alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (FieldLUDecompositionImpl.java)

This example Commons Math source code file (FieldLUDecompositionImpl.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

array2drowfieldmatrix, array2drowfieldmatrix, field, fieldelement, fieldmatrix, fieldmatrix, illegalargumentexception, invalidmatrixexception, invalidmatrixexception, reflection, singularmatrixexception, solver, suppresswarnings, t, t

The Commons Math FieldLUDecompositionImpl.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.linear;

import java.lang.reflect.Array;

import org.apache.commons.math.Field;
import org.apache.commons.math.FieldElement;
import org.apache.commons.math.MathRuntimeException;

/**
 * Calculates the LUP-decomposition of a square matrix.
 * <p>The LUP-decomposition of a matrix A consists of three matrices
 * L, U and P that satisfy: PA = LU, L is lower triangular, and U is
 * upper triangular and P is a permutation matrix. All matrices are
 * m×m.</p>
 * <p>Since {@link FieldElement field elements} do not provide an ordering
 * operator, the permutation matrix is computed here only in order to avoid
 * a zero pivot element, no attempt is done to get the largest pivot element.</p>
 *
 * @param <T> the type of the field elements
 * @version $Revision: 903046 $ $Date: 2010-01-25 21:07:26 -0500 (Mon, 25 Jan 2010) $
 * @since 2.0
 */
public class FieldLUDecompositionImpl<T extends FieldElement implements FieldLUDecomposition {

    /** Field to which the elements belong. */
    private final Field<T> field;

    /** Entries of LU decomposition. */
    private T lu[][];

    /** Pivot permutation associated with LU decomposition */
    private int[] pivot;

    /** Parity of the permutation associated with the LU decomposition */
    private boolean even;

    /** Singularity indicator. */
    private boolean singular;

    /** Cached value of L. */
    private FieldMatrix<T> cachedL;

    /** Cached value of U. */
    private FieldMatrix<T> cachedU;

    /** Cached value of P. */
    private FieldMatrix<T> cachedP;

    /**
     * Calculates the LU-decomposition of the given matrix.
     * @param matrix The matrix to decompose.
     * @exception NonSquareMatrixException if matrix is not square
     */
    public FieldLUDecompositionImpl(FieldMatrix<T> matrix)
        throws NonSquareMatrixException {

        if (!matrix.isSquare()) {
            throw new NonSquareMatrixException(matrix.getRowDimension(), matrix.getColumnDimension());
        }

        final int m = matrix.getColumnDimension();
        field = matrix.getField();
        lu = matrix.getData();
        pivot = new int[m];
        cachedL = null;
        cachedU = null;
        cachedP = null;

        // Initialize permutation array and parity
        for (int row = 0; row < m; row++) {
            pivot[row] = row;
        }
        even     = true;
        singular = false;

        // Loop over columns
        for (int col = 0; col < m; col++) {

            T sum = field.getZero();

            // upper
            for (int row = 0; row < col; row++) {
                final T[] luRow = lu[row];
                sum = luRow[col];
                for (int i = 0; i < row; i++) {
                    sum = sum.subtract(luRow[i].multiply(lu[i][col]));
                }
                luRow[col] = sum;
            }

            // lower
            int nonZero = col; // permutation row
            for (int row = col; row < m; row++) {
                final T[] luRow = lu[row];
                sum = luRow[col];
                for (int i = 0; i < col; i++) {
                    sum = sum.subtract(luRow[i].multiply(lu[i][col]));
                }
                luRow[col] = sum;

                if (lu[nonZero][col].equals(field.getZero())) {
                    // try to select a better permutation choice
                    ++nonZero;
                }
            }

            // Singularity check
            if (nonZero >= m) {
                singular = true;
                return;
            }

            // Pivot if necessary
            if (nonZero != col) {
                T tmp = field.getZero();
                for (int i = 0; i < m; i++) {
                    tmp = lu[nonZero][i];
                    lu[nonZero][i] = lu[col][i];
                    lu[col][i] = tmp;
                }
                int temp = pivot[nonZero];
                pivot[nonZero] = pivot[col];
                pivot[col] = temp;
                even = !even;
            }

