alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (FirstOrderIntegratorWithJacobiansTest.java)

This example Commons Math source code file (FirstOrderIntegratorWithJacobiansTest.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

brusselator, brusselator, circle, circle, derivativeexception, firstorderintegrator, firstorderintegratorwithjacobians, firstorderintegratorwithjacobians, integratorexception, odewithjacobians, stephandlerwithjacobians, summarystatistics, summarystatistics, test

The Commons Math FirstOrderIntegratorWithJacobiansTest.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.ode.jacobians;

import org.apache.commons.math.ode.DerivativeException;
import org.apache.commons.math.ode.FirstOrderIntegrator;
import org.apache.commons.math.ode.IntegratorException;
import org.apache.commons.math.ode.nonstiff.DormandPrince54Integrator;
import org.apache.commons.math.stat.descriptive.SummaryStatistics;
import org.junit.Assert;
import org.junit.Test;

public class FirstOrderIntegratorWithJacobiansTest {

    @Test
    public void testLowAccuracyExternalDifferentiation()
        throws IntegratorException, DerivativeException {
        // this test does not really test FirstOrderIntegratorWithJacobians,
        // it only shows that WITHOUT this class, attempting to recover
        // the jacobians from external differentiation on simple integration
        // results with low accuracy gives very poor results. In fact,
        // the curves dy/dp = g(b) when b varies from 2.88 to 3.08 are
        // essentially noise.
        // This test is taken from Hairer, Norsett and Wanner book
        // Solving Ordinary Differential Equations I (Nonstiff problems),
        // the curves dy/dp = g(b) are in figure 6.5
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-4, 1.0e-4);
        double hP = 1.0e-12;
        SummaryStatistics residualsP0 = new SummaryStatistics();
        SummaryStatistics residualsP1 = new SummaryStatistics();
        for (double b = 2.88; b < 3.08; b += 0.001) {
            Brusselator brusselator = new Brusselator(b);
            double[] y = { 1.3, b };
            integ.integrate(brusselator, 0, y, 20.0, y);
            double[] yP = { 1.3, b + hP };
            brusselator.setParameter(0, b + hP);
            integ.integrate(brusselator, 0, yP, 20.0, yP);
            residualsP0.addValue((yP[0] - y[0]) / hP - brusselator.dYdP0());
            residualsP1.addValue((yP[1] - y[1]) / hP - brusselator.dYdP1());
        }
        Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) > 600);
        Assert.assertTrue(residualsP0.getStandardDeviation() > 30);
        Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) > 800);
        Assert.assertTrue(residualsP1.getStandardDeviation() > 50);
    }

    @Test
    public void testHighAccuracyExternalDifferentiation()
        throws IntegratorException, DerivativeException {
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
        double hP = 1.0e-12;
        SummaryStatistics residualsP0 = new SummaryStatistics();
        SummaryStatistics residualsP1 = new SummaryStatistics();
        for (double b = 2.88; b < 3.08; b += 0.001) {
            Brusselator brusselator = new Brusselator(b);
            double[] y = { 1.3, b };
            integ.integrate(brusselator, 0, y, 20.0, y);
            double[] yP = { 1.3, b + hP };
            brusselator.setParameter(0, b + hP);
            integ.integrate(brusselator, 0, yP, 20.0, yP);
            residualsP0.addValue((yP[0] - y[0]) / hP - brusselator.dYdP0());
            residualsP1.addValue((yP[1] - y[1]) / hP - brusselator.dYdP1());
        }
        Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) > 0.02);
        Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) < 0.03);
        Assert.assertTrue(residualsP0.getStandardDeviation() > 0.003);
        Assert.assertTrue(residualsP0.getStandardDeviation() < 0.004);
        Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) > 0.04);
        Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) < 0.05);
        Assert.assertTrue(residualsP1.getStandardDeviation() > 0.006);
        Assert.assertTrue(residualsP1.getStandardDeviation() < 0.007);
    }

