alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Android example source code file (Matrix.java)

This example Android source code file (Matrix.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Android by Example" TM.

Java - Android tags/keywords

affinetransform, arrayindexoutofboundsexception, awt, call, forbidden, geometry, matrix, needed, override, parent, rectf, scaletofit, stub, suppresswarnings, to, unsupportedoperationexception

The Matrix.java Android example source code

/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.graphics;

import java.awt.geom.AffineTransform;
import java.awt.geom.NoninvertibleTransformException;


/**
 * A matrix implementation overridden by the LayoutLib bridge.
 */
public class Matrix extends _Original_Matrix {

    float mValues[] = new float[9];

    /**
     * Create an identity matrix
     */
    public Matrix() {
        reset();
    }

    /**
     * Create a matrix that is a (deep) copy of src
     * @param src The matrix to copy into this matrix
     */
    public Matrix(Matrix src) {
        set(src);
    }

    /**
     * Creates a Matrix object from the float array. The array becomes the internal storage
     * of the object.
     * @param data
     */
    private Matrix(float[] data) {
        assert data.length != 9;
        mValues = data;
    }

    //---------- Custom Methods

    /**
     * Adds the given transformation to the current Matrix
     * <p/>This in effect does this = this*matrix
     * @param matrix
     */
    private void addTransform(float[] matrix) {
        float[] tmp = new float[9];

        // first row
        tmp[0] = matrix[0] * mValues[0] + matrix[1] * mValues[3] + matrix[2] * mValues[6];
        tmp[1] = matrix[0] * mValues[1] + matrix[1] * mValues[4] + matrix[2] * mValues[7];
        tmp[2] = matrix[0] * mValues[2] + matrix[1] * mValues[5] + matrix[2] * mValues[8];

        // 2nd row
        tmp[3] = matrix[3] * mValues[0] + matrix[4] * mValues[3] + matrix[5] * mValues[6];
        tmp[4] = matrix[3] * mValues[1] + matrix[4] * mValues[4] + matrix[5] * mValues[7];
        tmp[5] = matrix[3] * mValues[2] + matrix[4] * mValues[5] + matrix[5] * mValues[8];

        // 3rd row
        tmp[6] = matrix[6] * mValues[0] + matrix[7] * mValues[3] + matrix[8] * mValues[6];
        tmp[7] = matrix[6] * mValues[1] + matrix[7] * mValues[4] + matrix[8] * mValues[7];
        tmp[8] = matrix[6] * mValues[2] + matrix[7] * mValues[5] + matrix[8] * mValues[8];

        // copy the result over to mValues
        mValues = tmp;
    }

    public AffineTransform getTransform() {
        // the AffineTransform constructor takes the value in a different order
        // for a matrix [ 0 1 2 ]
        //              [ 3 4 5 ]
        // the order is 0, 3, 1, 4, 2, 5...
        return new AffineTransform(mValues[0], mValues[3], mValues[1],
                mValues[4], mValues[2], mValues[5]);
    }

    public boolean hasPerspective() {
        return (mValues[6] != 0 || mValues[7] != 0 || mValues[8] != 1);
    }

    //----------

    /**
     * Returns true if the matrix is identity.
     * This maybe faster than testing if (getType() == 0)
     */
    @Override
    public boolean isIdentity() {
        for (int i = 0, k = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++, k++) {
                if (mValues[k] != ((i==j) ? 1 : 0)) {
                    return false;
                }
            }
        }

        return true;
    }

    /**
     * Returns true if will map a rectangle to another rectangle. This can be
     * true if the matrix is identity, scale-only, or rotates a multiple of 90
     * degrees.
     */
    @Override
    public boolean rectStaysRect() {
        return (computeTypeMask() & kRectStaysRect_Mask) != 0;
    }

    /**
     * (deep) copy the src matrix into this matrix. If src is null, reset this
     * matrix to the identity matrix.
     */
    public void set(Matrix src) {
        if (src == null) {
            reset();
        } else {
            System.arraycopy(src.mValues, 0, mValues, 0, mValues.length);
        }
    }

