alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (Rotation.java)

This example Commons Math source code file (Rotation.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

cardaneulersingularityexception, cardaneulersingularityexception, identity, io, notarotationmatrixexception, notarotationmatrixexception, rotation, rotation, serializable, vector3d, vector3d, zyz

The Commons Math Rotation.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.geometry;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;

/**
 * This class implements rotations in a three-dimensional space.
 *
 * <p>Rotations can be represented by several different mathematical
 * entities (matrices, axe and angle, Cardan or Euler angles,
 * quaternions). This class presents an higher level abstraction, more
 * user-oriented and hiding this implementation details. Well, for the
 * curious, we use quaternions for the internal representation. The
 * user can build a rotation from any of these representations, and
 * any of these representations can be retrieved from a
 * <code>Rotation instance (see the various constructors and
 * getters). In addition, a rotation can also be built implicitely
 * from a set of vectors and their image.</p>
 * <p>This implies that this class can be used to convert from one
 * representation to another one. For example, converting a rotation
 * matrix into a set of Cardan angles from can be done using the
 * followong single line of code:</p>
 * <pre>
 * double[] angles = new Rotation(matrix, 1.0e-10).getAngles(RotationOrder.XYZ);
 * </pre>
 * <p>Focus is oriented on what a rotation do rather than on its
 * underlying representation. Once it has been built, and regardless of its
 * internal representation, a rotation is an <em>operator which basically
 * transforms three dimensional {@link Vector3D vectors} into other three
 * dimensional {@link Vector3D vectors}. Depending on the application, the
 * meaning of these vectors may vary and the semantics of the rotation also.</p>
 * <p>For example in an spacecraft attitude simulation tool, users will often
 * consider the vectors are fixed (say the Earth direction for example) and the
 * rotation transforms the coordinates coordinates of this vector in inertial
 * frame into the coordinates of the same vector in satellite frame. In this
 * case, the rotation implicitely defines the relation between the two frames.
 * Another example could be a telescope control application, where the rotation
 * would transform the sighting direction at rest into the desired observing
 * direction when the telescope is pointed towards an object of interest. In this
 * case the rotation transforms the directionf at rest in a topocentric frame
 * into the sighting direction in the same topocentric frame. In many case, both
 * approaches will be combined, in our telescope example, we will probably also
 * need to transform the observing direction in the topocentric frame into the
 * observing direction in inertial frame taking into account the observatory
 * location and the Earth rotation.</p>
 *
 * <p>These examples show that a rotation is what the user wants it to be, so this
 * class does not push the user towards one specific definition and hence does not
 * provide methods like <code>projectVectorIntoDestinationFrame or
 * <code>computeTransformedDirection. It provides simpler and more generic
 * methods: {@link #applyTo(Vector3D) applyTo(Vector3D)} and {@link
 * #applyInverseTo(Vector3D) applyInverseTo(Vector3D)}.</p>
 *
 * <p>Since a rotation is basically a vectorial operator, several rotations can be
 * composed together and the composite operation <code>r = r1 o
 * r<sub>2 (which means that for each vector u,
 * <code>r(u) = r1(r2(u))) is also a rotation. Hence
 * we can consider that in addition to vectors, a rotation can be applied to other
 * rotations as well (or to itself). With our previous notations, we would say we
 * can apply <code>r1 to r2 and the result
 * we get is <code>r = r1 o r2. For this purpose, the
 * class provides the methods: {@link #applyTo(Rotation) applyTo(Rotation)} and
 * {@link #applyInverseTo(Rotation) applyInverseTo(Rotation)}.</p>
 *
 * <p>Rotations are guaranteed to be immutable objects.