            // Divide the lower elements by the "winning" diagonal elt.
            final T luDiag = lu[col][col];
            for (int row = col + 1; row < m; row++) {
                final T[] luRow = lu[row];
                luRow[col] = luRow[col].divide(luDiag);
            }
        }

    }

    /** {@inheritDoc} */
    public FieldMatrix<T> getL() {
        if ((cachedL == null) && !singular) {
            final int m = pivot.length;
            cachedL = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                final T[] luI = lu[i];
                for (int j = 0; j < i; ++j) {
                    cachedL.setEntry(i, j, luI[j]);
                }
                cachedL.setEntry(i, i, field.getOne());
            }
        }
        return cachedL;
    }

    /** {@inheritDoc} */
    public FieldMatrix<T> getU() {
        if ((cachedU == null) && !singular) {
            final int m = pivot.length;
            cachedU = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                final T[] luI = lu[i];
                for (int j = i; j < m; ++j) {
                    cachedU.setEntry(i, j, luI[j]);
                }
            }
        }
        return cachedU;
    }

    /** {@inheritDoc} */
    public FieldMatrix<T> getP() {
        if ((cachedP == null) && !singular) {
            final int m = pivot.length;
            cachedP = new Array2DRowFieldMatrix<T>(field, m, m);
            for (int i = 0; i < m; ++i) {
                cachedP.setEntry(i, pivot[i], field.getOne());
            }
        }
        return cachedP;
    }

    /** {@inheritDoc} */
    public int[] getPivot() {
        return pivot.clone();
    }

    /** {@inheritDoc} */
    public T getDeterminant() {
        if (singular) {
            return field.getZero();
        } else {
            final int m = pivot.length;
            T determinant = even ? field.getOne() : field.getZero().subtract(field.getOne());
            for (int i = 0; i < m; i++) {
                determinant = determinant.multiply(lu[i][i]);
            }
            return determinant;
        }
    }

    /** {@inheritDoc} */
    public FieldDecompositionSolver<T> getSolver() {
        return new Solver<T>(field, lu, pivot, singular);
    }

    /** Specialized solver. */
    private static class Solver<T extends FieldElement implements FieldDecompositionSolver {

        /** Serializable version identifier. */
        private static final long serialVersionUID = -6353105415121373022L;

        /** Field to which the elements belong. */
        private final Field<T> field;

        /** Entries of LU decomposition. */
        private final T lu[][];

        /** Pivot permutation associated with LU decomposition. */
        private final int[] pivot;

        /** Singularity indicator. */
        private final boolean singular;

        /**
         * Build a solver from decomposed matrix.
         * @param field field to which the matrix elements belong
         * @param lu entries of LU decomposition
         * @param pivot pivot permutation associated with LU decomposition
         * @param singular singularity indicator
         */
        private Solver(final Field<T> field, final T[][] lu,
                       final int[] pivot, final boolean singular) {
            this.field    = field;
            this.lu       = lu;
            this.pivot    = pivot;
            this.singular = singular;
        }

        /** {@inheritDoc} */
        public boolean isNonSingular() {
            return !singular;
        }

        /** {@inheritDoc} */
        public T[] solve(T[] b)
            throws IllegalArgumentException, InvalidMatrixException {

            final int m = pivot.length;
            if (b.length != m) {
                throw MathRuntimeException.createIllegalArgumentException(
                        "vector length mismatch: got {0} but expected {1}",
                        b.length, m);
            }
            if (singular) {
                throw new SingularMatrixException();
            }

            @SuppressWarnings("unchecked") // field is of type T
            final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(), m);

            // Apply permutations to b
            for (int row = 0; row < m; row++) {
                bp[row] = b[pivot[row]];
            }

            // Solve LY = b
            for (int col = 0; col < m; col++) {
                final T bpCol = bp[col];
                for (int i = col + 1; i < m; i++) {
                    bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                }
            }

            // Solve UX = Y
            for (int col = m - 1; col >= 0; col--) {
                bp[col] = bp[col].divide(lu[col][col]);
                final T bpCol = bp[col];
                for (int i = 0; i < col; i++) {
                    bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                }
            }

            return bp;