    @Override
    public void set(_Original_Matrix src) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /** Returns true if obj is a Matrix and its values equal our values.
    */
    @Override
    public boolean equals(Object obj) {
        if (obj != null && obj instanceof Matrix) {
            Matrix matrix = (Matrix)obj;
            for (int i = 0 ; i < 9 ; i++) {
                if (mValues[i] != matrix.mValues[i]) {
                    return false;
                }
            }

            return true;
        }

        return false;
    }

    /** Set the matrix to identity */
    @Override
    public void reset() {
        for (int i = 0, k = 0; i < 3; i++) {
            for (int j = 0; j < 3; j++, k++) {
                mValues[k] = ((i==j) ? 1 : 0);
            }
        }
    }

    /** Set the matrix to translate by (dx, dy). */
    @Override
    public void setTranslate(float dx, float dy) {
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = dx;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = dy;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to scale by sx and sy, with a pivot point at (px, py).
     * The pivot point is the coordinate that should remain unchanged by the
     * specified transformation.
     */
    @Override
    public void setScale(float sx, float sy, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        addTransform(new float[] { sx, 0, 0, 0, sy, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /** Set the matrix to scale by sx and sy. */
    @Override
    public void setScale(float sx, float sy) {
        mValues[0] = sx;
        mValues[1] = 0;
        mValues[2] = 0;
        mValues[3] = 0;
        mValues[4] = sy;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to rotate by the specified number of degrees, with a pivot
     * point at (px, py). The pivot point is the coordinate that should remain
     * unchanged by the specified transformation.
     */
    @Override
    public void setRotate(float degrees, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);
        addTransform(new float[] { cos, -sin, 0, sin, cos, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /**
     * Set the matrix to rotate about (0,0) by the specified number of degrees.
     */
    @Override
    public void setRotate(float degrees) {
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);

        mValues[0] = cos;
        mValues[1] = -sin;
        mValues[2] = 0;
        mValues[3] = sin;
        mValues[4] = cos;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to rotate by the specified sine and cosine values, with a
     * pivot point at (px, py). The pivot point is the coordinate that should
     * remain unchanged by the specified transformation.
     */
    @Override
    public void setSinCos(float sinValue, float cosValue, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        addTransform(new float[] { cosValue, -sinValue, 0, sinValue, cosValue, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /** Set the matrix to rotate by the specified sine and cosine values. */
    @Override
    public void setSinCos(float sinValue, float cosValue) {
        mValues[0] = cosValue;
        mValues[1] = -sinValue;
        mValues[2] = 0;
        mValues[3] = sinValue;
        mValues[4] = cosValue;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to skew by sx and sy, with a pivot point at (px, py).
     * The pivot point is the coordinate that should remain unchanged by the
     * specified transformation.
     */
    @Override
    public void setSkew(float kx, float ky, float px, float py) {
        // TODO: do it in one pass

        // translate so that the pivot is in 0,0
        mValues[0] = 1;
        mValues[1] = 0;
        mValues[2] = -px;
        mValues[3] = 0;
        mValues[4] = 1;
        mValues[5] = -py;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;

        // scale
        addTransform(new float[] { 1, kx, 0, ky, 1, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });
    }

    /** Set the matrix to skew by sx and sy. */
    @Override
    public void setSkew(float kx, float ky) {
        mValues[0] = 1;
        mValues[1] = kx;
        mValues[2] = -0;
        mValues[3] = ky;
        mValues[4] = 1;
        mValues[5] = 0;
        mValues[6] = 0;
        mValues[7] = 0;
        mValues[8] = 1;
    }

