagrams are

helpful.
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| I I I I

I I I I |

| I I I I

sum{1,2,3)
[ I I I
sum({2,3)
| [——— I I
sum(2)
T | | R _ I
sum{Nil)

1 I I I | et |
M I I I I |
E | I I I ° I
| I I 3 I I

| | 5 I I I

| 6 I I I I

I I I I |

| I I I I

v | I I I I

Figure 34.13: The sum function calls can be shown using a UML Sequence Diagram.

| I I I I

I I I I |

| I I I |

sum({1,2,3)
[ ———————| I I I
sum(2,3)
| |——————=I I I
sum(3)
T | | | —————————s| _ I
sumi{Nil)

1 | I I e
M I I I I I
E | I I I o |
| I I 3+e I |

| | 2+3 I I I

| 1+5 I I I I

I I I I |

| I I I I

| I I I I

Figure 34.14: Whiting the function return values as equations.



Recursion: A Conversation Between Two
Developers

As an homage to one of my favorite Lisp books — an early version of what is now
The Little Schemer — this lesson shows a little question and answer interaction that

you can imagine happening between two Scala programmers.
Given this sum function:
def sum(list: List[Int]): Int = list match {

case Nil => 0

case X :: xXs => X + sum(xs)

I hope this “conversation” will help drive home some of the points about how recur-

sion works:

Person 1 Person 2

What is this? val x = List(1,2,3,4) An expression that defines a List[Int],
which in this case contains the integers 1
through 4. The expression binds that list
to the variable x.

And what is this? x.head The first element of the list x, which is 1.

How about this? x.tail That’s the remaining elements in the list
x, which is List(2,3,4).

How about this: x.tail.head It is the number 2.
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Person 1

Person 2

How did you come up with that?

How about this: x.tail.tail

Explain, please.

Are you ready for more?

Given the definition of our sum function,
explain the first step in:
sum(List(1,2,3)).

Then what happens?

And then?

Please continue.

Go on.

Don’t stop now.

What happens inside this instance of sum?

Cool. Something different. Now what
happens?

x.tailis List(2,3,4), and
List(2,3,4).head is the first element of
that list, or 2.

That’s List(3,4).

x.tailis List(2,3,4), and then
List(2,3,4).tail is List(3,4).

Yes, please.

The sum function receives List(1,2,3).
This does not match the Nil case, but
does match the second case, where x is

assigned to 1 and xs 1s List(2,3).

A new instance of sumis called with the
parameter List(2,3).

A new instance of sum receives the input
parameter List(2,3). This does not
match the Nil case, but does match the
second case, where x is assigned to 2 and
xs 1s List(3).

sum 1s called with the parameter List(3).

A new instance of sum receives List(3).
This does not match the Nil case, but
does match the second case, where x is

assigned to 3 and xs is ListQ).

sum is called with the parameter List().

It receives List(). This is the same as

Nil, so it matches the first case.

That case returns 0.



327

Person 1

Person 2

Ah, finally a return value!

Okay, so now what happens?

You're telling me.

This ends the recursion, and then the
recursive calls unwind, as described in

the previous lesson.
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Recursion: Thinking Recursively

Goal

This lesson has one primary goal: to show that the thought process followed in
writing the sum function follows a common recursive programming “pattern.” In-
deed, when you write recursive functions you’ll generally follow the three-step pro-

cess shown 1n this lesson.

I don’t want to make this too formulaic, but the reality is that if you follow these three
steps in your thinking, it will make it easier to write recursive functions, especially

when you first start.

The general recursive thought process (the “three steps”)

As I mentioned in the previous lessons, when I sit down to write a recursive function,
I think of three things:

* What is the function signature?
* What is the end condition for this algorithm?

* Whatis the actual algorithm? For example, if 'm processing all of the elements
in a List, what does my algorithm do when the function receives a non-empty
List?
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Let’s take a deep dive into each step in the process to make more sense of these

descriptions.

Step 1: What is the function signature?

Once I know that I'm going to write a recursive function, the first thing I ask myself

is, “What 1s the signature of this function?”

If you can describe the function verbally, you should find that you know (a) the pa-
rameters that will be passed into the function and (b) what the function will return.
In fact, if you don’t know these things, you’re probably not ready to write the function
yet.

T he sum function

In the sum function the algorithm is to add all of the integers in a given list together
to return a single integer result. Therefore, because I know the function takes a list

of integers as its input, I can start sketching the function signature like this:
def sum(list: List[Int]) ...

Because the description also tells me that the function returns an Int result, I add

the function’s return type:
def sum(list: List[Int]): Int = 77?7

This is the Scala way to say that “the sum function takes a list of integers and returns
an integer result,” which is what I want. In FP, sketching the function signature is
often half of the battle, so this is actually a big step.
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Step 2: How will this algorithm end?

The next thing I usually think about is, “How will this algorithm end? What is its
end condition?”

Because a recursive function like sum keeps calling itself over and over, it’s of the
utmost importance that there is an end case. If a recursive algorithm doesn’t have an
end condition, it will keep calling itself as fast as possible until either (a) your program
crashes with a StackOverflowError, or (b) your computer’s CPU gets extraordinarily
hot. Therefore, I offer this tip:

Always have an end condition, and write it as soon as possible.

In the sum algorithm you know that you have a List, and you want to march through
the entire List to add up the values of all of its elements. You may not know it at this
point in your recursive programming career, but right away this statement is a big
hint about the end condition. Because (a) you know that you’re working with a List,
(b) you want to operate on the entire List, and (c) a List ends with the Nil element,

(d) you can begin to write the end condition case expression like this:
case Nil => 777

To be clear, this end condition is correct because you’re working with a List, and you
know that the algorithm will operate on the entire List. Because the Nil element is
to alistasacaboose is to a train, you're guaranteed that it’s always the last element
of the List.

Note: If your algorithm will not work on the entire List, the end condi-
tion will be different than this.

Now the next question is, “What should this end condition return?”

A key here is that the function signature states that it returns an Int. Therefore, you
know that this end condition must return an Int of some sort. But what Int? Because

this is a “sum” algorithm, you also know that you don’t want to return anything that
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will affect the sum. Hmmm ... what Int can you return when the Nil element is

reached that won’t affect the sum?

The answer 1s 0.

(More on this shortly.)

Given that answer, I can update the first case condition:

def sum(list: List[Int]): Int = list match {
case Nil => 0

case ?77

That condition states that if the function receives an empty List — denoted by Nil
— the function will return 0.

Now we’re ready for the third step.

I'll expand more on the point of returning @ in this algorithm in the coming lessons, but
for now it may help to know that there’s a mathematical theory involved in this decision.
What's happening here is that you're returning something known as an “identity” element
for the current data set and algorithm. As a quick demonstration of what I'm talking
about, here are a few other identity elements for different data sets and algorithms:

1) Imagine that you want to write a “product” algorithm for a list of integers. What would
you return for the end condition in this case? The correct answer is 1. This is because
the product involves multiplying all elements of the list, and multiplying any number by
1 gives you the original number, so this doesn't affect the final result in any way.

2) Imagine that you're writing a concatenation algorithm for a List[String]. What
would you return for the end condition in this case? The correct answeris **'", an
empty String (because once again, it does not affect the final result).
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Step 3: What is the algorithm?

Now that you’ve defined the function signature and the end condition, the final ques-
tion 1s, “What 1s the algorithm at hand?”

When your algorithm will operate on all of the elements in a List and the first case
condition handles the “empty list” case, this question becomes, “What should my

function do when it receives a non-empty List?”
The answer for a “sum” function is that it should add all of the elements in the list.

(Similarly, the answer for a “product” algorithm is that it should multiply all of the

list elements.)

T he sum algorithm

At this point I go back to the original statement of the sum algorithm:

“The sum of a list of integers is the sum of the Aead element, plus the
sum of the ta/ elements.”

Because the first case expression handles the “empty list” case, you know that the
second case condition should handle the case of the non-empty list. A common way

to write the pattern for this case expression is this:
case head :: tail => 777

This pattern says, “head will be bound to the value of the first element in the List,

and tail will contain all of the remaining elements in the List.”

Because my description of the algorithm states that the sum 1s “the sum of the fead
element, plus the sum of the ‘@il elements,” I start to write a case expression, starting

by adding the head element:

case head :: tail => head + ?7?
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and then I write this code to represent “the sum of the tail elements”:
case head :: tail => head + sum(tail)

That is a Scala/FP recursive way of expressing the thought, “T'he sum of a list of

integers 1s the sum of the fead element, plus the sum of the /ai/ elements.”

(I described that thought process in detail in the previous lessons, so I won’t repeat

all of that thought process here.)

Now that we have the function signature, the end condition, and the main algorithm,

we have the completed function:

def sum(list: List[Int]): Int = list match {
case Nil => 0

case head :: tail => head + sum(tail)

Naming conventions

As I noted in the previous lessons, when FP developers work with lists, they often
prefer to use the variable name x to refer to a single element and xs to refer to
multiple elements, so this function is more commonly written with these variable

names:

def sum(list: List[Int]): Int = list match {
case Nil => 0

case X :: XS => X + sum(xs)

(But you don’t have to use those names; use whatever is easiest for you to read.)
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The last two steps are iterative

In practice, the first step — sketching the function signature — is almost always the
first step in the process. As I mentioned, it’s hard to write a function if you don’t

know what the inputs and output will be.