* * @version $Revision: 772119 $ $Date: 2009-05-06 05:43:28 -0400 (Wed, 06 May 2009) $ * @see Vector3D * @see RotationOrder * @since 1.2 */ public class Rotation implements Serializable { /** Identity rotation. */ public static final Rotation IDENTITY = new Rotation(1.0, 0.0, 0.0, 0.0, false); /** Serializable version identifier */ private static final long serialVersionUID = -2153622329907944313L; /** Scalar coordinate of the quaternion. */ private final double q0; /** First coordinate of the vectorial part of the quaternion. */ private final double q1; /** Second coordinate of the vectorial part of the quaternion. */ private final double q2; /** Third coordinate of the vectorial part of the quaternion. */ private final double q3; /** Build a rotation from the quaternion coordinates. * <p>A rotation can be built from a normalized quaternion, * i.e. a quaternion for which q<sub>02 + * q<sub>12 + q22 + * q<sub>32 = 1. If the quaternion is not normalized, * the constructor can normalize it in a preprocessing step.</p> * @param q0 scalar part of the quaternion * @param q1 first coordinate of the vectorial part of the quaternion * @param q2 second coordinate of the vectorial part of the quaternion * @param q3 third coordinate of the vectorial part of the quaternion * @param needsNormalization if true, the coordinates are considered * not to be normalized, a normalization preprocessing step is performed * before using them */ public Rotation(double q0, double q1, double q2, double q3, boolean needsNormalization) { if (needsNormalization) { // normalization preprocessing double inv = 1.0 / Math.sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= inv; q1 *= inv; q2 *= inv; q3 *= inv; } this.q0 = q0; this.q1 = q1; this.q2 = q2; this.q3 = q3; } /** Build a rotation from an axis and an angle. * <p>We use the convention that angles are oriented according to * the effect of the rotation on vectors around the axis. That means * that if (i, j, k) is a direct frame and if we first provide +k as * the axis and PI/2 as the angle to this constructor, and then * {@link #applyTo(Vector3D) apply} the instance to +i, we will get * +j.</p> * @param axis axis around which to rotate * @param angle rotation angle. * @exception ArithmeticException if the axis norm is zero */ public Rotation(Vector3D axis, double angle) { double norm = axis.getNorm(); if (norm == 0) { throw MathRuntimeException.createArithmeticException("zero norm for rotation axis"); } double halfAngle = -0.5 * angle; double coeff = Math.sin(halfAngle) / norm; q0 = Math.cos (halfAngle); q1 = coeff * axis.getX(); q2 = coeff * axis.getY(); q3 = coeff * axis.getZ(); } /** Build a rotation from a 3X3 matrix. * <p>Rotation matrices are orthogonal matrices, i.e. unit matrices * (which are matrices for which m.m<sup>T = I) with real * coefficients. The module of the determinant of unit matrices is * 1, among the orthogonal 3X3 matrices, only the ones having a * positive determinant (+1) are rotation matrices.</p> * <p>When a rotation is defined by a matrix with truncated values * (typically when it is extracted from a technical sheet where only * four to five significant digits are available), the matrix is not * orthogonal anymore. This constructor handles this case * transparently by using a copy of the given matrix and applying a * correction to the copy in order to perfect its orthogonality. If * the Frobenius norm of the correction needed is above the given * threshold, then the matrix is considered to be too far from a * true rotation matrix and an exception is thrown.<p> * @param m rotation matrix * @param threshold convergence threshold for the iterative * orthogonality correction (convergence is reached when the * difference between two steps of the Frobenius norm of the * correction is below this threshold) * @exception NotARotationMatrixException if the matrix is not a 3X3 * matrix, or if it cannot be transformed into an orthogonal matrix * with the given threshold, or if the determinant of the resulting * orthogonal matrix is negative */ public Rotation(double[][] m, double threshold) throws NotARotationMatrixException { // dimension check if ((m.length != 3) || (m[0].length != 3) || (m[1].length != 3) || (m[2].length != 3)) { throw new NotARotationMatrixException( "a {0}x{1} matrix cannot be a rotation matrix", m.length, m[0].length); } // compute a "close" orthogonal matrix double[][] ort = orthogonalizeMatrix(m, threshold); // check the sign of the determinant double det = ort[0][0] * (ort[1][1] * ort[2][2] - ort[2][1] * ort[1][2]) - ort[1][0] * (ort[0][1] * ort[2][2] - ort[2][1] * ort[0][2]) + ort[2][0] * (ort[0][1] * ort[1][2] - ort[1][1] * ort[0][2]); if (det < 0.0) { throw new NotARotationMatrixException( "the closest orthogonal matrix has a negative determinant {0}", det); } // There are different ways to compute the quaternions elements // from the matrix. They all involve computing one element from // the diagonal of the matrix, and computing the three other ones // using a formula involving a division by the first element, // which unfortunately can be zero. Since the norm of the // quaternion is 1, we know at least one element has an absolute // value greater or equal to 0.5, so it is always possible to // select the right formula and avoid division by zero and even // numerical inaccuracy. Checking the elements in turn and using // the first one greater than 0.45 is safe (this leads to a simple // test since qi = 0.45 implies 4 qi^2 - 1 = -0.19) double s = ort[0][0] + ort[1][1] + ort[2][2]; if (s > -0.19) { // compute q0 and deduce q1, q2 and q3 q0 = 0.5 * Math.sqrt(s + 1.0); double inv = 0.25 / q0; q1 = inv * (ort[1][2] - ort[2][1]); q2 = inv * (ort[2][0] - ort[0][2]); q3 = inv * (ort[0][1] - ort[1][0]); } else { s = ort[0][0] - ort[1][1] - ort[2][2]; if (s > -0.19) { // compute q1 and deduce q0, q2 and q3 q1 = 0.5 * Math.sqrt(s + 1.0); double inv = 0.25 / q1; q0 = inv * (ort[1][2] - ort[2][1]); q2 = inv * (ort[0][1] + ort[1][0]); q3 = inv * (ort[0][2] + ort[2][0]); } else { s = ort[1][1] - ort[0][0] - ort[2][2]; if (s > -0.19) { // compute q2 and deduce q0, q1 and q3 q2 = 0.5 * Math.sqrt(s + 1.0); double inv = 0.25 / q2; q0 = inv * (ort[2][0] - ort[0][2]); q1 = inv * (ort[0][1] + ort[1][0]); q3 = inv * (ort[2][1] + ort[1][2]); } else { // compute q3 and deduce q0, q1 and q2 s = ort[2][2] - ort[0][0] - ort[1][1]; q3 = 0.5 * Math.sqrt(s + 1.0); double inv = 0.25 / q3; q0 = inv * (ort[0][1] - ort[1][0]); q1 = inv * (ort[0][2] + ort[2][0]); q2 = inv * (ort[2][1] + ort[1][2]); } } } } /** Build the rotation that transforms a pair of vector into another pair. * <p>Except for possible scale factors, if the instance were applied to * the pair (u<sub>1, u2) it will produce the pair * (v<sub>1, v2).