    /**
     * Set the matrix to the concatenation of the two specified matrices,
     * returning true if the the result can be represented. Either of the two
     * matrices may also be the target matrix. this = a * b
     */
    public boolean setConcat(Matrix a, Matrix b) {
        if (a == this) {
            preConcat(b);
        } else if (b == this) {
            postConcat(b);
        } else {
            Matrix tmp = new Matrix(b);
            tmp.addTransform(a.mValues);
            set(tmp);
        }

        return true;
    }

    @Override
    public boolean setConcat(_Original_Matrix a, _Original_Matrix b) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
     * Preconcats the matrix with the specified translation.
     * M' = M * T(dx, dy)
     */
    @Override
    public boolean preTranslate(float dx, float dy) {
        // create a matrix that will be multiply by this
        Matrix m = new Matrix(new float[] { 1, 0, dx, 0, 1, dy, 0, 0, 1 });
        m.addTransform(this.mValues);

        System.arraycopy(m.mValues, 0, mValues, 0, 9);
        return true;
    }

    /**
     * Preconcats the matrix with the specified scale.
     * M' = M * S(sx, sy, px, py)
     */
    @Override
    public boolean preScale(float sx, float sy, float px, float py) {
        Matrix m = new Matrix();
        m.setScale(sx, sy, px, py);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified scale.
     * M' = M * S(sx, sy)
     */
    @Override
    public boolean preScale(float sx, float sy) {
        Matrix m = new Matrix();
        m.setScale(sx, sy);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified rotation.
     * M' = M * R(degrees, px, py)
     */
    @Override
    public boolean preRotate(float degrees, float px, float py) {
        Matrix m = new Matrix();
        m.setRotate(degrees, px, py);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified rotation.
     * M' = M * R(degrees)
     */
    @Override
    public boolean preRotate(float degrees) {
        Matrix m = new Matrix();
        m.setRotate(degrees);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified skew.
     * M' = M * K(kx, ky, px, py)
     */
    @Override
    public boolean preSkew(float kx, float ky, float px, float py) {
        Matrix m = new Matrix();
        m.setSkew(kx, ky, px, py);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified skew.
     * M' = M * K(kx, ky)
     */
    @Override
    public boolean preSkew(float kx, float ky) {
        Matrix m = new Matrix();
        m.setSkew(kx, ky);
        m.addTransform(mValues);
        set(m);

        return true;
    }

    /**
     * Preconcats the matrix with the specified matrix.
     * M' = M * other
     */
    public boolean preConcat(Matrix other) {
        Matrix m = new Matrix(other);
        other.addTransform(mValues);
        set(m);

        return true;
    }

    @Override
    public boolean preConcat(_Original_Matrix other) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
     * Postconcats the matrix with the specified translation.
     * M' = T(dx, dy) * M
     */
    @Override
    public boolean postTranslate(float dx, float dy) {
        addTransform(new float[] { 1, 0, dx, 0, 1, dy, 0, 0, 1 });
        return true;
    }

    /**
     * Postconcats the matrix with the specified scale.
     * M' = S(sx, sy, px, py) * M
     */
    @Override
    public boolean postScale(float sx, float sy, float px, float py) {
        // TODO: do it in one pass
        // translate so that the pivot is in 0,0
        addTransform(new float[] { 1, 0, -px, 0, 1, py, 0, 0, 1 });
        // scale
        addTransform(new float[] { sx, 0, 0, 0, sy, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified scale.
     * M' = S(sx, sy) * M
     */
    @Override
    public boolean postScale(float sx, float sy) {
        addTransform(new float[] { sx, 0, 0, 0, sy, 0, 0, 0, 1 });
        return true;
    }