But the last two steps — defining the end condition, and writing the algorithm — are
interchangeable, and even iterative. For instance, if you’re working on a List and
you want to do something for every element in the list, you know the end condition
will occur when you reach the Nil element. But if you’re not going to operate on
the entire list, or if you're working with something other than a List, it can help to
bounce back and forth between the end case and the main algorithm until you come

to the solution.

Note that the sum algorithm I've shown specifically works on a Scala
List, which ends with a Nil element. It will not work with other se-
quences like Vector, ArrayBuffer, ListBuffer, or other sequences that
do not have a Nil value as the last element in the sequence. I discuss

the handling of those other sequences later in the book.

Summary

When [ sit down to write a recursive function, I generally think of three things:

* What is the function signature?
* What is the end condition for this algorithm?

* What is the main algorithm?

To solve the problem I almost always write the function signature first, and after
that I usually write the end condition next, though the last two steps can also be an

iterative process.
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What's next

Now that you've seen this “general pattern” of writing recursive functions, the next
two lessons are exercises that give you a taste of how to use the patterns to write your

own recursive functions.

First, I'll have you write another recursive function to operate on all of the elements
in a List, and then you’ll work on a recursive algorithm that operates on only a
subset of a List.



JVM Stacks and Stack Frames

For functions without deep levels of recursion, there’s nothing wrong with the algo-
rithms shown in the previous lessons. I use this simple, basic form of recursion when
I know that I'm working with limited data sets. But in applications where you don’t
know how much data you might be processing, it’s important that your recursive

algorithms are tail-recursiwe, otherwise you’ll get a nasty StackOverflowError.

For instance, if you run the sum function from the previous lessons with a larger list,
like this:

object RecursiveSum extends App {

def sum(list: List[Int]): Int = list match {
case Nil => 0

case X :: XS => X + sum(xs)

val list = List.range(1l, 10000) // MUCH MORE DATA
val x = sum(list)
println(x)

you’ll get a StackOverflowError, which is 7eally counter to our desire to write great,

bulletproof, functional programs.

The actual number of integers in a list needed to produce a StackOver-
flowError with this function will depend on the java command-line set-
tings you use, but the last time I checked the default Java stack size it
was 1,024 kb — yes, 1,024 kilobytes — just over one million byles. That’s
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not much RAM to work with. I write more about this at the end of
this lesson, including how to change the default stack size with the java

command’s -Xss parameter.

T’ll cover tail recursion in the next lesson, but in this lesson I want to discuss the
JVM stack and stack frames. If you’re not already familiar with these concepts, this
discussion will help you understand what’s happening here. It can also help you

debug “stack traces” in general.

If you’re already comfortable with the JVM stack and stack frames, feel
free to skip on to the next lesson.

What is a “Stack”?

To understand the potential “stack overflow” problem of recursive algorithms, you

need to understand what happens when you write recursive algorithms.

The first thing to know is that in all computer programming languages there is this

thing called “the stack,” also known as the “call stack.”

Official Java/ JVM “stack™ definition

Oracle provides the following description of the stack and stack frames as they relate

to the JVM:

“Each JVM thread has a private Java virtual machine stack, created at
the same time as the thread. A JVM stack stores frames, also called
“stack frames”. A JVM stack is analogous to the stack of a conventional
language such as G — it holds local variables and partial results, and

plays a part in method invocation and return.”

Therefore, you can visualize that a single stack has a pile of stack frames that look
like Figure 37.1.


https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
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Figure 37.1: A single stack has a pile of stack frames.
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As that quote mentions, each thread has its own stack, so in a multi-threaded appli-

cation there are multiple stacks, and each stack has its own stack of frames, as shown

in Figure 37.2.

THREAD 1 THREAD 2 THREAD 3

stack frame

stack frame

stack frame stack frame
stack frame stack frame stack frame
stack frame stack frame stack frame
stack frame stack frame stack frame

Figure 37.2: Each thread has its own stack.
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T he Java stack

To explain the stack a little more, all of the following quoted text comes from the free,
online version of a book titled, Inside the Java Virtual Machine, by Bill Venners.
(I edited the text slightly to include only the portions relevant to stacks and stack
frames.)

“When a new thread is launched, the JVM creates a new stack for the thread. A Java
stack stores a thread’s state in discrete frames. The FVM only performs two operations
directly on fava stacks: it pushes and pops frames.”

“The method that is currently being executed by a thread is the thread’s current
method. The stack frame for the current method is the current frame. The class
in which the current method is defined is called the current class, and the current
class’s constant pool is the current constant pool. As it executes a method, the JVM
keeps track of the current class and current constant pool. When the JVM encoun-
ters instructions that operate on data stored in the stack frame, it performs those
operations on the current frame.”

“When a thread invokes a Java method, the JVM creales and pushes a new frame onto the thread’s
stack. This new frame then becomes the current frame. As the method executes, it
uses the frame to store parameters, local variables, intermediate computations, and
other data.”

As the previous paragraph implies, each instance of a method has its
own stack frame. Therefore, when you see the term “stack frame,” you
can think, “all of the stuff a method instance needs.”

What is a “Stack Frame”?

The same chapter in that book describes the “stack frame” as follows:
“The stack frame has three parts: local variables, operand stack, and frame data.”

You can visualize that as shown in Figure 37.3.


http://www.artima.com/insidejvm/ed2/jvm8.html
http://www.artima.com/insidejvm/ed2/jvm8.html
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THE STACK

STACK FRAME

1 1) Local variable array
stack frame = 2) Dperand stack

3) Constant Pool reference
stack frame

stack frame

stack frame

Figure 37.3: Each stack_frame has three parts

The book continues:

“The sizes of the local variables and operand stack, which are measured in words,
depend upon the needs of each individual method. These sizes are determined at

compile time and included in the class file data for each method.”

That’s important: the size of a stack_frame varies depending on the local variables and operand
stack. 'The book describes that size like this:

“When the JVM invokes a method, it checks the class data to determine the number
of words required by the method in the local variables and operand stack. It creates
a stack frame of the proper size for the method and pushes it onto the stack.”

Word size, operand stack, and constant pool

These descriptions introduce the phrases word size, operand stack, and constant
pool. Here are definitions of those terms:

First, word size is a unit of measure. From Chapter 5 of the same book, the word

size can vary in JVM implementations, but it must be at least 32 bits so it can hold


http://www.artima.com/insidejvm/ed2/jvm3.html
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a value of type long or double.

Next, the operand stack is defined here on oracle.com, but as a word of warning,
that definition gets into machine code very quickly. For instance, it shows how two
integers are added together with the iadd instruction. You are welcome to dig into
those details, but for our purposes, a simple way to think about the operand stack is
that 1it’s memory (RAM) that 1s used as a working area inside a stack frame.

The Java Run-Time Constant Pool is defined at this oracle.com page, which states, “A
run-time constant pool ... contains several kinds of constants, ranging from numeric
literals known at compile-time, to method and field references that must be resolved
at run-time. The run-time constant pool serves a function similar to that of a symbol
table for a conventional programming language, although it contains a wider range
of data than a typical symbol table.”

Summary to this point

I can summarize what we’ve learned about stacks and stack frames like this:

* Each JVM thread has a private stack, created at the same time as the thread.
* A stack stores frames, also called “stack frames.”

* A stack frame is created every time a new method is called.

We can also say this about what happens when a Java/Scala/JVM method is in-
voked:

* When a method is invoked, a new stack frame is created to contain information
about that method.

* Stack frames can have different sizes, depending on the method’s parameters,

local variables, and algorithm.

* As the method is executed, the code can only access the values in the current

stack frame, which you can visualize as being the top-most stack frame.

As 1t relates to recursion, that last point 1s important. As a function like our sum

function works on a list, such as List(1,2,3), information about that instance of


https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.6.2
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.5.5
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sum 1s in the top-most stack frame, and that instance of sum can’t see the data of
other instances of the sum function. This is how what appears to be a single, local
variable — like the values head and tail inside of sum — can seemingly have many

different values at the same time.

One last resource on the stack and recursion

Not to belabor the point, but I want to share one last description of the stack (and
the heap) that has specific comments about recursion. The discussion in Figure 37.4
comes from a book named Algorithms, by Sedgewick and Wayne.

SERIOUS STACK SPACE

Mormally a computer allocates two areas of memory lor a program: the stack and
the heap.

The stack is used to store information about method calls. When a piece of
code calls a method, information about the call is placed on the stack. When the
method returns, that information is popped off the stack. so the program can
resume execution just after the point where it called the method. |The stack is the
same kind of stack described in Chapter 5.] The list of methods that were called to
get to a particular point of execution is called the cail stack.

The heap Is ancther piece of memory that the program can use to create
variables and perform calculations.

Typically the stack is much smaller than the heap. The stack usually is large
enough for normal programs because your code typically doesn’t include methods
calling other methods to a very great depth. However, recursive algorithms can
sometimes create extremely deep call stacks and exhaust the stack space,
causing the program to crash.

For this reason, it's impurtant to evaluate the maximum depth of recursion that
a recursive algorithm requires in additien to studying its run time and memory
requirements,

Figure 37.4: A discussion of the JVM stack and heap

There are two important lines in this description that relate to recursive algorithms:

* “When the method returns, that information is popped off the stack, so the

program can resume execution just after the point where it called the method.”