    @Test
    public void testInternalDifferentiation()
        throws IntegratorException, DerivativeException {
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-4, 1.0e-4);
        double hP = 1.0e-12;
        SummaryStatistics residualsP0 = new SummaryStatistics();
        SummaryStatistics residualsP1 = new SummaryStatistics();
        for (double b = 2.88; b < 3.08; b += 0.001) {
            Brusselator brusselator = new Brusselator(b);
            brusselator.setParameter(0, b);
            double[] z = { 1.3, b };
            double[][] dZdZ0 = new double[2][2];
            double[][] dZdP  = new double[2][1];
            double hY = 1.0e-12;
            FirstOrderIntegratorWithJacobians extInt =
                new FirstOrderIntegratorWithJacobians(integ, brusselator, new double[] { b },
                                                      new double[] { hY, hY }, new double[] { hP });
            extInt.setMaxEvaluations(5000);
            extInt.integrate(0, z, new double[][] { { 0.0 }, { 1.0 } }, 20.0, z, dZdZ0, dZdP);
            Assert.assertEquals(5000, extInt.getMaxEvaluations());
            Assert.assertTrue(extInt.getEvaluations() > 2000);
            Assert.assertTrue(extInt.getEvaluations() < 2500);
            Assert.assertEquals(4 * integ.getEvaluations(), extInt.getEvaluations());
            residualsP0.addValue(dZdP[0][0] - brusselator.dYdP0());
            residualsP1.addValue(dZdP[1][0] - brusselator.dYdP1());
        }
        Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) < 0.006);
        Assert.assertTrue(residualsP0.getStandardDeviation() < 0.0009);
        Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) < 0.009);
        Assert.assertTrue(residualsP1.getStandardDeviation() < 0.0014);
    }

    @Test
    public void testAnalyticalDifferentiation()
        throws IntegratorException, DerivativeException {
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-4, 1.0e-4);
        SummaryStatistics residualsP0 = new SummaryStatistics();
        SummaryStatistics residualsP1 = new SummaryStatistics();
        for (double b = 2.88; b < 3.08; b += 0.001) {
            Brusselator brusselator = new Brusselator(b);
            brusselator.setParameter(0, b);
            double[] z = { 1.3, b };
            double[][] dZdZ0 = new double[2][2];
            double[][] dZdP  = new double[2][1];
            FirstOrderIntegratorWithJacobians extInt =
                new FirstOrderIntegratorWithJacobians(integ, brusselator);
            extInt.setMaxEvaluations(5000);
            extInt.integrate(0, z, new double[][] { { 0.0 }, { 1.0 } }, 20.0, z, dZdZ0, dZdP);
            Assert.assertEquals(5000, extInt.getMaxEvaluations());
            Assert.assertTrue(extInt.getEvaluations() > 510);
            Assert.assertTrue(extInt.getEvaluations() < 610);
            Assert.assertEquals(integ.getEvaluations(), extInt.getEvaluations());
            residualsP0.addValue(dZdP[0][0] - brusselator.dYdP0());
            residualsP1.addValue(dZdP[1][0] - brusselator.dYdP1());
        }
        Assert.assertTrue((residualsP0.getMax() - residualsP0.getMin()) < 0.004);
        Assert.assertTrue(residualsP0.getStandardDeviation() < 0.0008);
        Assert.assertTrue((residualsP1.getMax() - residualsP1.getMin()) < 0.005);
        Assert.assertTrue(residualsP1.getStandardDeviation() < 0.0010);
    }

    @Test
    public void testFinalResult() throws IntegratorException, DerivativeException {
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
        double[] y = new double[] { 0.0, 1.0 };
        Circle circle = new Circle(y, 1.0, 1.0, 0.1);
        double[][] dydy0 = new double[2][2];
        double[][] dydp  = new double[2][3];
        double t = 18 * Math.PI;
        FirstOrderIntegratorWithJacobians extInt =
            new FirstOrderIntegratorWithJacobians(integ, circle);
        extInt.integrate(0, y, circle.exactDyDp(0), t, y, dydy0, dydp);
        for (int i = 0; i < y.length; ++i) {
            Assert.assertEquals(circle.exactY(t)[i], y[i], 1.0e-10);
        }
        for (int i = 0; i < dydy0.length; ++i) {
            for (int j = 0; j < dydy0[i].length; ++j) {
                Assert.assertEquals(circle.exactDyDy0(t)[i][j], dydy0[i][j], 1.0e-10);
            }
        }
        for (int i = 0; i < dydp.length; ++i) {
            for (int j = 0; j < dydp[i].length; ++j) {
                Assert.assertEquals(circle.exactDyDp(t)[i][j], dydp[i][j], 1.0e-8);
            }
        }
    }