    /**
     * Postconcats the matrix with the specified rotation.
     * M' = R(degrees, px, py) * M
     */
    @Override
    public boolean postRotate(float degrees, float px, float py) {
        // TODO: do it in one pass
        // translate so that the pivot is in 0,0
        addTransform(new float[] { 1, 0, -px, 0, 1, py, 0, 0, 1 });
        // scale
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);
        addTransform(new float[] { cos, -sin, 0, sin, cos, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified rotation.
     * M' = R(degrees) * M
     */
    @Override
    public boolean postRotate(float degrees) {
        double rad = Math.toRadians(degrees);
        float cos = (float)Math.cos(rad);
        float sin = (float)Math.sin(rad);
        addTransform(new float[] { cos, -sin, 0, sin, cos, 0, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified skew.
     * M' = K(kx, ky, px, py) * M
     */
    @Override
    public boolean postSkew(float kx, float ky, float px, float py) {
        // TODO: do it in one pass
        // translate so that the pivot is in 0,0
        addTransform(new float[] { 1, 0, -px, 0, 1, py, 0, 0, 1 });
        // scale
        addTransform(new float[] { 1, kx, 0, ky, 1, 0, 0, 0, 1 });
        // translate back the pivot
        addTransform(new float[] { 1, 0, px, 0, 1, py, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified skew.
     * M' = K(kx, ky) * M
     */
    @Override
    public boolean postSkew(float kx, float ky) {
        addTransform(new float[] { 1, kx, 0, ky, 1, 0, 0, 0, 1 });

        return true;
    }

    /**
     * Postconcats the matrix with the specified matrix.
     * M' = other * M
     */
    public boolean postConcat(Matrix other) {
        addTransform(other.mValues);

        return true;
    }

    @Override
    public boolean postConcat(_Original_Matrix other) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /** Controlls how the src rect should align into the dst rect for
        setRectToRect().
    */
    public enum ScaleToFit {
        /**
         * Scale in X and Y independently, so that src matches dst exactly.
         * This may change the aspect ratio of the src.
         */
        FILL    (0),
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. START aligns the result to the
         * left and top edges of dst.
         */
        START   (1),
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. The result is centered inside dst.
         */
        CENTER  (2),
        /**
         * Compute a scale that will maintain the original src aspect ratio,
         * but will also ensure that src fits entirely inside dst. At least one
         * axis (X or Y) will fit exactly. END aligns the result to the
         * right and bottom edges of dst.
         */
        END     (3);

        // the native values must match those in SkMatrix.h
        ScaleToFit(int nativeInt) {
            this.nativeInt = nativeInt;
        }
        final int nativeInt;
    }

    /**
     * Set the matrix to the scale and translate values that map the source
     * rectangle to the destination rectangle, returning true if the result
     * can be represented.
     *
     * @param src the source rectangle to map from.
     * @param dst the destination rectangle to map to.
     * @param stf the ScaleToFit option
     * @return true if the matrix can be represented by the rectangle mapping.
     */
    public boolean setRectToRect(RectF src, RectF dst, ScaleToFit stf) {
        if (dst == null || src == null) {
            throw new NullPointerException();
        }

        if (src.isEmpty()) {
            reset();
            return false;
        }

        if (dst.isEmpty()) {
            mValues[0] = mValues[1] = mValues[2] = mValues[3] = mValues[4] = mValues[5]
               = mValues[6] = mValues[7] = 0;
            mValues[8] = 1;
        } else {
            float    tx, sx = dst.width() / src.width();
            float    ty, sy = dst.height() / src.height();
            boolean  xLarger = false;

            if (stf != ScaleToFit.FILL) {
                if (sx > sy) {
                    xLarger = true;
                    sx = sy;
                } else {
                    sy = sx;
                }
            }

            tx = dst.left - src.left * sx;
            ty = dst.top - src.top * sy;
            if (stf == ScaleToFit.CENTER || stf == ScaleToFit.END) {
                float diff;

                if (xLarger) {
                    diff = dst.width() - src.width() * sy;
                } else {
                    diff = dst.height() - src.height() * sy;
                }

                if (stf == ScaleToFit.CENTER) {
                    diff = diff / 2;
                }

                if (xLarger) {
                    tx += diff;
                } else {
                    ty += diff;
                }
            }

            mValues[0] = sx;
            mValues[4] = sy;
            mValues[2] = tx;
            mValues[5] = ty;
            mValues[1]  = mValues[3] = mValues[6] = mValues[7] = 0;