* <p>If the angular separation between u1 and u2 is * not the same as the angular separation between v<sub>1 and * v<sub>2, then a corrected v'2 will be used rather than * v<sub>2, the corrected vector will be in the (v1, * v<sub>2) plane.

* @param u1 first vector of the origin pair * @param u2 second vector of the origin pair * @param v1 desired image of u1 by the rotation * @param v2 desired image of u2 by the rotation * @exception IllegalArgumentException if the norm of one of the vectors is zero */ public Rotation(Vector3D u1, Vector3D u2, Vector3D v1, Vector3D v2) { // norms computation double u1u1 = Vector3D.dotProduct(u1, u1); double u2u2 = Vector3D.dotProduct(u2, u2); double v1v1 = Vector3D.dotProduct(v1, v1); double v2v2 = Vector3D.dotProduct(v2, v2); if ((u1u1 == 0) || (u2u2 == 0) || (v1v1 == 0) || (v2v2 == 0)) { throw MathRuntimeException.createIllegalArgumentException("zero norm for rotation defining vector"); } double u1x = u1.getX(); double u1y = u1.getY(); double u1z = u1.getZ(); double u2x = u2.getX(); double u2y = u2.getY(); double u2z = u2.getZ(); // normalize v1 in order to have (v1'|v1') = (u1|u1) double coeff = Math.sqrt (u1u1 / v1v1); double v1x = coeff * v1.getX(); double v1y = coeff * v1.getY(); double v1z = coeff * v1.getZ(); v1 = new Vector3D(v1x, v1y, v1z); // adjust v2 in order to have (u1|u2) = (v1|v2) and (v2'|v2') = (u2|u2) double u1u2 = Vector3D.dotProduct(u1, u2); double v1v2 = Vector3D.dotProduct(v1, v2); double coeffU = u1u2 / u1u1; double coeffV = v1v2 / u1u1; double beta = Math.sqrt((u2u2 - u1u2 * coeffU) / (v2v2 - v1v2 * coeffV)); double alpha = coeffU - beta * coeffV; double v2x = alpha * v1x + beta * v2.getX(); double v2y = alpha * v1y + beta * v2.getY(); double v2z = alpha * v1z + beta * v2.getZ(); v2 = new Vector3D(v2x, v2y, v2z); // preliminary computation (we use explicit formulation instead // of relying on the Vector3D class in order to avoid building lots // of temporary objects) Vector3D uRef = u1; Vector3D vRef = v1; double dx1 = v1x - u1.getX(); double dy1 = v1y - u1.getY(); double dz1 = v1z - u1.getZ(); double dx2 = v2x - u2.getX(); double dy2 = v2y - u2.getY(); double dz2 = v2z - u2.getZ(); Vector3D k = new Vector3D(dy1 * dz2 - dz1 * dy2, dz1 * dx2 - dx1 * dz2, dx1 * dy2 - dy1 * dx2); double c = k.getX() * (u1y * u2z - u1z * u2y) + k.getY() * (u1z * u2x - u1x * u2z) + k.getZ() * (u1x * u2y - u1y * u2x); if (c == 0) { // the (q1, q2, q3) vector is in the (u1, u2) plane // we try other vectors Vector3D u3 = Vector3D.crossProduct(u1, u2); Vector3D v3 = Vector3D.crossProduct(v1, v2); double u3x = u3.getX(); double u3y = u3.getY(); double u3z = u3.getZ(); double v3x = v3.getX(); double v3y = v3.getY(); double v3z = v3.getZ(); double dx3 = v3x - u3x; double dy3 = v3y - u3y; double dz3 = v3z - u3z; k = new Vector3D(dy1 * dz3 - dz1 * dy3, dz1 * dx3 - dx1 * dz3, dx1 * dy3 - dy1 * dx3); c = k.getX() * (u1y * u3z - u1z * u3y) + k.getY() * (u1z * u3x - u1x * u3z) + k.getZ() * (u1x * u3y - u1y * u3x); if (c == 0) { // the (q1, q2, q3) vector is aligned with u1: // we try (u2, u3) and (v2, v3) k = new Vector3D(dy2 * dz3 - dz2 * dy3, dz2 * dx3 - dx2 * dz3, dx2 * dy3 - dy2 * dx3); c = k.getX() * (u2y * u3z - u2z * u3y) + k.getY() * (u2z * u3x - u2x * u3z) + k.getZ() * (u2x * u3y - u2y * u3x); if (c == 0) { // the (q1, q2, q3) vector is aligned with everything // this is really the identity rotation q0 = 1.0; q1 = 0.0; q2 = 0.0; q3 = 0.0; return; } // we will have to use u2 and v2 to compute the scalar part uRef = u2; vRef = v2; } } // compute the vectorial part c = Math.sqrt(c); double inv = 1.0 / (c + c); q1 = inv * k.getX(); q2 = inv * k.getY(); q3 = inv * k.getZ(); // compute the scalar part k = new Vector3D(uRef.getY() * q3 - uRef.getZ() * q2, uRef.getZ() * q1 - uRef.getX() * q3, uRef.getX() * q2 - uRef.getY() * q1); c = Vector3D.dotProduct(k, k); q0 = Vector3D.dotProduct(vRef, k) / (c + c); } /** Build one of the rotations that transform one vector into another one. * <p>Except for a possible scale factor, if the instance were * applied to the vector u it will produce the vector v. There is an * infinite number of such rotations, this constructor choose the * one with the smallest associated angle (i.e. the one whose axis * is orthogonal to the (u, v) plane). If u and v are colinear, an * arbitrary rotation axis is chosen.