alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (Vector3D.java)

This example Commons Math source code file (Vector3D.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

default_format, io, minus_i, minus_j, override, override, plus_i, plus_i, plus_j, plus_k, serializable, vector3d, vector3d, vector3dformat, zero

The Commons Math Vector3D.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.geometry;

import java.io.Serializable;

import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.util.MathUtils;

/**
 * This class implements vectors in a three-dimensional space.
 * <p>Instance of this class are guaranteed to be immutable.

* @version $Revision: 922713 $ $Date: 2010-03-13 20:26:13 -0500 (Sat, 13 Mar 2010) $ * @since 1.2 */ public class Vector3D implements Serializable { /** Null vector (coordinates: 0, 0, 0). */ public static final Vector3D ZERO = new Vector3D(0, 0, 0); /** First canonical vector (coordinates: 1, 0, 0). */ public static final Vector3D PLUS_I = new Vector3D(1, 0, 0); /** Opposite of the first canonical vector (coordinates: -1, 0, 0). */ public static final Vector3D MINUS_I = new Vector3D(-1, 0, 0); /** Second canonical vector (coordinates: 0, 1, 0). */ public static final Vector3D PLUS_J = new Vector3D(0, 1, 0); /** Opposite of the second canonical vector (coordinates: 0, -1, 0). */ public static final Vector3D MINUS_J = new Vector3D(0, -1, 0); /** Third canonical vector (coordinates: 0, 0, 1). */ public static final Vector3D PLUS_K = new Vector3D(0, 0, 1); /** Opposite of the third canonical vector (coordinates: 0, 0, -1). */ public static final Vector3D MINUS_K = new Vector3D(0, 0, -1); // CHECKSTYLE: stop ConstantName /** A vector with all coordinates set to NaN. */ public static final Vector3D NaN = new Vector3D(Double.NaN, Double.NaN, Double.NaN); // CHECKSTYLE: resume ConstantName /** A vector with all coordinates set to positive infinity. */ public static final Vector3D POSITIVE_INFINITY = new Vector3D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A vector with all coordinates set to negative infinity. */ public static final Vector3D NEGATIVE_INFINITY = new Vector3D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY); /** Default format. */ private static final Vector3DFormat DEFAULT_FORMAT = Vector3DFormat.getInstance(); /** Serializable version identifier. */ private static final long serialVersionUID = 5133268763396045979L; /** Abscissa. */ private final double x; /** Ordinate. */ private final double y; /** Height. */ private final double z; /** Simple constructor. * Build a vector from its coordinates * @param x abscissa * @param y ordinate * @param z height * @see #getX() * @see #getY() * @see #getZ() */ public Vector3D(double x, double y, double z) { this.x = x; this.y = y; this.z = z; } /** Simple constructor. * Build a vector from its azimuthal coordinates * @param alpha azimuth (?) around Z * (0 is +X, ?/2 is +Y, ? is -X and 3?/2 is -Y) * @param delta elevation (?) above (XY) plane, from -?/2 to +?/2 * @see #getAlpha() * @see #getDelta() */ public Vector3D(double alpha, double delta) { double cosDelta = Math.cos(delta); this.x = Math.cos(alpha) * cosDelta; this.y = Math.sin(alpha) * cosDelta; this.z = Math.sin(delta); } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public Vector3D(double a, Vector3D u) { this.x = a * u.x; this.y = a * u.y; this.z = a * u.z; } /** Linear constructor * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2) { this.x = a1 * u1.x + a2 * u2.x; this.y = a1 * u1.y + a2 * u2.y; this.z = a1 * u1.z + a2 * u2.z; } /** Linear constructor * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2, double a3, Vector3D