        }
        // shared cleanup
        mValues[8] = 1;
        return true;
    }

    @Override
    public boolean setRectToRect(RectF src, RectF dst, _Original_Matrix.ScaleToFit stf) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
     * Set the matrix such that the specified src points would map to the
     * specified dst points. The "points" are represented as an array of floats,
     * order [x0, y0, x1, y1, ...], where each "point" is 2 float values.
     *
     * @param src   The array of src [x,y] pairs (points)
     * @param srcIndex Index of the first pair of src values
     * @param dst   The array of dst [x,y] pairs (points)
     * @param dstIndex Index of the first pair of dst values
     * @param pointCount The number of pairs/points to be used. Must be [0..4]
     * @return true if the matrix was set to the specified transformation
     */
    @Override
    public boolean setPolyToPoly(float[] src, int srcIndex,
                                 float[] dst, int dstIndex,
                                 int pointCount) {
        if (pointCount > 4) {
            throw new IllegalArgumentException();
        }
        checkPointArrays(src, srcIndex, dst, dstIndex, pointCount);
        throw new UnsupportedOperationException("STUB NEEDED");
    }

    /**
     * If this matrix can be inverted, return true and if inverse is not null,
     * set inverse to be the inverse of this matrix. If this matrix cannot be
     * inverted, ignore inverse and return false.
     */
    public boolean invert(Matrix inverse) {
        if (inverse == null) {
            return false;
        }

        try {
            AffineTransform affineTransform = getTransform();
            AffineTransform inverseTransform = affineTransform.createInverse();
            inverse.mValues[0] = (float)inverseTransform.getScaleX();
            inverse.mValues[1] = (float)inverseTransform.getShearX();
            inverse.mValues[2] = (float)inverseTransform.getTranslateX();
            inverse.mValues[3] = (float)inverseTransform.getScaleX();
            inverse.mValues[4] = (float)inverseTransform.getShearY();
            inverse.mValues[5] = (float)inverseTransform.getTranslateY();

            return true;
        } catch (NoninvertibleTransformException e) {
            return false;
        }
    }

    @Override
    public boolean invert(_Original_Matrix inverse) {
        throw new UnsupportedOperationException("CALL TO PARENT FORBIDDEN");
    }

    /**
    * Apply this matrix to the array of 2D points specified by src, and write
     * the transformed points into the array of points specified by dst. The
     * two arrays represent their "points" as pairs of floats [x, y].
     *
     * @param dst   The array of dst points (x,y pairs)
     * @param dstIndex The index of the first [x,y] pair of dst floats
     * @param src   The array of src points (x,y pairs)
     * @param srcIndex The index of the first [x,y] pair of src floats
     * @param pointCount The number of points (x,y pairs) to transform
     */
    @Override
    public void mapPoints(float[] dst, int dstIndex, float[] src, int srcIndex,
                          int pointCount) {
        checkPointArrays(src, srcIndex, dst, dstIndex, pointCount);

        for (int i = 0 ; i < pointCount ; i++) {
            // just in case we are doing in place, we better put this in temp vars
            float x = mValues[0] * src[i + srcIndex] +
                      mValues[1] * src[i + srcIndex + 1] +
                      mValues[2];
            float y = mValues[3] * src[i + srcIndex] +
                      mValues[4] * src[i + srcIndex + 1] +
                      mValues[5];

            dst[i + dstIndex]     = x;
            dst[i + dstIndex + 1] = y;
        }
    }

    /**
    * Apply this matrix to the array of 2D vectors specified by src, and write
     * the transformed vectors into the array of vectors specified by dst. The
     * two arrays represent their "vectors" as pairs of floats [x, y].
     *
     * @param dst   The array of dst vectors (x,y pairs)
     * @param dstIndex The index of the first [x,y] pair of dst floats
     * @param src   The array of src vectors (x,y pairs)
     * @param srcIndex The index of the first [x,y] pair of src floats
     * @param vectorCount The number of vectors (x,y pairs) to transform
     */
    @Override
    public void mapVectors(float[] dst, int dstIndex, float[] src, int srcIndex,
                          int vectorCount) {
        checkPointArrays(src, srcIndex, dst, dstIndex, vectorCount);
        throw new UnsupportedOperationException("STUB NEEDED");
    }