    @Test
    public void testStepHandlerResult() throws IntegratorException, DerivativeException {
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
        double[] y = new double[] { 0.0, 1.0 };
        final Circle circle = new Circle(y, 1.0, 1.0, 0.1);
        double[][] dydy0 = new double[2][2];
        double[][] dydp  = new double[2][3];
        double t = 18 * Math.PI;
        final FirstOrderIntegratorWithJacobians extInt =
            new FirstOrderIntegratorWithJacobians(integ, circle);
        extInt.addStepHandler(new StepHandlerWithJacobians() {

            public void reset() {
            }

            public boolean requiresDenseOutput() {
                return false;
            }

            public void handleStep(StepInterpolatorWithJacobians interpolator, boolean isLast)
                throws DerivativeException {
                double     t     = interpolator.getCurrentTime();
                double[]   y     = interpolator.getInterpolatedY();
                double[][] dydy0 = interpolator.getInterpolatedDyDy0();
                double[][] dydp  = interpolator.getInterpolatedDyDp();
                Assert.assertEquals(interpolator.getPreviousTime(), extInt.getCurrentStepStart(), 1.0e-10);
                Assert.assertTrue(extInt.getCurrentSignedStepsize() < 0.5);
                for (int i = 0; i < y.length; ++i) {
                    Assert.assertEquals(circle.exactY(t)[i], y[i], 1.0e-10);
                }
                for (int i = 0; i < dydy0.length; ++i) {
                    for (int j = 0; j < dydy0[i].length; ++j) {
                        Assert.assertEquals(circle.exactDyDy0(t)[i][j], dydy0[i][j], 1.0e-10);
                    }
                }
                for (int i = 0; i < dydp.length; ++i) {
                    for (int j = 0; j < dydp[i].length; ++j) {
                        Assert.assertEquals(circle.exactDyDp(t)[i][j], dydp[i][j], 1.0e-8);
                    }
                }

                double[]   yDot     = interpolator.getInterpolatedYDot();
                double[][] dydy0Dot = interpolator.getInterpolatedDyDy0Dot();
                double[][] dydpDot  = interpolator.getInterpolatedDyDpDot();

                for (int i = 0; i < yDot.length; ++i) {
                    Assert.assertEquals(circle.exactYDot(t)[i], yDot[i], 1.0e-11);
                }
                for (int i = 0; i < dydy0Dot.length; ++i) {
                    for (int j = 0; j < dydy0Dot[i].length; ++j) {
                        Assert.assertEquals(circle.exactDyDy0Dot(t)[i][j], dydy0Dot[i][j], 1.0e-11);
                    }
                }
                for (int i = 0; i < dydpDot.length; ++i) {
                    for (int j = 0; j < dydpDot[i].length; ++j) {
                        Assert.assertEquals(circle.exactDyDpDot(t)[i][j], dydpDot[i][j], 1.0e-9);
                    }
                }
            }
        });
        extInt.integrate(0, y, circle.exactDyDp(0), t, y, dydy0, dydp);
    }

    @Test
    public void testEventHandler() throws IntegratorException, DerivativeException {
        FirstOrderIntegrator integ =
            new DormandPrince54Integrator(1.0e-8, 100.0, 1.0e-10, 1.0e-10);
        double[] y = new double[] { 0.0, 1.0 };
        final Circle circle = new Circle(y, 1.0, 1.0, 0.1);
        double[][] dydy0 = new double[2][2];
        double[][] dydp  = new double[2][3];
        double t = 18 * Math.PI;
        final FirstOrderIntegratorWithJacobians extInt =
            new FirstOrderIntegratorWithJacobians(integ, circle);
        extInt.addEventHandler(new EventHandlerWithJacobians() {

            public int eventOccurred(double t, double[] y, double[][] dydy0,
                                     double[][] dydp, boolean increasing) {
                Assert.assertEquals(0.1, y[1], 1.0e-11);
                Assert.assertTrue(!increasing);
                return STOP;
            }

            public double g(double t, double[] y, double[][] dydy0,
                            double[][] dydp) {
                return y[1] - 0.1;
            }

            public void resetState(double t, double[] y, double[][] dydy0,
                                   double[][] dydp) {
            }
        }, 10.0, 1.0e-10, 1000);
        double stopTime = extInt.integrate(0, y, circle.exactDyDp(0), t, y, dydy0, dydp);
        Assert.assertTrue(stopTime < 5.0 * Math.PI);
    }

    private static class Brusselator implements ParameterizedODE, ODEWithJacobians {

        private double b;

        public Brusselator(double b) {
            this.b = b;
        }

        public int getDimension() {
            return 2;
        }

        public void setParameter(int i, double p) {
            b = p;
        }

        public int getParametersDimension() {
            return 1;
        }

        public void computeDerivatives(double t, double[] y, double[] yDot) {
            double prod = y[0] * y[0] * y[1];
            yDot[0] = 1 + prod - (b + 1) * y[0];
            yDot[1] = b * y[0] - prod;
        }