</p> * @param u origin vector * @param v desired image of u by the rotation * @exception IllegalArgumentException if the norm of one of the vectors is zero */ public Rotation(Vector3D u, Vector3D v) { double normProduct = u.getNorm() * v.getNorm(); if (normProduct == 0) { throw MathRuntimeException.createIllegalArgumentException("zero norm for rotation defining vector"); } double dot = Vector3D.dotProduct(u, v); if (dot < ((2.0e-15 - 1.0) * normProduct)) { // special case u = -v: we select a PI angle rotation around // an arbitrary vector orthogonal to u Vector3D w = u.orthogonal(); q0 = 0.0; q1 = -w.getX(); q2 = -w.getY(); q3 = -w.getZ(); } else { // general case: (u, v) defines a plane, we select // the shortest possible rotation: axis orthogonal to this plane q0 = Math.sqrt(0.5 * (1.0 + dot / normProduct)); double coeff = 1.0 / (2.0 * q0 * normProduct); q1 = coeff * (v.getY() * u.getZ() - v.getZ() * u.getY()); q2 = coeff * (v.getZ() * u.getX() - v.getX() * u.getZ()); q3 = coeff * (v.getX() * u.getY() - v.getY() * u.getX()); } } /** Build a rotation from three Cardan or Euler elementary rotations. * <p>Cardan rotations are three successive rotations around the * canonical axes X, Y and Z, each axis being used once. There are * 6 such sets of rotations (XYZ, XZY, YXZ, YZX, ZXY and ZYX). Euler * rotations are three successive rotations around the canonical * axes X, Y and Z, the first and last rotations being around the * same axis. There are 6 such sets of rotations (XYX, XZX, YXY, * YZY, ZXZ and ZYZ), the most popular one being ZXZ.</p> * <p>Beware that many people routinely use the term Euler angles even * for what really are Cardan angles (this confusion is especially * widespread in the aerospace business where Roll, Pitch and Yaw angles * are often wrongly tagged as Euler angles).</p> * @param order order of rotations to use * @param alpha1 angle of the first elementary rotation * @param alpha2 angle of the second elementary rotation * @param alpha3 angle of the third elementary rotation */ public Rotation(RotationOrder order, double alpha1, double alpha2, double alpha3) { Rotation r1 = new Rotation(order.getA1(), alpha1); Rotation r2 = new Rotation(order.getA2(), alpha2); Rotation r3 = new Rotation(order.getA3(), alpha3); Rotation composed = r1.applyTo(r2.applyTo(r3)); q0 = composed.q0; q1 = composed.q1; q2 = composed.q2; q3 = composed.q3; } /** Revert a rotation. * Build a rotation which reverse the effect of another * rotation. This means that if r(u) = v, then r.revert(v) = u. The * instance is not changed. * @return a new rotation whose effect is the reverse of the effect * of the instance */ public Rotation revert() { return new Rotation(-q0, q1, q2, q3, false); } /** Get the scalar coordinate of the quaternion. * @return scalar coordinate of the quaternion */ public double getQ0() { return q0; } /** Get the first coordinate of the vectorial part of the quaternion. * @return first coordinate of the vectorial part of the quaternion */ public double getQ1() { return q1; } /** Get the second coordinate of the vectorial part of the quaternion. * @return second coordinate of the vectorial part of the quaternion */ public double getQ2() { return q2; } /** Get the third coordinate of the vectorial part of the quaternion. * @return third coordinate of the vectorial part of the quaternion */ public double getQ3() { return q3; } /** Get the normalized axis of the rotation. * @return normalized axis of the rotation */ public Vector3D getAxis() { double squaredSine = q1 * q1 + q2 * q2 + q3 * q3; if (squaredSine == 0) { return new Vector3D(1, 