    /**
     * Apply this matrix to the array of 2D points specified by src, and write
     * the transformed points into the array of points specified by dst. The
     * two arrays represent their "points" as pairs of floats [x, y].
     *
     * @param dst   The array of dst points (x,y pairs)
     * @param src   The array of src points (x,y pairs)
     */
    @Override
    public void mapPoints(float[] dst, float[] src) {
        if (dst.length != src.length) {
            throw new ArrayIndexOutOfBoundsException();
        }
        mapPoints(dst, 0, src, 0, dst.length >> 1);
    }

    /**
     * Apply this matrix to the array of 2D vectors specified by src, and write
     * the transformed vectors into the array of vectors specified by dst. The
     * two arrays represent their "vectors" as pairs of floats [x, y].
     *
     * @param dst   The array of dst vectors (x,y pairs)
     * @param src   The array of src vectors (x,y pairs)
     */
    @Override
    public void mapVectors(float[] dst, float[] src) {
        if (dst.length != src.length) {
            throw new ArrayIndexOutOfBoundsException();
        }
        mapVectors(dst, 0, src, 0, dst.length >> 1);
    }

    /**
     * Apply this matrix to the array of 2D points, and write the transformed
     * points back into the array
     *
     * @param pts The array [x0, y0, x1, y1, ...] of points to transform.
     */
    @Override
    public void mapPoints(float[] pts) {
        mapPoints(pts, 0, pts, 0, pts.length >> 1);
    }

    /**
     * Apply this matrix to the array of 2D vectors, and write the transformed
     * vectors back into the array.
     * @param vecs The array [x0, y0, x1, y1, ...] of vectors to transform.
     */
    @Override
    public void mapVectors(float[] vecs) {
        mapVectors(vecs, 0, vecs, 0, vecs.length >> 1);
    }

    /**
     * Apply this matrix to the src rectangle, and write the transformed
     * rectangle into dst. This is accomplished by transforming the 4 corners of
     * src, and then setting dst to the bounds of those points.
     *
     * @param dst Where the transformed rectangle is written.
     * @param src The original rectangle to be transformed.
     * @return the result of calling rectStaysRect()
     */
    @Override
    public boolean mapRect(RectF dst, RectF src) {
        if (dst == null || src == null) {
            throw new NullPointerException();
        }

        // array with 4 corners
        float[] corners = new float[] {
                src.left, src.top,
                src.right, src.top,
                src.right, src.bottom,
                src.left, src.bottom,
        };

        // apply the transform to them.
        mapPoints(corners);

        // now put the result in the rect. We take the min/max of Xs and min/max of Ys
        dst.left = Math.min(Math.min(corners[0], corners[2]), Math.min(corners[4], corners[6]));
        dst.right = Math.max(Math.max(corners[0], corners[2]), Math.max(corners[4], corners[6]));

        dst.top = Math.min(Math.min(corners[1], corners[3]), Math.min(corners[5], corners[7]));
        dst.bottom = Math.max(Math.max(corners[1], corners[3]), Math.max(corners[5], corners[7]));

        return rectStaysRect();
    }

    /**
     * Apply this matrix to the rectangle, and write the transformed rectangle
     * back into it. This is accomplished by transforming the 4 corners of rect,
     * and then setting it to the bounds of those points
     *
     * @param rect The rectangle to transform.
     * @return the result of calling rectStaysRect()
     */
    @Override
    public boolean mapRect(RectF rect) {
        return mapRect(rect, rect);
    }