* “recursive algorithms can sometimes create extremely deep call stacks and

exhaust the stack space.”


http://amzn.to/1WSRnEY

344 JVM Stacks and Stack Frames

Analysis

From all of these discussions I hope you can see the potential problem of recursive
algorithms:

* When a recursive function calls itself, information for the new instance of the
function is pushed onto the stack.

* Each time the function calls itself, another copy of the function information is
pushed onto the stack. Because of this, a new stack frame 1is needed for each

level in the recursion.

* As a result, more and more memory that is allocated to the stack is consumed
as the function recurses. If the sum function calls itself a million times, a million
stack frames are created.



A Visual Look at Stacks and Frames

Given the background information of the previous lesson, let’s take a visual look
at how the JVM stack and stack frames work by going back to our recursive sum
function from the previous lesson.

Before the sum function is initially called, the only thing on the call stack is the appli-
cation’s main method, as shown in Figure 38.1.

Stack

main

Figure 38.1: main us the only thing on the call stack before sum is called.

Then main calls sumwith List(1,2,3), which I show in Figure 38.2 without the “List”
to keep things simple.

The data that’s given to sum matches its second case expression, and in my pseu-
docode, that expression evaluates to this:
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LStack

sum(1,2,3)

main

Figure 38.2: The first sum call is added to the stack.

return 1 + sum(2,3)

Next, when a new instance of sumis called with List(2,3), the stack looks as shown

in Figure 38.3.
Again the second case expression is matched inside of sum, and it evaluates to this:
return 2 + sum(3)

When a new instance of sum is called with the input parameter List(3), the stack
looks like Figure 38.4.

Again the second case expression is matched, and that code evaluates to this:
return 3 + sum(Nil)

Finally, another instance of sum is called with the input parameter List() — also
known as Nil — and the stack now looks like Figure 38.5.
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Stack

sum(2,3)

sum(1,2,3)

main

Figure 38.3: The second sum call is added to the stack.

Stack

sumi 3)

sum{2,3)

sum(1,2,3)

main

Figure 38.4: The third sum call is added to the stack.
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This time, when sum(Nil) is called, the first case expression is matched:

case Nil => 0

LStack

sum({Nil)
sumi3)
sum(2,3)
sum{1,2,3)

main

Figure 38.5: The final sum call is added to the stack.

A Visual Look at Stacks and Frames

That pattern match causes this sum instance to return @, and when it does, the call

stack unwinds and the stack frames are popped off of the stack, as shown in the series
of images in Figure 38.6.

sum{Nil)
sum{3)
sum(2,3)
sum(1,2,3)

main

sum(3)
sum(2,3)
sum(1,2,3)

main

Figure 38.6: The unwinding of the call stack.

» sum(2,3)
sum(1,2,3)

main

l

sum(1,2,3)

main

|

main

In this process, as each sum call returns, its frame 1s popped off of the stack, and
when the recursion completely ends, the main method is the only frame left on the
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call stack. (The value 6 is also returned by the first sum invocation to the place where

it was called in the main method.)

I hope that gives you a good idea of how recursive function calls are pushed-on and

popped-off the JVM call stack.

Manually dumping the stack with the sum example

If you want to explore this in code, you can also see the series of sum stack calls by
modifying the sum function. To do this, add a couple of lines of code to the Nil case

to print out stack trace information when that case is reached:

def sum(list: List[Int]): Int = list match {

case Nil => {
// this manually creates a stack trace
val stackTraceAsArray = Thread.currentThread.getStackTrace
stackTraceAsArray.foreach(println)
// return @ as before
0

3

case X :: XS => X + sum(xs)

Now, if you call sum with a list that goes from 1 to 3:

val 1list = List.range(l, 5)
sum(list)

you’ll get this output when the Nil case is reached:

java.lang.Thread.getStackTrace(Thread. java:1588)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)
recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)
recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)
recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)
recursion.SumiWithStackDump$.sum(SumWithStackDump.scala:19)
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While that output isn’t too exciting, it shows that when the stack dump is manually
triggered when the Nil case is reached, the sum function is on the stack five times.
You can verify that this is correct by repeating the test with a List that has three
elements, in which case you’ll see the sum function referenced only three times in the
output:

java.lang.Thread.getStackTrace(Thread. java:1588)

recursion.SumWithStackDump$.sum(SumWithStackDump.scala:13)
recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)
recursion.SumWithStackDump$.sum(SumWithStackDump.scala:19)

Clearly the sum function is being added to the stack over and over again, once for

each call.

I encourage you to try this on your own to become comfortable with

what’s happening.

Summary: Our current problem with “basic recursion”

I'hope this little dive into the JVM stack and stack frames helps to explain our current
problem with “basic recursion.” As mentioned, if I try to pass a List with 10,000 ele-
ments into the current recursive sum function, it will generate a StackOverflowError.

Because we’re trying to write bulletproof programs, this isn’t good.

What's next

Now that we looked at (a) basic recursion with the sum function, (b) how that works
with stacks and stack frames in the last two lessons, and (c) how basic recursion can
throw a StackOverflowError with large data sets, the next lesson shows how to fix

these problems with something called “tail recursion.”

See also

I didn’t get into all of the nitty-gritty details about the stack and stack frames in this

lesson. If you want to learn more about the stack, here are some excellent resources:
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Chapter 5 of Inside the Java Virtual Machine, by Bill Venners is an excellent

resource. You may not need to read anything more than the content at this

URL.

» Chapter 2 of Oracle’s JVM Specification is also an excellent resource.

e This article titled, Understanding JVM Internals on cubrid.org is another

good read.

* If you want even more gory details, an article titled, Understanding the Stack

on umd.edu is excellent.

* Here’s an article I wrote about the differences between the stack and the heap

a long time ago.

One more thing: Viewing and setting the JVM stack size

“Well,” you say, “these days computers have crazy amounts of memory. Why is this
such a problem?”

According to this Oracle document, with Java 6 the default stack size was very low:
1,024k on both Linux and Windows.

| encourage you to check the JVM stack size on your favorite computing platform(s).
One way to check it is with a command like this on a Unix-based system:

java -XX:+PrintFlagsFinal -version | grep -i stack

When | do this on my current Mac OS X system, | see that the ThreadStackSize is
1024. | dug through this oracle.com documentation to find that this “1024” means “1,024
Kbytes”.

It's important to know that you can also control the JVM stack size with the -Xss com-
mand line option:

$ java -Xss IM ... (the rest of your command line here)

That command sets the stack size to one megabyte. You specify the memory size


http://www.artima.com/insidejvm/ed2/jvm8.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
http://www.cubrid.org/blog/dev-platform/understanding-jvm-internals/
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
http://alvinalexander.com/java/java-stack-heap-definitions-memory
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
http://www.oracle.com/technetwork/articles/java/vmoptions-jsp-140102.html
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attribute as m or M after the numeric value to get megabytes, as in 1m or 1M for one
megabyte.

Use g or G to specify the size in gigabytes, but if you're trying to use many
MB or GB for the stack size, you're doing something wrong. You may
need this gigabytes option for the Xxmx option, but you should never need
it for this Xss attribute.

The Xss option can be helpful if you run into a StackOverflowError — although the
next lesson on tail recursion is intended to help you from ever needing this command
line option.

More JVM memory settings

As a final note, you can find more options for controlling Java application memory use
by looking at the output of the java -X command:

$ java -X

If you dig through the output of that command, you'll find that the command-line argu-
ments specifically related to Java application memory use are:

-Xms set initial Java heap size
-Xmx set maximum Java heap size
-Xss set java thread stack size

You can use these parameters on the java command line like this:
java -Xmse4m -Xmx1G myapp.jar
As before, valid memory values end with m or M for megabytes, and g or G for gigabytes:

-Xms64m or -Xms64M
-Xmx1lg or -Xmx1G


http://alvinalexander.com/blog/post/java/java-xmx-xms-memory-heap-size-control

Tail-Recursive Algorithms

the “Functional” cartoon on xkcd.com

Goals

The main goal of this lesson is to solve the problem shown in the previous lessons:
Simple recursion creates a series of stack frames, and for algorithms that require deep

levels of recursion, this creates a StackOverflowError (and crashes your program).

“Tail recursion” to the rescue

Although the previous lesson showed that algorithms with deep levels of recursion
can crash with a StackOverflowError, allis notlost. With Scala you can work around
this problem by making sure that your recursive functions are written in a tal-recursiwe

style.

A tail-recursive function is just a function whose very last action is a call to itself. When
you write your recursive function in this way, the Scala compiler can optimize the
resulting JVM bytecode so that the function requires only one stack frame — as

opposed to one stack frame for each level of recursion!

On Stack Overflow, Martin Odersky explains tail-recursion in Scala:

“Functions which call themselves as their last action are called tail-
recursive. The Scala compiler detects tail recursion and replaces it
with a jump back to the beginning of the function, after updating the
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function parameters with the new values ... as long as the last thing you

do is calling yourself, it’s automatically tail-recursive (i.e., optimized).”

But that sum function looks tail-recursive to me ...