0, 0); } else if (q0 < 0) { double inverse = 1 / Math.sqrt(squaredSine); return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse); } double inverse = -1 / Math.sqrt(squaredSine); return new Vector3D(q1 * inverse, q2 * inverse, q3 * inverse); } /** Get the angle of the rotation. * @return angle of the rotation (between 0 and ?) */ public double getAngle() { if ((q0 < -0.1) || (q0 > 0.1)) { return 2 * Math.asin(Math.sqrt(q1 * q1 + q2 * q2 + q3 * q3)); } else if (q0 < 0) { return 2 * Math.acos(-q0); } return 2 * Math.acos(q0); } /** Get the Cardan or Euler angles corresponding to the instance. * <p>The equations show that each rotation can be defined by two * different values of the Cardan or Euler angles set. For example * if Cardan angles are used, the rotation defined by the angles * a<sub>1, a2 and a3 is the same as * the rotation defined by the angles ? + a<sub>1, ? * - a<sub>2 and ? + a3. This method implements * the following arbitrary choices:</p> * <ul> * <li>for Cardan angles, the chosen set is the one for which the * second angle is between -?/2 and ?/2 (i.e its cosine is * positive),</li> * <li>for Euler angles, the chosen set is the one for which the * second angle is between 0 and ? (i.e its sine is positive).</li> * </ul> * <p>Cardan and Euler angle have a very disappointing drawback: all * of them have singularities. This means that if the instance is * too close to the singularities corresponding to the given * rotation order, it will be impossible to retrieve the angles. For * Cardan angles, this is often called gimbal lock. There is * <em>nothing to do to prevent this, it is an intrinsic problem * with Cardan and Euler representation (but not a problem with the * rotation itself, which is perfectly well defined). For Cardan * angles, singularities occur when the second angle is close to * -?/2 or +?/2, for Euler angle singularities occur when the * second angle is close to 0 or ?, this implies that the identity * rotation is always singular for Euler angles!</p> * @param order rotation order to use * @return an array of three angles, in the order specified by the set * @exception CardanEulerSingularityException if the rotation is * singular with respect to the angles set specified */ public double[] getAngles(RotationOrder order) throws CardanEulerSingularityException { if (order == RotationOrder.XYZ) { // r (Vector3D.plusK) coordinates are : // sin (theta), -cos (theta) sin (phi), cos (theta) cos (phi) // (-r) (Vector3D.plusI) coordinates are : // cos (psi) cos (theta), -sin (psi) cos (theta), sin (theta) // and we can choose to have theta in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { Math.atan2(-(v1.getY()), v1.getZ()), Math.asin(v2.getZ()), Math.atan2(-(v2.getY()), v2.getX()) }; } else if (order == RotationOrder.XZY) { // r (Vector3D.plusJ) coordinates are : // -sin (psi), cos (psi) cos (phi), cos (psi) sin (phi) // (-r) (Vector3D.plusI) coordinates are : // cos (theta) cos (psi), -sin (psi), sin (theta) cos (psi) // and we can choose to have psi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { Math.atan2(v1.getZ(), v1.getY()), -Math.asin(v2.getY()), Math.atan2(v2.getZ(), v2.getX()) }; } else if (order == RotationOrder.YXZ) { // r (Vector3D.plusK) coordinates are : // cos (phi) sin (theta), -sin (phi), cos (phi) cos (theta) // (-r) (Vector3D.plusJ) coordinates are : // sin (psi) cos (phi), cos (psi) cos (phi), -sin (phi) // and we can choose to have phi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { Math.atan2(v1.getX(), v1.getZ()), -Math.asin(v2.getZ()), Math.atan2(v2.getX(), v2.getY()) }; } else if (order == RotationOrder.YZX) { // r (Vector3D.plusI) coordinates are : // cos (psi) cos (theta), sin (psi), -cos (psi) sin (theta) // (-r) (Vector3D.plusJ) coordinates are : // sin (psi), cos (phi) cos (psi), -sin (phi) cos (psi) // and we can choose to have psi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { Math.atan2(-(v1.getZ()), v1.getX()), Math.asin(v2.getX()), Math.atan2(-(v2.getZ()), v2.getY()) }; } else if (order == RotationOrder.ZXY) { // r (Vector3D.plusJ) coordinates are : // -cos (phi) sin (psi), cos (phi) cos (psi), sin (phi) // (-r) (Vector3D.plusK) coordinates are : // -sin (theta) cos (phi), sin (phi), cos (theta) cos (phi) // and we can choose to have phi in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { Math.atan2(-(v1.getX()), v1.getY()), Math.asin(v2.getY()), Math.atan2(-(v2.getX()), v2.getZ()) }; } else if (order == RotationOrder.ZYX) { // r (Vector3D.plusI) coordinates are : // cos (theta) cos (psi), cos (theta) sin (psi), -sin (theta) // (-r) (Vector3D.plusK) coordinates are : // -sin (theta), sin (phi) cos (theta), cos (phi) cos (theta) // and we can choose to have theta in the interval [-PI/2 ; +PI/2] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(true); } return new double[] { Math.atan2(v1.getY(), v1.getX()), -Math.asin(v2.getX()), Math.atan2(v2.getY(), v2.getZ()) }; } else if (order == RotationOrder.XYX) { // r (Vector3D.plusI) coordinates are : // cos (theta), sin (phi1) sin (theta), -cos (phi1) sin (theta) // (-r) (Vector3D.plusI) coordinates are : // cos (theta), sin (theta) sin (phi2), sin (theta) cos (phi2) // and we can choose to have theta in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { Math.atan2(v1.getY(), -v1.getZ()), Math.acos(v2.getX()), Math.atan2(v2.getY(), v2.getZ()) }; } else if (order == RotationOrder.XZX) { // r (Vector3D.plusI) coordinates are : // cos (psi), cos (phi1) sin (psi), sin (phi1) sin (psi) // (-r) (Vector3D.plusI) coordinates are : // cos (psi), -sin (psi) cos (phi2), sin (psi) sin (phi2) // and we can choose to have psi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_I); Vector3D v2 = applyInverseTo(Vector3D.PLUS_I); if ((v2.getX() < -0.9999999999) || (v2.getX() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { Math.atan2(v1.getZ(), v1.getY()), Math.acos(v2.getX()), Math.atan2(v2.getZ(), -v2.getY()) }; } else if (order == RotationOrder.YXY) { // r (Vector3D.plusJ) coordinates are : // sin (theta1) sin (phi), cos (phi), cos (theta1) sin (phi) // (-r) (Vector3D.plusJ) coordinates are : // sin (phi) sin (theta2), cos (phi), -sin (phi) cos (theta2) // and we can choose to have phi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { Math.atan2(v1.getX(), v1.getZ()), Math.acos(v2.getY()), Math.atan2(v2.getX(), -v2.getZ()) }; } else if (order == RotationOrder.YZY) { // r (Vector3D.plusJ) coordinates are : // -cos (theta1) sin (psi), cos (psi), sin (theta1) sin (psi) // (-r) (Vector3D.plusJ) coordinates are : // sin (psi) cos (theta2), cos (psi), sin (psi) sin (theta2) // and we can choose to have psi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_J); Vector3D v2 = applyInverseTo(Vector3D.PLUS_J); if ((v2.getY() < -0.9999999999) || (v2.getY() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { Math.atan2(v1.getZ(), -v1.getX()), Math.acos(v2.getY()), Math.atan2(v2.getZ(), v2.getX()) }; } else if (order == RotationOrder.ZXZ) { // r (Vector3D.plusK) coordinates are : // sin (psi1) sin (phi), -cos (psi1) sin (phi), cos (phi) // (-r) (Vector3D.plusK) coordinates are : // sin (phi) sin (psi2), sin (phi) cos (psi2), cos (phi) // and we can choose to have phi in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { Math.atan2(v1.getX(), -v1.getY()), Math.acos(v2.getZ()), Math.atan2(v2.getX(), v2.getY()) }; } else { // last possibility is ZYZ // r (Vector3D.plusK) coordinates are : // cos (psi1) sin (theta), sin (psi1) sin (theta), cos (theta) // (-r) (Vector3D.plusK) coordinates are : // -sin (theta) cos (psi2), sin (theta) sin (psi2), cos (theta) // and we can choose to have theta in the interval [0 ; PI] Vector3D v1 = applyTo(Vector3D.PLUS_K); Vector3D v2 = applyInverseTo(Vector3D.PLUS_K); if ((v2.getZ() < -0.9999999999) || (v2.getZ() > 0.9999999999)) { throw new CardanEulerSingularityException(false); } return new