        public void computeJacobians(double t, double[] y, double[] yDot, double[][] dFdY, double[][] dFdP) {
            double p = 2 * y[0] * y[1];
            double y02 = y[0] * y[0];
            dFdY[0][0] = p - (1 + b);
            dFdY[0][1] = y02;
            dFdY[1][0] = b - p;
            dFdY[1][1] = -y02;
            dFdP[0][0] = -y[0];
            dFdP[1][0] = y[0];
        }

        public double dYdP0() {
            return -1088.232716447743 + (1050.775747149553 + (-339.012934631828 + 36.52917025056327 * b) * b) * b;
        }

        public double dYdP1() {
            return 1502.824469929139 + (-1438.6974831849952 + (460.959476642384 - 49.43847385647082 * b) * b) * b;
        }

    }

    /** ODE representing a point moving on a circle with provided center and angular rate. */
    private static class Circle implements ODEWithJacobians {

        private final double[] y0;
        private double cx;
        private double cy;
        private double omega;

        public Circle(double[] y0, double cx, double cy, double omega) {
            this.y0    = y0.clone();
            this.cx    = cx;
            this.cy    = cy;
            this.omega = omega;
        }

        public int getDimension() {
            return 2;
        }

        public int getParametersDimension() {
            return 3;
        }

        public void computeDerivatives(double t, double[] y, double[] yDot) {
            yDot[0] = omega * (cy - y[1]);
            yDot[1] = omega * (y[0] - cx);
        }

        public void computeJacobians(double t, double[] y, double[] yDot, double[][] dFdY, double[][] dFdP) {

            dFdY[0][0] = 0;
            dFdY[0][1] = -omega;
            dFdY[1][0] = omega;
            dFdY[1][1] = 0;

            dFdP[0][0] = 0;
            dFdP[0][1] = omega;
            dFdP[0][2] = cy - y[1];
            dFdP[1][0] = -omega;
            dFdP[1][1] = 0;
            dFdP[1][2] = y[0] - cx;

        }

        public double[] exactY(double t) {
            double cos = Math.cos(omega * t);
            double sin = Math.sin(omega * t);
            double dx0 = y0[0] - cx;
            double dy0 = y0[1] - cy;
            return new double[] {
                cx + cos * dx0 - sin * dy0,
                cy + sin * dx0 + cos * dy0
            };
        }

        public double[][] exactDyDy0(double t) {
            double cos = Math.cos(omega * t);
            double sin = Math.sin(omega * t);
            return new double[][] {
                { cos, -sin },
                { sin,  cos }
            };
        }

        public double[][] exactDyDp(double t) {
            double cos = Math.cos(omega * t);
            double sin = Math.sin(omega * t);
            double dx0 = y0[0] - cx;
            double dy0 = y0[1] - cy;
            return new double[][] {
                { 1 - cos, sin,    -t * (sin * dx0 + cos * dy0) },
                { -sin,    1 - cos, t * (cos * dx0 - sin * dy0) }
            };
        }

        public double[] exactYDot(double t) {
            double oCos = omega * Math.cos(omega * t);
            double oSin = omega * Math.sin(omega * t);
            double dx0 = y0[0] - cx;
            double dy0 = y0[1] - cy;
            return new double[] {
                -oSin * dx0 - oCos * dy0,
                 oCos * dx0 - oSin * dy0
            };
        }

        public double[][] exactDyDy0Dot(double t) {
            double oCos = omega * Math.cos(omega * t);
            double oSin = omega * Math.sin(omega * t);
            return new double[][] {
                { -oSin, -oCos },
                {  oCos, -oSin }
            };
        }

        public double[][] exactDyDpDot(double t) {
            double cos  = Math.cos(omega * t);
            double sin  = Math.sin(omega * t);
            double oCos = omega * cos;
            double oSin = omega * sin;
            double dx0  = y0[0] - cx;
            double dy0  = y0[1] - cy;
            return new double[][] {
                {  oSin, oCos, -sin * dx0 - cos * dy0 - t * ( oCos * dx0 - oSin * dy0) },
                { -oCos, oSin,  cos * dx0 - sin * dy0 + t * (-oSin * dx0 - oCos * dy0) }
            };
        }

    }

}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math FirstOrderIntegratorWithJacobiansTest.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.