“Hmm,” you might say, “if I understand Mr. Odersky’s quote, the sum function you
wrote at the end of the last lesson (shown in Figure 39.1) sure looks tail-recursive to

b2l

me.

// note: this code won't compile yet

@tailrec

private def sumWithAccumulator(list: List[Int], accumulator: Int): Int = list match {
case Nil == @
case X ! x5 =» X + sumixs)

Figure 39.1: The call to sum appears to be the last action.

“Isn’t the ‘last action’ a call to itself, making it tail-recursive?”

If that’s what you’re thinking, fear not, that’s an easy mistake to make. But the
answer 1s no, this function 1s not tail-recursive. Although sum(tail) is at the end of
the second case expression, you have to think like a compiler here, and when you
do that you’ll see that the last two actions of this function are:

1. Call sum(xs)

2. When that function call returns, add its value to x and return that result

When I make that code more explicit and write it as a series of one-line statements,
you see that it looks like this:

val s = sum(xs)
val result = x + s

return result

As shown, the last calculation that happens before the return statement is that the
sum of x and s is calculated. If you’re not 100% sure that you believe that, there are
a few ways you can prove it to yourself.
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1) Proving it with the previous “stack trace” example

One way to “prove” that the sum algorithm is not tail-recursive is with the “stack
trace” output from the previous lesson. The JVM output shows the sum method is
called once for each step in the recursion, so it’s clear that the JVM feels the need to

create a new instance of sum for each element in the collection.

2) Proving it with the @tailrec annotation

A second way to prove that sum isn’t tail-recursive is to attempt to tag the function
with a Scala annotation named @tailrec. This annotation won’t compile unless the

function is tail-recursive. (More on this later in this lesson.)
If you attempt to add the @tailrec annotation to sum, like this:

// need to import tailrec before using it

import scala.annotation.tailrec

@tailrec
def sum(list: List[Int]): Int = list match {
case Nil => 0

case X :: Xs => X + sum(xs)

the scalac compiler (or your IDE) will show an error message like this:

Sum.scala:10: error: could not optimize @tailrec annotated method sum:
it contains a recursive call not in tail position

def sum(list: List[Int]): Int = list match {
A

This is another way to “prove” that the Scala compiler doesn’t think sum is tail-

recursive.
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Note: The text, “it contains a recursive call not in tail position,” is the
Scala error message you’ll see whenever a function tagged with @tailrec

1sn’t really tail-recursive.

So, how do | write a tail-recursive function?

Now that you know the current approach isn’t tail-recursive, the question becomes,
“How do I make it tail-recursive?”

3

A common pattern used to make a recursive function that “accumulates a result

into a tail-recursive function is to follow a series of simple steps:

1. Keep the original function signature the same (i.e., sum’s signature).

2. Create a second function by (a) copying the original function, (b) giving it
a new name, (c) making it private, (d) giving it a new “accumulator” input

parameter, and (e) adding the @tailrec annotation to it.

3. Modify the second function’s algorithm so it uses the new accumulator. (More

on this shortly.)

4. (Call the second function from inside the first function. When you do this you
give the second function’s accumulator parameter a “seed” value (a little like

the identity value I wrote about in the previous lessons).

Let’s jump into an example to see how this works.

Example: How to make sum tail-recursive

1) Leave the original function signature the same

To begin the process of converting the recursive sum function into a tau/-recursive sum

algorithm, leave the external signature of sum the same as it was before:

def sum(list: List[Int]): Int = ...
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Now create the second function by copying the first function, giving it a new name,
marking it private, giving it a new “accumulator” parameter, and adding the @tail-
rec annotation to it. The highlights in Figure 39.2 show the changes.

// note: this code won't compile yet

@tailrec

private def sumWithAccumulator{list: List[Intl, accumulator: Int): Int = list match {
case Nil == @
case ¥ ! X5 == ¥ + sum{xs)

Figure 39.2: Starting to create the second function.

This code won’t compile as shown, so I'll fix that next.

Before moving on, notice that the data type for the accumulator (Int)is
the same as the data type held in the List that we’re iterating over.

3) Modify the second function’s algorithm

The third step is to modify the algorithm of the newly-created function to use the
accumulator parameter. The easiest way to explain this is to show the code for the
solution, and then explain the changes. Here’s the source code:

@tailrec
private def sumWithAccumulator(list: List[Int], accumulator: Int): Int = {
list match {
case Nil => accumulator

case x :: Xs => sumWithAccumulator(xs, accumulator + x)

Here’s a description of how that code works:
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I marked it with @tailrec so the compiler can help me by verifying that my
code truly is tail-recursive.

* sumWithAccumulator takes two parameters, list: List[Int], and accumula-
tor: Int.

* The first parameter is the same list that the sum function receives.
* The second parameter is new. It’s the “accumulator” that I mentioned earlier.

e The inside of the sumWithAccumulator function looks similar. It uses the same
match/case approach that the original sum method used.

* Rather than returning 0, the first case statement returns the accumulator value
when the Nil pattern is matched. (More on this shortly.)

* The second case expression is tail-recursive. When this case is matched it im-
mediately calls sumWithAccumulator, passing in the xs (tail) portion of 1list.
What’s different here 1s that the second parameter is the sum of the accumula-
tor and the head of the current list, x.

* Where the original sum method passed itself the tail of xs and then later added
that result to x, this new approach keeps track of the accumulator (total sum)

value as each recursive call 1s made.

The result of this approach is that the “last action” of the sumWithAccumulator func-
tion is this call:

sumWithAccumulator(xs, accumulator + x)

Because this last action really is a call back to the same function, the JVM can opti-

mize this code as Mr. Odersky described earlier.

4) Call the second function from the first function

The fourth step in the process is to modify the original function to call the new

function. Here’s the source code for the new version of sum:

def sum(list: List[Int]): Int = sumWithAccumulator(list, @)
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Here’s a description of how it works:

* The sum function signature is the same as before. It accepts a List[Int] and
returns an Int value.

* The body of sum is just a call to the sumWithAccumulator function. It passes
the original 1ist to that function, and also gives its accumulator parameter an
initial seed value of 0.

Note that this “seed” value 1s the same as the identity value I wrote about in the
previous recursion lessons. In those lessons I noted:

* The identity value for a sum algorithm is 0.
* The identity value for a product algorithm is 1.

* The identity value for a string concatenation algorithm is "".

A few notes about sum

Looking at sum again:
def sum(list: List[Int]): Int = sumWithAccumulator(list, @)

a few key points about it are:

* Other programmers will call sum. It’s the “Public API” portion of the solution.

* It has the same function signature as the previous version of sum. The benefit
of this is that other programmers won’t have to provide the initial seed value.
In fact, they won’t know that the internal algorithm uses a seed value. All

they’ll see 1s sum’s signature:

def sum(list: List[Int]): Int
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A slightly better way to write sum

Tail-recursive algorithms that use accumulators are typically written in the manner
shown, with one exception: Rather than mark the new accumulator function as pri-
vate, most Scala/FP developers like to put that function side the original function

as a way to limit its scope.

When doing this, the thought process 1s, “Don’t expose the scope of
sumWithAccumulator unless you want other functions to call it.”

When you make this change, the final code looks like this:

// tail-recursive solution
def sum(list: List[Int]): Int = {
@tailrec
def sumWithAccumulator(list: List[Int], currentSum: Int): Int = {
list match {
case Nil => currentSum

case x :: Xxs => sumWithAccumulator(xs, currentSum + x)

}
sumWithAccumulator(list, @)

Feel free to use either approach. (Don’t tell anyone, but I prefer the first approach; I

think it reads more easily.)

A note on variable names

If you don’t like the name accumulator for the new parameter, it may help to see the
function with a different name. For a “sum” algorithm a name like runningTotal or

currentSum may be more meaningful:
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// tail-recursive solution
def sum(list: List[Int]): Int = {
@tailrec
def sumWithAccumulator(list: List[Int], currentSum: Int): Int = {
list match {
case Nil => currentSum

case X :: Xxs => sumWithAccumulator(xs, currentSum + x)

}
sumWithAccumulator(list, @)

I encourage you to use whatever name makes sense to you. Personally I prefer cur-
rentSum for this algorithm, but you’ll often hear this approach referred to as using

an “accumulator,” which is why I used that name first.

Of course you can also name the inner function whatever you’d like to

call 1it.

Proving that this is tail-recursive

Now let’s prove that the compiler thinks this code is tail-recursive.

Frst proof

The first proofis already in the code. When you compile this code with the @tailrec
annotation and the compiler doesn’t complain, you know that the compiler believes

the code 1s tail-recursive.
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Second proof

If for some reason you don’t believe the compiler, a second way to prove this is to
add some debug code to the new sum function, just like we did in the previous lessons.
Here’s the source code for a full Scala App that shows this approach:

import scala.annotation.tailrec
object SumTailRecursive extends App {

// call sum
println(sum(List.range(1, 10)))

// the tail-recursive version of sum
def sum(list: List[Int]): Int = {
@tailrec
def sumWithAccumulator(list: List[Int], currentSum: Int): Int = {
list match {
case Nil => {
val stackTraceAsArray = Thread.currentThread.getStackTrace
stackTraceAsArray.foreach(println)
currentSum

}

case X :: xs => sumWithAccumulator(xs, currentSum + Xx)

ks
sumWithAccumulator(list, @)

Note: You can find this code at this Github link. This code includes a
few Scala'Test tests, including one test with a List of 100,000 integers.


https://github.com/alvinj/TailRecursiveSum
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When I compile that code with scalac:
$ scalac SumTailRecursive.scala
and then run it like this:

$ scala SumTailRecursive

I get a lot of output, but if I narrow that output down to just the sum-related code, I

see this:

[info] Running recursion.TailRecursiveSum
java.lang.Thread.getStackTrace(Thread. java:1552)
recursion.TailRecursiveSum$.sumWithAccumulator$1(TailRecursiveSum.scala:16)
recursion.TailRecursiveSum$.sum(TailRecursiveSum.scala:23)
//

// lots of other stuff here ...