double[] { Math.atan2(v1.getY(), v1.getX()), Math.acos(v2.getZ()), Math.atan2(v2.getY(), -v2.getX()) }; } } /** Get the 3X3 matrix corresponding to the instance * @return the matrix corresponding to the instance */ public double[][] getMatrix() { // products double q0q0 = q0 * q0; double q0q1 = q0 * q1; double q0q2 = q0 * q2; double q0q3 = q0 * q3; double q1q1 = q1 * q1; double q1q2 = q1 * q2; double q1q3 = q1 * q3; double q2q2 = q2 * q2; double q2q3 = q2 * q3; double q3q3 = q3 * q3; // create the matrix double[][] m = new double[3][]; m[0] = new double[3]; m[1] = new double[3]; m[2] = new double[3]; m [0][0] = 2.0 * (q0q0 + q1q1) - 1.0; m [1][0] = 2.0 * (q1q2 - q0q3); m [2][0] = 2.0 * (q1q3 + q0q2); m [0][1] = 2.0 * (q1q2 + q0q3); m [1][1] = 2.0 * (q0q0 + q2q2) - 1.0; m [2][1] = 2.0 * (q2q3 - q0q1); m [0][2] = 2.0 * (q1q3 - q0q2); m [1][2] = 2.0 * (q2q3 + q0q1); m [2][2] = 2.0 * (q0q0 + q3q3) - 1.0; return m; } /** Apply the rotation to a vector. * @param u vector to apply the rotation to * @return a new vector which is the image of u by the rotation */ public Vector3D applyTo(Vector3D u) { double x = u.getX(); double y = u.getY(); double z = u.getZ(); double s = q1 * x + q2 * y + q3 * z; return new Vector3D(2 * (q0 * (x * q0 - (q2 * z - q3 * y)) + s * q1) - x, 2 * (q0 * (y * q0 - (q3 * x - q1 * z)) + s * q2) - y, 2 * (q0 * (z * q0 - (q1 * y - q2 * x)) + s * q3) - z); } /** Apply the inverse of the rotation to a vector. * @param u vector to apply the inverse of the rotation to * @return a new vector which such that u is its image by the rotation */ public Vector3D applyInverseTo(Vector3D u) { double x = u.getX(); double y = u.getY(); double z = u.getZ(); double s = q1 * x + q2 * y + q3 * z; double m0 = -q0; return new Vector3D(2 * (m0 * (x * m0 - (q2 * z - q3 * y)) + s * q1) - x, 2 * (m0 * (y * m0 - (q3 * x - q1 * z)) + s * q2) - y, 2 * (m0 * (z * m0 - (q1 * y - q2 * x)) + s * q3) - z); } /** Apply the instance to another rotation. * Applying the instance to a rotation is computing the composition * in an order compliant with the following rule : let u be any * vector and v its image by r (i.e. r.applyTo(u) = v), let w be the image * of v by the instance (i.e. applyTo(v) = w), then w = comp.applyTo(u), * where comp = applyTo(r). * @param r rotation to apply the rotation to * @return a new rotation which is the composition of r by the instance */ public Rotation applyTo(Rotation r) { return new Rotation(r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3), r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2), r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3), r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1), false); } /** Apply the inverse of the instance to another rotation. * Applying the inverse of the instance to a rotation is computing * the composition in an order compliant with the following rule : * let u be any vector and v its image by r (i.e. r.applyTo(u) = v), * let w be the inverse image of v by the instance * (i.e. applyInverseTo(v) = w), then w = comp.applyTo(u), where * comp = applyInverseTo(r). * @param r rotation to apply the rotation to * @return a new rotation which is the composition of r by the inverse * of the instance */ public Rotation applyInverseTo(Rotation r) { return new Rotation(-r.q0 * q0 - (r.q1 * q1 + r.q2 * q2 + r.q3 * q3), -r.q1 * q0 + r.q0 * q1 + (r.q2 * q3 - r.q3 * q2), -r.q2 * q0 + r.q0 * q2 + (r.q3 * q1 - r.q1 * q3), -r.q3 * q0 + r.q0 * q3 + (r.q1 * q2 - r.q2 * q1), false); } /** Perfect orthogonality on a 3X3 matrix. * @param m initial matrix (not exactly orthogonal) * @param threshold convergence threshold for the iterative * orthogonality correction (convergence is reached when the * difference between two steps of the Frobenius norm of the * correction is below this threshold) * @return an orthogonal matrix close to m * @exception NotARotationMatrixException if the matrix cannot be * orthogonalized with the given threshold after 10 iterations */ private double[][] orthogonalizeMatrix(double[][] m, double