u3) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x; this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y; this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z; } /** Linear constructor * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public Vector3D(double a1, Vector3D u1, double a2, Vector3D u2, double a3, Vector3D u3, double a4, Vector3D u4) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x; this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y; this.z = a1 * u1.z + a2 * u2.z + a3 * u3.z + a4 * u4.z; } /** Get the abscissa of the vector. * @return abscissa of the vector * @see #Vector3D(double, double, double) */ public double getX() { return x; } /** Get the ordinate of the vector. * @return ordinate of the vector * @see #Vector3D(double, double, double) */ public double getY() { return y; } /** Get the height of the vector. * @return height of the vector * @see #Vector3D(double, double, double) */ public double getZ() { return z; } /** Get the L<sub>1 norm for the vector. * @return L<sub>1 norm for the vector */ public double getNorm1() { return Math.abs(x) + Math.abs(y) + Math.abs(z); } /** Get the L<sub>2 norm for the vector. * @return euclidian norm for the vector */ public double getNorm() { return Math.sqrt (x * x + y * y + z * z); } /** Get the square of the norm for the vector. * @return square of the euclidian norm for the vector */ public double getNormSq() { return x * x + y * y + z * z; } /** Get the L<sub>? norm for the vector. * @return L<sub>? norm for the vector */ public double getNormInf() { return Math.max(Math.max(Math.abs(x), Math.abs(y)), Math.abs(z)); } /** Get the azimuth of the vector. * @return azimuth (?) of the vector, between -? and +? * @see #Vector3D(double, double) */ public double getAlpha() { return Math.atan2(y, x); } /** Get the elevation of the vector. * @return elevation (?) of the vector, between -?/2 and +?/2 * @see #Vector3D(double, double) */ public double getDelta() { return Math.asin(z / getNorm()); } /** Add a vector to the instance. * @param v vector to add * @return a new vector */ public Vector3D add(Vector3D v) { return new Vector3D(x + v.x, y + v.y, z + v.z); } /** Add a scaled vector to the instance. * @param factor scale factor to apply to v before adding it * @param v vector to add * @return a new vector */ public Vector3D add(double factor, Vector3D v) { return new Vector3D(x + factor * v.x, y + factor * v.y, z + factor * v.z); } /** Subtract a vector from the instance. * @param v vector to subtract * @return a new vector */ public Vector3D subtract(Vector3D v) { return new Vector3D(x - v.x, y - v.y, z - v.z); } /** Subtract a scaled vector from the instance. * @param factor scale factor to apply to v before subtracting it * @param v vector to subtract * @return a new vector */ public Vector3D subtract(double factor, Vector3D v) { return new Vector3D(x - factor * v.x, y - factor * v.y, z - factor * v.z); } /** Get a normalized vector aligned with the instance. * @return a new normalized vector * @exception ArithmeticException if the norm is zero */ public Vector3D normalize() { double s = getNorm(); if (s == 0) { throw MathRuntimeException.createArithmeticException("cannot normalize a zero norm vector"); } return scalarMultiply(1 / s); } /** Get a vector orthogonal to the instance. * <p>There are an infinite number of normalized vectors orthogonal * to the instance. This method picks up one of them almost * arbitrarily. It is useful when one needs to compute a reference * frame with one of the axes in a predefined direction. The * following example shows how to build a frame having the k axis * aligned with the known vector u : * <pre> * Vector3D k = u.normalize(); * Vector3D i = k.orthogonal(); * Vector3D j = Vector3D.crossProduct(k, i); * </code>