//

scala.App$class.main(App.scala:76)
recursion.TailRecursiveSum$.main(TailRecursiveSum.scala:5)
recursion.TailRecursiveSum.main(TailRecursiveSum.scala)

45

As you can see, although the List in the code has 10 elements, there’s only one call
to sum, and more importantly in this case, only one call to sumAccumulator. You can
now safely call sum with a list that has 10,000 elements, 100,000 elements, etc., and
it will work just fine without blowing the stack. (Go ahead and test it!)

Note: The upper limit of a Scala Intis 2,147,483,647, so at some point
you’ll create a number that’s too large for that. Fortunately a Long goes to
2°63-1 (which 15 9,223,372,036,854,775,807), so that problem is easily
remedied. (If that’s not big enough, use a BigInt.)
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Summary

In this lesson I:

e Defined tail recursion
e Introduced the @tailrec annotation
e Showed how to write a tail-recursive function

* Showed a formula you can use to convert a simple recursive function to a

tail-recursive function

What's next

This lesson covered the basics of converting a simple recursive function into a tail-
recursive function. I'm usually not smart enough to write a tail-recursive function
right away, so I usually write my algorithms using simple recursion, then convert
them to use tail-recursion.

To help in your efforts, the next lesson will show more examples of tail-recursive for
different types of algorithms.

See also

* My list of Scala recursion examples

* Martin Odersky explaining tail recursion on Stack Overflow


http://alvinalexander.com/scala/scala-recursion-examples-recursive-programming
http://stackoverflow.com/questions/12496959/summing-values-in-a-list

A First Look at “State”

In the next lesson I'm going to start writing a little command-line game, but before
I get into that I want to discuss the general concept of handling “state” in software

applications.

Every non-trivial application maintains some sort of state. For instance, the state of a
word processing application is the current document, along with whether the docu-
ment has been saved or not (whether the document is “clean” or “dirty”). Similarly,
the state of a spreadsheet application is the spreadsheet and its clean/dirty state. Web
versions of these applications have additional state, such as who the current user is,
when they logged in, what their IP address is, etc.

Even voice applications like Siri and Amazon Echo have state. AsIlearned in writing
SARAH, one thing you need to do is to maintain speaking/listening state, otherwise
the computer will hear itself talking, then respond to itself, eventually kicking off an
endless loop.

Sirt and others are also gaining a concept that I call context, or the “context of a
conversation,” which also requires state management. Imagine asking Siri to order
a pizza. It will respond by asking what toppings you want, where you want to order

the pizza from, how you want to pay, etc. This is “conversational state.”

Handling state in a game

In my spare time I work on developing an Android football game where I play against
a computer opponent. If you know American Football (as opposed to what we Amer-
icans call “soccer”), in between each play you can think of the state of a football game
as having these attributes:

* Which team has the ball (you are on offense or defense)
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* Current field position
* Down and distance (such as “Ist and 107)
* Current score

* Time remaining

There are more state variables than this, but I'm keeping this example

simple.

In Scala you might model this game state like this:

case class GameState (
iHaveTheBall: Boolean,
fieldPosition: Int,
down: Int,
distance: Int,
myScore: Int,
computerScore: Int,

timeRemaining: Int

On the first play of the game the initial state might look like this:

GameState (
iHaveTheBall: true,
fieldPosition: 25,
down: 1,
distance: 10,
myScore: 0,
computerScore: 0,

timeRemaining: 3600

Then, after the next play the state might look like this:
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GameState (
iHaveTheBall: true,
fieldPosition: 29,
down: 2,
distance: 0o,
myScore: 0,
computerScore: 0,

timeRemaining: 3536

A football game typically has about 150 plays, so in my game there is a GameState
instance for each of those plays.

Why state 1s important

State is important for many reasons, not the least of which 1s to know when the game
is over and who won. An important part about state in my football game is that I

use it to help the computer make decisions about what plays it calls.
When the computer 1s playing on offense is uses a function that looks like this:

val possiblePlays: List[OffensivePlay] =

OffensiveCoordinator.determinePossiblePlays(gameState)

The determinePossiblePlays function is a pure function. I pass GameState into it,
and with thousands of lines of purely functional code behind it, it returns a list of
all the possible plays that the algorithms believe make sense for the state that was

passed in.

For instance, if it’s fourth down and goal at the opponent’s one-yard line with five
seconds left in the game and the computer is down 21-17, it’s smart enough to know
that it needs to try to score a touchdown rather than kick a field goal. This is what I
mean by “state” in the context of a football game.
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As the game gets smarter [ also maintain a history of all previously-called
plays, so the computer can adjust its play calls based on the player’s
tendencies.

More state

As you can imagine, a point of sales application for a pizza store will have state that

includes:

* The number and types of pizzas ordered
 Customer contact information
 Customer payment information

* The date and time of the order

Who took the order

* More ...

Once you begin to think about it this way, you’ll see that every application maintains
state of some sort.

State and functional programming

As I mentioned, my football game has about 150 GameState instances for every game.
In the context of functional programming, this raises an interesting question: In
Scala/FP I can only have val instances, so how can I possibly create 150 new vari-
ables for each game? Put another wayj, if you assume that I keep all of the plays in a
List, the question becomes, “How do I append GameState values to an immutable
List?”

Questions like this bring you to a key point I got to when I was learning FP:

* How am I supposed to handle I/O, which by its very nature is impure?

* How am I supposed to handle state?

In the next lesson I'll show one way to handle state in a simple game by building on

what you just learned in the previous lessons: recursion.



A Functional Game (With a Little Bit of State)

Introduction

Now that I've given you a little background about what I think “state” is, let’s build
a simple game that requires us to use state. I'll build the game using recursion, and
also tmmutable state— something I had never heard of when I first starting writing the
Scala Cookbook.

Goals

Here are my goals for this lesson:

* To write our first functional application

* Show a first example of how to handle “state” in a Scala/FP application

Source code

The best way to understand this lesson is to have its source code open in an IDE as
you read it. The source code is available at this Github URL:

* My “Coin Flip” game
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Some of this project’s code 1s a little wide and won’t show up well in a PDF format.
You'll really want to check the code out of Github to see it properly.

Coin Flip: A simple FP game

To get started using state in a Scala application, I’ll build a little game you can play
at the command line. The application will flip a coin (a virtual coin), and as the
player, your goal is to guess whether the result is heads or tails. The computer will
keep track of the total number of flips and the number of correct guesses.

When you start the game, you’ll see this command-line prompt:

(h)eads, (t)ails, or (qQuit: _

This is how the application prompts you for your guess. Enter h for heads, t for tails,
or q to quit the game. If you enter h or t, the application will flip a virtual coin, then

let you know if your guess was correct or not.

As an example of how it works, I just played the game and made four guesses, and
the input/output of that session looks like this:

(h)eads, (t)ails, or (qluit: h
Flip was Heads. #Flips: 1, #Correct: 1

(h)eads, (t)ails, or (qiuit: h
Flip was Tails. #Flips: 2, #Correct: 1

(h)eads, (t)ails, or (qluit: h
Flip was Heads. #Flips: 3, #Correct: 2

(h)eads, (t)ails, or (qluit: t
Flip was Tails. #Flips: 4, #Correct: 3

(h)eads, (t)ails, or (quit: g

=== GAME OVER ===



371

#Flips: 4, #Correct: 3

Admittedly this isn’t the most exciting game in the world, but it turns out to be a nice
way to learn how to handle immutable state in a Scala/FP application.

One note before proceeding: The input/output in this game will zot be handled in

a functional way. I'll get to that in a future lesson.

On to the game!

Coin Flip game state

Let’s analyze how this game works:

* The computer is going to flip a virtual coin.
* You’re going to guess whether that result is heads or tails.

* You can play the game for as many flips as you want.

After each flip the output will look like this:
Flip was Tails. #Flips: 4, #Correct: 2

These statements tell us a few things about the game state:

* We need to track how many coin flips there are.

* We need to track how many guesses the player made correctly.

I could track more information, such as the history of the guess for each coin flip
and the actual value, but to keep it simple, all I want to do at this time is to track (a)
the number of flips, and (b) the number of correct guesses. As a result, a first stab at
modeling the game state looks like this:

case class GameState (
numFlips: Int,

numCorrectGuesses: Int
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Game pseudocode
Next, let’s start working on the game code.