threshold) throws NotARotationMatrixException { double[] m0 = m[0]; double[] m1 = m[1]; double[] m2 = m[2]; double x00 = m0[0]; double x01 = m0[1]; double x02 = m0[2]; double x10 = m1[0]; double x11 = m1[1]; double x12 = m1[2]; double x20 = m2[0]; double x21 = m2[1]; double x22 = m2[2]; double fn = 0; double fn1; double[][] o = new double[3][3]; double[] o0 = o[0]; double[] o1 = o[1]; double[] o2 = o[2]; // iterative correction: Xn+1 = Xn - 0.5 * (Xn.Mt.Xn - M) int i = 0; while (++i < 11) { // Mt.Xn double mx00 = m0[0] * x00 + m1[0] * x10 + m2[0] * x20; double mx10 = m0[1] * x00 + m1[1] * x10 + m2[1] * x20; double mx20 = m0[2] * x00 + m1[2] * x10 + m2[2] * x20; double mx01 = m0[0] * x01 + m1[0] * x11 + m2[0] * x21; double mx11 = m0[1] * x01 + m1[1] * x11 + m2[1] * x21; double mx21 = m0[2] * x01 + m1[2] * x11 + m2[2] * x21; double mx02 = m0[0] * x02 + m1[0] * x12 + m2[0] * x22; double mx12 = m0[1] * x02 + m1[1] * x12 + m2[1] * x22; double mx22 = m0[2] * x02 + m1[2] * x12 + m2[2] * x22; // Xn+1 o0[0] = x00 - 0.5 * (x00 * mx00 + x01 * mx10 + x02 * mx20 - m0[0]); o0[1] = x01 - 0.5 * (x00 * mx01 + x01 * mx11 + x02 * mx21 - m0[1]); o0[2] = x02 - 0.5 * (x00 * mx02 + x01 * mx12 + x02 * mx22 - m0[2]); o1[0] = x10 - 0.5 * (x10 * mx00 + x11 * mx10 + x12 * mx20 - m1[0]); o1[1] = x11 - 0.5 * (x10 * mx01 + x11 * mx11 + x12 * mx21 - m1[1]); o1[2] = x12 - 0.5 * (x10 * mx02 + x11 * mx12 + x12 * mx22 - m1[2]); o2[0] = x20 - 0.5 * (x20 * mx00 + x21 * mx10 + x22 * mx20 - m2[0]); o2[1] = x21 - 0.5 * (x20 * mx01 + x21 * mx11 + x22 * mx21 - m2[1]); o2[2] = x22 - 0.5 * (x20 * mx02 + x21 * mx12 + x22 * mx22 - m2[2]); // correction on each elements double corr00 = o0[0] - m0[0]; double corr01 = o0[1] - m0[1]; double corr02 = o0[2] - m0[2]; double corr10 = o1[0] - m1[0]; double corr11 = o1[1] - m1[1]; double corr12 = o1[2] - m1[2]; double corr20 = o2[0] - m2[0]; double corr21 = o2[1] - m2[1]; double corr22 = o2[2] - m2[2]; // Frobenius norm of the correction fn1 = corr00 * corr00 + corr01 * corr01 + corr02 * corr02 + corr10 * corr10 + corr11 * corr11 + corr12 * corr12 + corr20 * corr20 + corr21 * corr21 + corr22 * corr22; // convergence test if (Math.abs(fn1 - fn) <= threshold) return o; // prepare next iteration x00 = o0[0]; x01 = o0[1]; x02 = o0[2]; x10 = o1[0]; x11 = o1[1]; x12 = o1[2]; x20 = o2[0]; x21 = o2[1]; x22 = o2[2]; fn = fn1; } // the algorithm did not converge after 10 iterations throw new NotARotationMatrixException( "unable to orthogonalize matrix in {0} iterations", i - 1); } /** Compute the <i>distance between two rotations. * <p>The distance is intended here as a way to check if two * rotations are almost similar (i.e. they transform vectors the same way) * or very different. It is mathematically defined as the angle of * the rotation r that prepended to one of the rotations gives the other * one:</p> * <pre> * r<sub>1(r) = r2 * </pre> * <p>This distance is an angle between 0 and ?. Its value is the smallest * possible upper bound of the angle in radians between r<sub>1(v) * and r<sub>2(v) for all possible vectors v. This upper bound is * reached for some v. The distance is equal to 0 if and only if the two * rotations are identical.</p> * <p>Comparing two rotations should always be done using this value rather * than for example comparing the components of the quaternions. It is much * more stable, and has a geometric meaning. Also comparing quaternions * components is error prone since for example quaternions (0.36, 0.48, -0.48, -0.64) * and (-0.36, -0.48, 0.48, 0.64) represent exactly the same rotation despite * their components are different (they are exact opposites).</p> * @param r1 first rotation * @param r2 second rotation * @return <i>distance between r1 and r2 */ public static double distance(Rotation r1, Rotation r2) { return r1.applyInverseTo(r2).getAngle(); } }

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math Rotation.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.