* @return a new normalized vector orthogonal to the instance * @exception ArithmeticException if the norm of the instance is null */ public Vector3D orthogonal() { double threshold = 0.6 * getNorm(); if (threshold == 0) { throw MathRuntimeException.createArithmeticException("zero norm"); } if ((x >= -threshold) && (x <= threshold)) { double inverse = 1 / Math.sqrt(y * y + z * z); return new Vector3D(0, inverse * z, -inverse * y); } else if ((y >= -threshold) && (y <= threshold)) { double inverse = 1 / Math.sqrt(x * x + z * z); return new Vector3D(-inverse * z, 0, inverse * x); } double inverse = 1 / Math.sqrt(x * x + y * y); return new Vector3D(inverse * y, -inverse * x, 0); } /** Compute the angular separation between two vectors. * <p>This method computes the angular separation between two * vectors using the dot product for well separated vectors and the * cross product for almost aligned vectors. This allows to have a * good accuracy in all cases, even for vectors very close to each * other.</p> * @param v1 first vector * @param v2 second vector * @return angular separation between v1 and v2 * @exception ArithmeticException if either vector has a null norm */ public static double angle(Vector3D v1, Vector3D v2) { double normProduct = v1.getNorm() * v2.getNorm(); if (normProduct == 0) { throw MathRuntimeException.createArithmeticException("zero norm"); } double dot = dotProduct(v1, v2); double threshold = normProduct * 0.9999; if ((dot < -threshold) || (dot > threshold)) { // the vectors are almost aligned, compute using the sine Vector3D v3 = crossProduct(v1, v2); if (dot >= 0) { return Math.asin(v3.getNorm() / normProduct); } return Math.PI - Math.asin(v3.getNorm() / normProduct); } // the vectors are sufficiently separated to use the cosine return Math.acos(dot / normProduct); } /** Get the opposite of the instance. * @return a new vector which is opposite to the instance */ public Vector3D negate() { return new Vector3D(-x, -y, -z); } /** Multiply the instance by a scalar * @param a scalar * @return a new vector */ public Vector3D scalarMultiply(double a) { return new Vector3D(a * x, a * y, a * z); } /** * Returns true if any coordinate of this vector is NaN; false otherwise * @return true if any coordinate of this vector is NaN; false otherwise */ public boolean isNaN() { return Double.isNaN(x) || Double.isNaN(y) || Double.isNaN(z); } /** * Returns true if any coordinate of this vector is infinite and none are NaN; * false otherwise * @return true if any coordinate of this vector is infinite and none are NaN; * false otherwise */ public boolean isInfinite() { return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y) || Double.isInfinite(z)); } /** * Test for the equality of two 3D vectors. * <p> * If all coordinates of two 3D vectors are exactly the same, and none are * <code>Double.NaN, the two 3D vectors are considered to be equal. * </p> * <p> * <code>NaN coordinates are considered to affect globally the vector * and be equals to each other - i.e, if either (or all) coordinates of the * 3D vector are equal to <code>Double.NaN, the 3D vector is equal to * {@link #NaN}. * </p> * * @param other Object to test for equality to this * @return true if two 3D vector objects are equal, false if * object is null, not an instance of Vector3D, or * not equal to this Vector3D instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Vector3D) { final Vector3D rhs = (Vector3D)other; if (rhs.isNaN()) { return this.isNaN(); } return (x == rhs.x) && (y == rhs.y) && (z == rhs.z); } return false; } /** * Get a hashCode for the 3D vector. * <p> * All NaN values have the same hash code.</p> * * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 8; } return 31 * (23 * MathUtils.hash(x) + 19 * MathUtils.hash(y) + MathUtils.hash(z)); } /** Compute the dot-product of two vectors. * @param v1 first vector * @param v2 second vector * @return the dot product v1.v2 */ public static double dotProduct(Vector3D v1, Vector3D v2) { return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; } /** Compute the cross-product of two vectors. * @param v1 first vector * @param v2 second vector * @return the cross product v1 ^ v2 as a new Vector */ public static Vector3D crossProduct(Vector3D v1, Vector3D v2) { return new Vector3D(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x * v2.y - v1.y * v2.x); } /** Compute the distance between two vectors according to the L<sub>1 norm. * <p>Calling this method is equivalent to calling: * <code>v1.subtract(v2).getNorm1() except that no intermediate * vector is built</p> * @param v1 first vector * @param v2 second vector * @return the distance between v1 and v2 according to the L<sub>1 norm */ public static double distance1(Vector3D v1, Vector3D v2) { final double dx = Math.abs(v2.x - v1.x); final double dy = Math.abs(v2.y - v1.y); final double dz = Math.abs(v2.z - v1.z); return dx + dy + dz; } /** Compute the distance between two vectors according to the L<sub>2 norm. * <p>Calling this method is equivalent to calling: * <code>v1.subtract(v2).getNorm() except that no intermediate * vector is built</p> * @param v1 first vector * @param v2 second vector * @return the distance between v1 and v2 according to the L<sub>2 norm */ public static double distance(Vector3D v1, Vector3D v2) { final double dx = v2.x - v1.x; final double dy = v2.y - v1.y; final double dz = v2.z - v1.z; return Math.sqrt(dx * dx + dy * dy + dz * dz); } /** Compute the distance between two vectors according to the L<sub>? norm. * <p>Calling this method is equivalent to calling: * <code>v1.subtract(v2).getNormInf() except that no intermediate * vector is built</p> * @param v1 first vector * @param v2 second vector * @return the distance between v1 and v2 according to the L<sub>? norm */ public static double distanceInf(Vector3D v1, Vector3D v2) { final double dx = Math.abs(v2.x - v1.x); final double dy = Math.abs(v2.y - v1.y); final double dz = Math.abs(v2.z - v1.z); return Math.max(Math.max(dx, dy), dz); } /** Compute the square of the distance between two vectors. * <p>Calling this method is equivalent to calling: * <code>v1.subtract(v2).getNormSq() except that no intermediate * vector is built</p> * @param v1 first vector * @param v2 second vector * @return the square of the distance between v1 and v2 */ public static double distanceSq(Vector3D v1, Vector3D v2) { final double dx = v2.x - v1.x; final double dy = v2.y - v1.y; final double dz = v2.z - v1.z; return dx * dx + dy * dy + dz * dz; } /** Get a string representation of this vector. * @return a string representation of this vector */ @Override public String toString() { return DEFAULT_FORMAT.format(this); } }

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math Vector3D.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.