You know you’re going to need some sort of main loop, and in the imperative world,
pseudocode for that loop looks like this:

nn

var input =
while (input != "g") {
// prompt the player to select heads, tails, or quit
// get the player's input
if (input == "q") {
print the game summary
quit
ks
// flip the coin
// see if the player guessed correctly
// print the #flips and #correct

/O functions

Alas, that’s not how I'll write the loop, but it does give me an idea of some 1/0
functions I'm going to need. From that pseudocode it looks like I'm going to need
these functions:

* A “show prompt” function
* A “get user input” function

* A function to print the number of flips and correct answers

These functions have nothing to do with FP — they’re impure I/0O functions that
connect our application to the outside world — so I'll write them in a standard

Scala/OOP way. Here’s the “show prompt” function:

def showPrompt: Unit = { print("\nCh)eads, (t)ails, or (quit: ") }
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Next, here’s the “get user input” function:
def getUserInput = readlLine.trim.toUpperCase

Prior to Scala 2.11.0, readLine was made available to you without an import state-
ment via Scala’s Predef object, but since then it’s available at scala.0.StdIn.readLine.

Notice that I convert all input to uppercase to make it easier to work with later.
Next, while the game is being played I want to print output like this:

Flip was Tails. #Flips: 4, #Correct: 3

and when the game is over I want to print this output:

=== GAME OVER ===
#Flips: 4, #Correct: 3

To accommodate these needs I create these functions:

def printableFlipResult(flip: String) = flip match {
case "H" => "Heads"

case "T" => "Tails"

def printGameState(printableResult: String, gameState: GameState): Unit = {
print(s"Flip was $printableResult. ")
printGameState(gameState)

def printGameState(gameState: GameState): Unit = {
println(s"#Flips: ${gameState.numFlips}, #Correct: ${gameState.numCorrect}™)
def printGameOver: Unit = println("\n=== GAME OVER ===")

Note that the printGameState functions take the GameState as an input parameter,
and use its fields to print the output. The assumption is that these functions always
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receive the latest, up-to-date GameState instance.

If you know Scala, that’s all fairly standard “print this out” and “read this in” code.

Declaring the Unit return type

Note that in these examples I use : Unit = syntax on the functions that have no
return type. Methods that have a Unit return type are called procedures, and the
Procedure Syntax in the Scala Style Guide recommends declaring the Unit return

type, so I've shown it here.

Writing a toin coss function
When you look back at this piece of the original pseudocode:
// flip the coin

you’ll see that one more thing I can get out of the way before writing the main loop

1s a function to simulate a coin toss.

A simple way to simulate a toin coss is to use a random number generator and limit
bbl

the generator to return values of @ and 1, where @ means “heads” and 1 mean “tails.
This 1s how you limit Scala’s Random.nextInt method to yield only @ or 1:

val r = new scala.util.Random
r.nextInt(2)

The r.nextInt(2) code tells nextInt to return integer values that are less than 2, i.e.,
0 and 1.

Knowing that, I can write a coin flip function like this:


http://docs.scala-lang.org/style/declarations.html
http://docs.scala-lang.org/style/declarations.html
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// returns "H" for heads, "T" for tails
def tossCoin(r: Random) = {
val i = r.nextInt(2)
i match {
case @ => "H"

case 1 => "T"

Question: Do you think this is a pure function? If so, why do you think
so, and if not, why not?

With these functions out of the way, let’s get to the main part of the lesson: how to

write the main loop of the program with an immutable game state.

Writing the main loop in FP style

So now we need a “loop” ... how can we write one in an FP style? Using the tools

we know so far, the best way to handle this is with our new friend, recursion.

Because you may have never done this before, let me add a few important notes:

* With recursion the main loop is going to call itself repeatedly (recursively)

* Because the game state needs to be updated as the game goes along, a GameS-

tate instance needs to be passed into each recursive call

* Because each instance of the loop will simulate the flip of a coin, and because
the tossCoin function requires a scala.util.Random instance, it’s also best to

pass a Random instance into each recursive call as well

Given that background, I can start writing some code. First, here’s the GameState I
showed earlier:
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case class GameState (
numFlips: Int,

numCorrectGuesses: Int

Next, I know I'm going to need (a) a Scala App, (b) initial GameState and Random
instances, and (c) some sort of mainLoop call to get things started. I also know that
mainLoop will take the GameState and Random instances, which leads me to this code:

object CoinFlip extends App {
val s = GameState(0, 0)

val r = new Random

mainLoop(s, r)

Next, I can sketch the mainLoop function like this:

@tailrec

def mainLoop(gameState: GameState, random: Random) {
// a) prompt the user for input
// b) get the user's input
// ¢) flip the coin
// d) compare the flip result to the user's input
// e) write the output
// f) if the user didn't type 'h', loop again:

mainLoop(newGameState, random)

If'you feel like you understand what I've sketched in this mainLoop code, I encourage
you to set this book aside and work on filling out mainLoop’s body on your own, using
(a) the IO functions I showed earlier and (b) any other code you might need. That’s
all that needs to be done now: fill out the body, and figure out where the recursive
mainLoop call (or calls) need to be made.
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Writing the skeleton code

The next thing I did to solve this problem was to stub out the following skeleton
code:

object CoinFlip extends App {
Random

GameState(0, @)
mainLoop(s, r)

val r

val s

@tailrec

def mainLoop(gameState: GameState, random: Random) {

// a) prompt the user for input
showPrompt()

// b) get the user's input
val userInput = getUserInput()

userInput match {
case "H" | "T" => {
// ¢) flip the coin
val coinTossResult = tossCoin(random)

val newNumFlips = gameState.numFlips + 1

// d) compare the flip result to the user's input
if CuserInput == coinTossResult) {
// they guessed right
// e) write the output
// f) if the user didn't type 'h', loop again:
mainLoop(newGameState, random)
} else {
// they guessed wrong
// e) write the output
// f) if the user didn't type 'h', loop again:
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mainLoop(newGameState, random)

ks
}
case _ = {
// assume they type 'Q'
println("\n=== GAME OVER ===")
printGameState(gameState)
// we return out of the recursion here
}

That code 1s slightly different than my pseudocode, but it’s in the ballpark.

Now all I need to do is finish off the ‘e’ and ‘t” portions of the algorithm. I’ll show
those sections in the completed code that follows.

The complete source code
The following source code shows the first cut of my solution for this application.

First, I put all of my “utility” functions in a separate object named CoinFlipUtils,
in a file named ComFlip Utils.scala:

package com.alvinalexander.coinflip.vl

import scala.util.Random

import scala.io.StdIn.readlLine
object CoinFlipUtils {
def showPrompt(): Unit = { print("\nCh)eads, (t)ails, or (quit: ") }

def getUserInput(): String = readlLine.trim.toUpperCase
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def printableFlipResult(flip: String): String = flip match {
case "H" => "Heads"

case "T" => "Tails"

def printGameState(printableFlipResult: String, gameState: GameState): Unit = {
print(s"Flip was $printableFlipResult. ")
printGameState(gameState)

def printGameState(gameState: GameState): Unit = {
println(s"#Flips: ${gameState.numFlips}, #Correct: ${gameState.numCorrect}™)

ks
def printGameOver(): Unit = println("\n=== GAME OVER ===")

// returns "H" for heads, "T" for tails
def tossCoin(r: Random): String = {
val i = r.nextInt(2)
1 match {
case @ => "H"

case 1 => "T"

I did that to keep the code organized, and also to keep my next file smaller. Here’s
the source code for ConFlip.scala, which primarily consists of the mainLoop:

package com.alvinalexander.coinflip.vl

import CoinFlipUtils._
import scala.annotation.tailrec

import scala.util.Random



380 A Functional Game (With a Laittle But of State)

case class GameState(numFlips: Int, numCorrect: Int)
object CoinFlip extends App {
Random

GameState(Q, 0)

mainLoop(s, r)

val r

val s

@tailrec
def mainLoop(gameState: GameState, random: Random) {

showPrompt()
val userInput = getUserInput()

// handle the result
userInput match {
case "H" | "T" => {
val coinTossResult = tossCoin(random)
val newNumFlips = gameState.numFlips + 1
if (userInput == coinTossResult) {
val newNumCorrect = gameState.numCorrect + 1
val newGameState = gameState.copy(numFlips = newNumFlips, numCorrect = newN
printGameState(printableFlipResult(coinTossResult), newGameState)
mainLoop(newGameState, random)
} else {
val newGameState = gameState.copy(numFlips = newNumFlips)
printGameState(printableFlipResult(coinTossResult), newGameState)
mainLoop(newGameState, random)

}

case _ = {
printGameOver()
printGameState(gameState)
// return out of the recursion here
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There are a few ways to shorten and refactor that code, but it gives you an idea of
what needs to be done for this game.

When the user’s guess is correct

Note that when the user’s guess matches the coin flip, I use this code:

val newNumCorrect = gameState.numCorrect + 1
val newGameState = gameState. copy(numFlips = newNumFlips, numCorrect = newNumCorrect’
printGameState(printableFlipResult(coinTossResult), newGameState)

mainLoop(newGameState, random)

The key here is that when the user’s guess is correct I need to create a new GameState
and pass that new instance into the next mainLoop call. I show that code in a long

form, but I can remove the newNumCorrect temporary variable:

val newGameState = gameState.copy(
numFlips = newNumFlips,
numCorrect = gameState.numCorrect + 1
D)
printGameState(printableFlipResult(coinTossResult), newGameState)

mainLoop(newGameState, random)

When the user’s guess is incorrect

In the case where the user’s guess is incorrect, I only need to update numFlips when

creating a new GameState instance, so that block of code looks like this:
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val newGameState = gameState.copy(numFlips = newNumFlips)
printGameState(printableFlipResult(coinTossResult), newGameState)

mainLoop(newGameState, random)

When the user wants to quit the game

In the case where the user enters anything other than H or T, I assume they want to

quit the game, so I call these procedures:

printGameOver()
printGameState(gameState)

At this point I don’t call mainLoop any more, so the recursion ends, all of the recursive

calls unwind, and the game ends.