    /**
     * Return the mean radius of a circle after it has been mapped by
     * this matrix. NOTE: in perspective this value assumes the circle
     * has its center at the origin.
     */
    @Override
    public float mapRadius(float radius) {
        throw new UnsupportedOperationException("STUB NEEDED");
    }

    /** Copy 9 values from the matrix into the array.
    */
    @Override
    public void getValues(float[] values) {
        if (values.length < 9) {
            throw new ArrayIndexOutOfBoundsException();
        }
        System.arraycopy(mValues, 0, values, 0, mValues.length);
    }

    /** Copy 9 values from the array into the matrix.
        Depending on the implementation of Matrix, these may be
        transformed into 16.16 integers in the Matrix, such that
        a subsequent call to getValues() will not yield exactly
        the same values.
    */
    @Override
    public void setValues(float[] values) {
        if (values.length < 9) {
            throw new ArrayIndexOutOfBoundsException();
        }
        System.arraycopy(values, 0, mValues, 0, mValues.length);
    }

    @SuppressWarnings("unused")
    private final static int kIdentity_Mask      = 0;
    private final static int kTranslate_Mask     = 0x01;  //!< set if the matrix has translation
    private final static int kScale_Mask         = 0x02;  //!< set if the matrix has X or Y scale
    private final static int kAffine_Mask        = 0x04;  //!< set if the matrix skews or rotates
    private final static int kPerspective_Mask   = 0x08;  //!< set if the matrix is in perspective
    private final static int kRectStaysRect_Mask = 0x10;
    @SuppressWarnings("unused")
    private final static int kUnknown_Mask       = 0x80;

    @SuppressWarnings("unused")
    private final static int kAllMasks           = kTranslate_Mask |
                                                     kScale_Mask |
                                                     kAffine_Mask |
                                                     kPerspective_Mask |
                                                     kRectStaysRect_Mask;

    // these guys align with the masks, so we can compute a mask from a variable 0/1
    @SuppressWarnings("unused")
    private final static int kTranslate_Shift = 0;
    @SuppressWarnings("unused")
    private final static int kScale_Shift = 1;
    @SuppressWarnings("unused")
    private final static int kAffine_Shift = 2;
    @SuppressWarnings("unused")
    private final static int kPerspective_Shift = 3;
    private final static int kRectStaysRect_Shift = 4;

    private int computeTypeMask() {
        int mask = 0;

        if (mValues[6] != 0. || mValues[7] != 0. || mValues[8] != 1.) {
            mask |= kPerspective_Mask;
        }

        if (mValues[2] != 0. || mValues[5] != 0.) {
            mask |= kTranslate_Mask;
        }

        float m00 = mValues[0];
        float m01 = mValues[1];
        float m10 = mValues[3];
        float m11 = mValues[4];

        if (m01 != 0. || m10 != 0.) {
            mask |= kAffine_Mask;
        }

        if (m00 != 1. || m11 != 1.) {
            mask |= kScale_Mask;
        }

        if ((mask & kPerspective_Mask) == 0) {
            // map non-zero to 1
            int im00 = m00 != 0 ? 1 : 0;
            int im01 = m01 != 0 ? 1 : 0;
            int im10 = m10 != 0 ? 1 : 0;
            int im11 = m11 != 0 ? 1 : 0;

            // record if the (p)rimary and (s)econdary diagonals are all 0 or
            // all non-zero (answer is 0 or 1)
            int dp0 = (im00 | im11) ^ 1;  // true if both are 0
            int dp1 = im00 & im11;        // true if both are 1
            int ds0 = (im01 | im10) ^ 1;  // true if both are 0
            int ds1 = im01 & im10;        // true if both are 1

            // return 1 if primary is 1 and secondary is 0 or
            // primary is 0 and secondary is 1
            mask |= ((dp0 & ds1) | (dp1 & ds0)) << kRectStaysRect_Shift;
        }

        return mask;
    }
}

Other Android examples (source code examples)

Here is a short list of links related to this Android Matrix.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.