        }

        /** {@inheritDoc} */
        public FieldVector<T> solve(FieldVector b)
            throws IllegalArgumentException, InvalidMatrixException {
            try {
                return solve((ArrayFieldVector<T>) b);
            } catch (ClassCastException cce) {

                final int m = pivot.length;
                if (b.getDimension() != m) {
                    throw MathRuntimeException.createIllegalArgumentException(
                            "vector length mismatch: got {0} but expected {1}",
                            b.getDimension(), m);
                }
                if (singular) {
                    throw new SingularMatrixException();
                }

                @SuppressWarnings("unchecked") // field is of type T
                final T[] bp = (T[]) Array.newInstance(field.getZero().getClass(), m);

                // Apply permutations to b
                for (int row = 0; row < m; row++) {
                    bp[row] = b.getEntry(pivot[row]);
                }

                // Solve LY = b
                for (int col = 0; col < m; col++) {
                    final T bpCol = bp[col];
                    for (int i = col + 1; i < m; i++) {
                        bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                    }
                }

                // Solve UX = Y
                for (int col = m - 1; col >= 0; col--) {
                    bp[col] = bp[col].divide(lu[col][col]);
                    final T bpCol = bp[col];
                    for (int i = 0; i < col; i++) {
                        bp[i] = bp[i].subtract(bpCol.multiply(lu[i][col]));
                    }
                }

                return new ArrayFieldVector<T>(bp, false);

            }
        }

        /** Solve the linear equation A × X = B.
         * <p>The A matrix is implicit here. It is 

* @param b right-hand side of the equation A × X = B * @return a vector X such that A × X = B * @exception IllegalArgumentException if matrices dimensions don't match * @exception InvalidMatrixException if decomposed matrix is singular */ public ArrayFieldVector<T> solve(ArrayFieldVector b) throws IllegalArgumentException, InvalidMatrixException { return new ArrayFieldVector<T>(solve(b.getDataRef()), false); } /** {@inheritDoc} */ public FieldMatrix<T> solve(FieldMatrix b) throws IllegalArgumentException, InvalidMatrixException { final int m = pivot.length; if (b.getRowDimension() != m) { throw MathRuntimeException.createIllegalArgumentException( "dimensions mismatch: got {0}x{1} but expected {2}x{3}", b.getRowDimension(), b.getColumnDimension(), m, "n"); } if (singular) { throw new SingularMatrixException(); } final int nColB = b.getColumnDimension(); // Apply permutations to b @SuppressWarnings("unchecked") // field is of type T final T[][] bp = (T[][]) Array.newInstance(field.getZero().getClass(), new int[] { m, nColB }); for (int row = 0; row < m; row++) { final T[] bpRow = bp[row]; final int pRow = pivot[row]; for (int col = 0; col < nColB; col++) { bpRow[col] = b.getEntry(pRow, col); } } // Solve LY = b for (int col = 0; col < m; col++) { final T[] bpCol = bp[col]; for (int i = col + 1; i < m; i++) { final T[] bpI = bp[i]; final T luICol = lu[i][col]; for (int j = 0; j < nColB; j++) { bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol)); } } } // Solve UX = Y for (int col = m - 1; col >= 0; col--) { final T[] bpCol = bp[col]; final T luDiag = lu[col][col]; for (int j = 0; j < nColB; j++) { bpCol[j] = bpCol[j].divide(luDiag); } for (int i = 0; i < col; i++) { final T[] bpI = bp[i]; final T luICol = lu[i][col]; for (int j = 0; j < nColB; j++) { bpI[j] = bpI[j].subtract(bpCol[j].multiply(luICol)); } } } return new Array2DRowFieldMatrix<T>(bp, false); } /** {@inheritDoc} */ public FieldMatrix<T> getInverse() throws InvalidMatrixException { final int m = pivot.length; final T one = field.getOne(); FieldMatrix<T> identity = new Array2DRowFieldMatrix(field, m, m); for (int i = 0; i < m; ++i) { identity.setEntry(i, i, one); } return solve(identity); } } }

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math FieldLUDecompositionImpl.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.