Summary

At the beginning of this lesson I noted that the goals for this lesson were:

* To write our first functional application

* Show a first example of how to handle “state” in an FP application

A few important parts about this lesson that you may not have seen before in tradi-

tional imperative code are:

* The use of an explicit GameState variable
* Using recursion as a way of looping

e The recursion let us define the GameState instance as an immutable val field

I’ll come back to this example later in this book and show another way to handle the
“main loop” without using recursion, but given what I’'ve shown so far, recursion is

the only way to write this code using only val fields.
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Exercises

1. Modify the game so you can play a new game by pressing ‘n’

2. After adding the ability to play a new game, modify the program to keep a
history of all previously-played games

See also

* The Procedure Syntax section of the Scala Style Guide
» A bug entry about deprecating the Procedure syntax

* How to prompt users for input from Scala shell scripts tutorial


http://docs.scala-lang.org/style/declarations.html
https://issues.scala-lang.org/browse/SI-7605
http://alvinalexander.com/scala/scala-shell-scripts-how-prompt-users-input-read
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A Quick Review of Case Classes

Programming in Scala

Goals

In this book I generally assume that you know the basics of the Scala programming
language, but because case classes are so important to_functional programmaing in Scala
it’s worth a quick review of what case classes are — the features they provide, and

the benefits of those features.

Discussion

As opposed to a “regular” Scala class, a case class generates a lot of code for you,
with the following benefits:

* An apply method is generated, so you don’t need to use the new keyword to

create a new instance of the class.

* Accessor methods are generated for each constructor parameter, because case

class constructor parameters are public val fields by default.

* (You won’t use var fields in this book, but if you did, mutator methods would

also be generated for constructor parameters declared as var.)

* An unapply method is generated, which makes it easy to use case classes in
match expressions. This is huge for Scala/FP.
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* Asyou’ll see in the next lesson, a copy method is generated. I never use this in
Scala/OOP code, you’ll use it all the time in Scala/FP.

* equals and hashCode methods are generated, which lets you compare objects
and easily use them as keys in maps (and sets).

* A default toString method is generated, which is helpful for debugging.

A quick demo

To demonstrate how case classes work, here are a few examples that show each of
these features and benefits in action.

No need for new

When you define a class as a case class, you don’t have to use the new keyword to

create a new 1nstance:

scala> case class Person(name: String, relation: String)

defined class Person

// "new" not needed before Person
scala> val christina = Person("Christina", "niece™)

christina: Person = Person(Christina,niece)

This is a nice convenience when writing Scala/OOP code, but it’s a lernific feature

when writing Scala/FP code, as you’'ll see throughout this book.

No mutator methods

Case class constructor parameters are val by default, so an accessor method 1s gener-

ated for each parameter, but mutator methods are not generated:
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scala> christina.name

res@: String = Christina

// can't mutate the “name’ field
scala> christina.name = "Fred"
<console>:10: error: reassignment to val

christina.name = "Fred"
A

unapply method

Because an unapply method is automatically created for a case class, it works well

when you need to extract information in match expressions, as shown here:

scala> christina match { case Person(n, r) => println(n, r) }

(Christina,niece)

Conversely, if you try to use a regular Scala class in a match expression like this, you’ll

quickly see that it won’t compile.

You’'ll see many more uses of case classes with match expressions in this book because
pattern macthing is a BIG feature of Scala/FP.

A class that defines an unapply method is called an extractor, and unapply
methods enable match/case expressions. (I write more on this later in
this book.)

copy method

A case class also has a built-in copy method that is extremely helpful when you need

to clone an object and change one or more of the fields during the cloning process:
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scala> case class BaseballTeam(name: String, lastWorldSeriesWin: Int)

defined class BaseballTeam

scala> val cubs1908 = BaseballTeam("Chicago Cubs", 1908)
cubs1908: BaseballTeam = BaseballTeam(Chicago Cubs,1908)

scala> val cubs2016 = cubs1908.copy(lastWorldSeriesWin = 2016)
cubs2016: BaseballTeam = BaseballTeam(Chicago Cubs,2016)

I refer to this process as “update as you copy,” and this is such a big Scala/FP feature
that I cover it in depth in the next lesson.

equals and hashCode methods

Case classes also have generated equals and hashCode methods, so instances can be

compared:

scala> val hannah = Person("Hannah", "niece")

hannah: Person = Person(Hannah,niece)

scala> christina == hannah

resl: Boolean = false

These methods also let you easily use your objects in collections like sets and maps.

toString methods

Finally, case classes also have a good default toString method implementation,
which at the very least is helpful when debugging code:

scala> christina

res@: Person = Person(Christina,niece)
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Looking at the code generated by case classes

You can see the code that Scala case classes generate for you. To do this, first compile

a simple case class, then disassemble the resulting .class files with javap.
For example, put this code in a file named Person.scala:

// note the “var® qualifiers

case class Person(var name: String, var age: Int)
Then compile it:
$ scalac Person.scala

scalac creates two JVM class files, Person.class and Person§.class. Disassemble Per-

son.class with this command:
$ javap Person

With a few comments that I added, this command results in the following output,
which is the public signature of the class:

Compiled from "Person.scala"
public class Person extends java.lang.Object implements scala.ScalaObject,scala.Proc
public static final scala.Functionl tupled();
public static final scala.Functionl curry();
public static final scala.Functionl curried();
public scala.collection.Iterator productIterator();

public scala.collection.Iterator productElements();

public java.lang.String name(); # getter
public void name_%$eq(java.lang.String); # setter
public int age(Q); # getter
public void age_$eq(int); # setter

public Person copy(java.lang.String, int);
public int copy$default$2();

public java.lang.String copy$default$1Q);
public int hashCode();
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public java.lang.String toString(Q);

public boolean equals(java.lang.0Object);
public java.lang.String productPrefix();
public int productArity();

public java.lang.Object productElement(int);
public boolean canEqual(java.lang.0Object);

public Person(java.lang.String, int);

Next, disassemble Person$.class:
$ javap Person$

Compiled from "Person.scala"
public final class Person$ extends scala.runtime.AbstractFunction2 [
implements scala.ScalaObject,scala.Serializable{

public static final Person$ MODULES$;

public static {%};

public final java.lang.String toString();

public scala.Option unapply(Person);

public Person apply(java.lang.String, int);

public java.lang.Object readResolve();

public java.lang.Object apply(java.lang.Object, java.lang.Object);

As javap shows, Scala generates a /ot of source code when you declare a class as a
case class, including getter and setter methods, and the methods I mentioned: copy,

hashCode, equals, toString, unapply, apply, and many more.

As you see, case classes have even more methods, including tupled,
curry, curried, etc. I discuss these other methods in this book as the

need arises.



391

Case class compared to a “regular™ class

As a point of comparison, if you remove the keyword case from that code — making
it a “regular” Scala class — then compile it and disassemble it, you’ll see that Scala

only generates the following code:

public class Person extends java.lang.Object{
public java.lang.String name();
public void name_$eq(java.lang.String);
public int age(Q);
public void age_%$eq(int);

public Person(java.lang.String, int);

As you can see, that’s a BIG difference. The case class results in 22 more methods
than the “regular” class. In Scala/OOP those extra fields are a nice convenience,
but as you'll see in this book, these methods enable many essential FP features in
Scala.

Summary

In this lesson I showed that the following methods are automatically created when
you declare a class as a case class:

* apply

* unapply

* accessor methods are created for each constructor parameter
* copy

* equals and hashCode

* toString

These built-in methods make case classes easier to use in a functional programming
style.
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What's next

I thought it was worth this quick review of Scala case classes because the next thing
we’re going to do is dive into the case class copy method. Because you don’t mutate
objects in FP, you need to do something else to create updated instances of objects

when things change, and the way you do this in Scala/FP is with the copy method.

See also

 Extractor objects in Scala

* Daniel Westheide has a good article on extractors


http://www.scala-lang.org/old/node/112
http://danielwestheide.com/blog/2012/11/21/the-neophytes-guide-to-scala-part-1-extractors.html

Update as You Copy, Don’t Mutate

Goals

In functional programming you don’t modify (mutate) existing objects, you create
new objects with updated fields based on existing objects. For instance, last year
my niece’s name was “Emily Means,” so I could have created a Person instance to

represent her, like this:
val emily = Person("Emily", "Means™)

Then she got married, and her last name became “Walls.” In an imperative pro-

gramming language you would just change her last name, like this:
emily.setLastName("Walls™)

But in FP you don’t do this, you don’t mutate existing objects. Instead, what you do
is (a) you copy the existing object to a new object, and (b) during the copy process
you update any fields you want to change by supplying their new values.

The way you do this in Scala/FP is with the copy method that comes with the Scala
case class. This lesson shows a few examples of how to use copy, including how to use

it with nested objects.
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Source code

So you can follow along, the source code for this lesson is available at
github.com/alvinj/FpUpdateAsYouCopy

Basic copy

When you’re working with a simple object it’s easy to use copy. Given a case class
like this:

case class Person (firstName: String, lastName: String)
if you want to update a person’s last name, you just “update as you copy,” like this:

val emilyl = Person("Emily", "Means™)

val emily2 = emilyl.copy(lastName = "Walls")

As shown, in simple situations like this all you have to do to use copy is:

* Make sure your class is a case class.
 Create an initial object (emily1), as usual.

* When a field in that object needs to be updated, use copy to create a new
object (emily2) from the original object, and specify the name of the field to
be changed, along with its new value.

When you’re updating one field, that’s all you have to do.

That’s also all you have to do to update multiple fields, as I’ll show shortly.

1 he original instance is unchanged

An important point to note about this is that the first instance remains unchanged.
You can verify that by running a little App like this:


https://github.com/alvinj/FpUpdateAsYouCopy
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object CopyTestl extends App {

println("--- Before Copy ---")
val emilyl = Person("Emily", "Means™)

println(s"emilyl = $emilyl")

// emily got married

println("\n--- After Copy ---")

val emily2 = emilyl.copy(lastName = "Walls")
println(s"emilyl = $emilyl")
println(s"emily2 = $emily2™)

The output of CopyTest1 looks as follows, showing that the original emilyl instance
1s unchanged after the copy:

--- Before Copy ---
emilyl = Person(Emily,Means)

--- After Copy ---
emilyl = Person(Emily,Means)

emily2 = Person(Emily,Walls)

What happens in practice is that you discard the original object, so thinking about
the old instance isn’t typically an issue; I just want to mention it. (You’ll see more

examples of how this works as we go along.)

In practice you also won’t use intermediate variables with names like
emilyl, emily2, etc. We just need to do that now, until we learn a few

more things.

Updating several attributes at once

It’s also easy to update multiple fields at one time using copy. For instance, had
Person been defined like this:
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case class Person (
firstName: String,
lastName: String,
age: Int
you could create an instance like this:
val emilyl = Person("Emily", "Means", 25)

and then create a new instance by updating several parameters at once, like this:

// emily is married, and a year older

val emily2 = emilyl.copy(lastName = "Walls", age = 26)

That’s all you have to do to update two or more fields in a simple case class.

Copying nested objects

As shown, using copy with simple case classes is straightforward. But when a case
class contains other case classes, and those contain more case classes, things get

more complicated and the required code gets more verbose.
For instance, let’s say that you have a case class hierarchy like this:

case class BillingInfo(
creditCards: Seq[CreditCard]

case class Name(
firstName: String,
mi: String,

lastName: String

case class User(
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id: Int,

name: Name,

billingInfo: BillingInfo,
phone: String,

email: String

case class CreditCard(
name: Name,
number: String,
month: Int,
year: Int,

cvv: String

Visually the relationship between these classes looks like Figure 43.1.

Notice a few things about this code:

* User has fields of type Name and BillingInfo

* CreditCard also has a field of the Name type

Despite a little complexity, creating an initial instance of User with this hierarchy is

straightforward:
object NestedCopyl extends App {

val hannahsName = Name(

firstName = "Hannah",
m_i- — IICII’
lastName = "Jones"

// create a user
val hannahl = User(
id = 1,
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User
id: Int
phone: S5tring
email: S5tring
=  billingInfo: BillingInfo
name: MName

BillingInfo

creditCards: Seq[CreditCard]

Fa

CreditCard
name: Mame
number: String

month: Int
year: Int
cwv: String

19

MName

firstMame: String
mi: 5tring
lastMame: String

Figure 43.1: The visual relationship between the classes
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name = hannahsName,
phone = "907-555-1212",
email = "hannah@hannahjones.com",
billingInfo = BillingInfo(
creditCards = Seq(
CreditCard(
name = hannahsName,
number = "1111111111111111",

month = 3,
year = 2020,
cvw = "123"

So far, so good. Now let’s take a look at what you have to do when a few of the fields
need to be updated.

Updating the phone number

First, let’s suppose that Hannah moves. I kept the address out of the model to keep
things relatively simple, but let’s suppose that her phone number needs to be updated.
Because the phone number is stored as a top-level field in User, this is a simple copy

operation:

// hannah moved, update the phone number
val hannah2 = hannahl.copy(phone = "720-555-1212")
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Updating the last name

Next, suppose that a little while later Hannah gets married and we need to update
her last name. In this case you need to reach down into the Name instance of the
User object and update the lastName field. I’ll do this in a two-step process to keep

it clear.
First, create a copy of the name field, changing lastName during the copy process:

// hannah got married, update her last name

val newName = hannah2.name.copy(lastName = "Smith")
If you print newName at this point, you’ll see that it is “Hannah C Smith.”

Now that you have this newName instance, the second step is to create a new “Hannah”
instance with this new Name. You do that by (a) calling copy on the hannah? instance to
make a new hannah3 instance, and (b) within copy you bind the name field to newName:

val hannah3 = hannah2.copy(name = newName)

Updating the credit card

Suppose you also need to update the “Hannah” instance with new credit card infor-
mation. To do this you follow the same pattern as before. First, you create a new
CreditCard instance from the existing instance. Because the creditCards field inside
the billingInfo instance is a Seq, you need to reference the first credit card instance

while making the copy. That is, you reference creditCards(0):

val oldCC

val newCC

hannah3.billingInfo.creditCards(@)

oldCC. copy(name = newName)

Because (a) BillingInfo takes a Seq[CreditCard], and (b) there’s only one credit
card, I make a new Seq[CreditCard] like this:
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val newCCs = Seq(newC(C)

With this new Seq[CreditCard] I create a new “Hannah” instance by copying han-
nah3 to hannah4, updating the BillingInfo during the copy process:

val hannah4 = hannah3.copy(billingInfo = BillingInfo(newCCs))

Put together, those lines of code look like this:

val oldCC hannah3.billingInfo.creditCards(0)

val newCC = oldCC.copy(name = newName)

val newCCs = Seq(newCC)

val hannah4 = hannah3.copy(billingInfo = BillingInfo(newCCs))

You can shorten that code if you want, but I show the individual steps so it’s easier
to read.

These examples show how the “update as you copy” process works with nested ob-
jects in Scala/FP. (More on this after the attribution.)

Attribution

The examples I just showed are a simplification of the code and description found
at these URLs:

e The “kofhio-lenses” example on GitHub
* The KOFFio “Lens in Scala” tutorial

Lenses

As you saw, the “update as you copy” technique gets more complicated when you
deal with real-world, nested objects, and the deeper the nesting gets, the more com-
plicated the problem becomes. But fear not: there are Scala/FP libraries that make

this easier. The general idea of these libraries is known as a “lens” (or “lenses”), and


https://github.com/coffius/koffio-lenses
http://koff.io/posts/292173-lens-in-scala/
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they make copying nested objects much simpler. I cover lenses in a lesson later in
this book.

Summary

Here’s a summary of what I just covered:

* Because functional programmers don’t mutate objects, when an object needs
to be updated it’s necessary to follow a pattern which I describe as “update as
you copy’.

* The way you do this in Scala 1s with the copy method, which comes with Scala

case classes.

* As you can imagine, from here on out you’re going to be using case classes
more than you’ll use the default Scala class. The copy method is just one
reason for this, but it’s a good reason. (You’ll see even more reasons to use

case classes as you go along;,)

What's Next

As mentioned, I write about lenses later in the book, when we get to a point where

we have to “update as you copy” complicated objects.

But for now the next thing we need to dig into is for comprehensions. Once I cover
those, you’ll be close to being able to write small, simple, functional applications with
everything I've covered so far.

See Also

* The source code for this lesson is available at at this Github repository

 Alessandro Lacava has some notes about case classes, including a little about

copy, currying, and arity
* The “kothio-lenses” example on GitHub
The KOFFio “Lens in Scala” tutorial


https://github.com/alvinj/FpUpdateAsYouCopy
http://www.alessandrolacava.com/blog/scala-case-classes-in-depth/
https://github.com/coffius/koffio-lenses
http://koff.io/posts/292173-lens-in-scala/

A Quick Review of for Expressions

This lesson 1s not included in the free preview.
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How to Write a Class That Can Be Used in a

for Expression

This lesson is not included in the free preview.

405



406 How to White a Class That Can Be Used in a for Expression



Creating a Sequence Class to be Used
in a for Comprehension

This lesson is not included in the free preview.
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Making Sequence Work in a Simple for Loop

This lesson 1s not included in the free preview.
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How To Make Sequence Work as a
Single Generator in a for Expression

This lesson is not included in the free preview.
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Enabling Filtering in a for Expression

This lesson 1s not included in the free preview.
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How to Enable the Use of Multiple Generators
in a for Expression

This lesson is not included in the free preview.
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A Summary of the for Expression Lessons

This lesson 1s not included in the free preview.
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Pure Functions Tell No Lies

This lesson 1s not included in the free preview.
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Functional Error Handling
(Option, Try, or Either)

This lesson is not included in the free preview.
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