home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (RealFieldElement.java)

This example Java source code file (RealFieldElement.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

dimensionmismatchexception, fieldelement, realfieldelement

The RealFieldElement.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3;

import org.apache.commons.math3.exception.DimensionMismatchException;

/**
 * Interface representing a <a href="http://mathworld.wolfram.com/RealNumber.html">real
 * <a href="http://mathworld.wolfram.com/Field.html">field.
 * @param <T> the type of the field elements
 * @see FieldElement
 * @since 3.2
 */
public interface RealFieldElement<T> extends FieldElement {

    /** Get the real value of the number.
     * @return real value
     */
    double getReal();

    /** '+' operator.
     * @param a right hand side parameter of the operator
     * @return this+a
     */
    T add(double a);

    /** '-' operator.
     * @param a right hand side parameter of the operator
     * @return this-a
     */
    T subtract(double a);

    /** '×' operator.
     * @param a right hand side parameter of the operator
     * @return this×a
     */
    T multiply(double a);

    /** '÷' operator.
     * @param a right hand side parameter of the operator
     * @return this÷a
     */
    T divide(double a);

    /** IEEE remainder operator.
     * @param a right hand side parameter of the operator
     * @return this - n × a where n is the closest integer to this/a
     * (the even integer is chosen for n if this/a is halfway between two integers)
     */
    T remainder(double a);

    /** IEEE remainder operator.
     * @param a right hand side parameter of the operator
     * @return this - n × a where n is the closest integer to this/a
     * (the even integer is chosen for n if this/a is halfway between two integers)
     * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
     */
    T remainder(T a)
        throws DimensionMismatchException;

    /** absolute value.
     * @return abs(this)
     */
    T abs();

    /** Get the smallest whole number larger than instance.
     * @return ceil(this)
     */
    T ceil();

    /** Get the largest whole number smaller than instance.
     * @return floor(this)
     */
    T floor();

    /** Get the whole number that is the nearest to the instance, or the even one if x is exactly half way between two integers.
     * @return a double number r such that r is an integer r - 0.5 ≤ this ≤ r + 0.5
     */
    T rint();

    /** Get the closest long to instance value.
     * @return closest long to {@link #getReal()}
     */
    long round();

    /** Compute the signum of the instance.
     * The signum is -1 for negative numbers, +1 for positive numbers and 0 otherwise
     * @return -1.0, -0.0, +0.0, +1.0 or NaN depending on sign of a
     */
    T signum();

    /**
     * Returns the instance with the sign of the argument.
     * A NaN {@code sign} argument is treated as positive.
     *
     * @param sign the sign for the returned value
     * @return the instance with the same sign as the {@code sign} argument
     */
    T copySign(T sign);

    /**
     * Returns the instance with the sign of the argument.
     * A NaN {@code sign} argument is treated as positive.
     *
     * @param sign the sign for the returned value
     * @return the instance with the same sign as the {@code sign} argument
     */
    T copySign(double sign);

    /**
     * Multiply the instance by a power of 2.
     * @param n power of 2
     * @return this × 2<sup>n
     */
    T scalb(int n);

    /**
     * Returns the hypotenuse of a triangle with sides {@code this} and {@code y}
     * - sqrt(<i>this2 +y2)
     * avoiding intermediate overflow or underflow.
     *
     * <ul>
     * <li> If either argument is infinite, then the result is positive infinity.
     * <li> else, if either argument is NaN then the result is NaN.
     * </ul>
     *
     * @param y a value
     * @return sqrt(<i>this2 +y2)
     * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
     */
    T hypot(T y)
        throws DimensionMismatchException;

    /** {@inheritDoc} */
    T reciprocal();

    /** Square root.
     * @return square root of the instance
     */
    T sqrt();

    /** Cubic root.
     * @return cubic root of the instance
     */
    T cbrt();

    /** N<sup>th root.
     * @param n order of the root
     * @return n<sup>th root of the instance
     */
    T rootN(int n);

    /** Power operation.
     * @param p power to apply
     * @return this<sup>p
     */
    T pow(double p);

    /** Integer power operation.
     * @param n power to apply
     * @return this<sup>n
     */
    T pow(int n);

    /** Power operation.
     * @param e exponent
     * @return this<sup>e
     * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
     */
    T pow(T e)
        throws DimensionMismatchException;

    /** Exponential.
     * @return exponential of the instance
     */
    T exp();

    /** Exponential minus 1.
     * @return exponential minus one of the instance
     */
    T expm1();

    /** Natural logarithm.
     * @return logarithm of the instance
     */
    T log();

    /** Shifted natural logarithm.
     * @return logarithm of one plus the instance
     */
    T log1p();

//    TODO: add this method in 4.0, as it is not possible to do it in 3.2
//          due to incompatibility of the return type in the Dfp class
//    /** Base 10 logarithm.
//     * @return base 10 logarithm of the instance
//     */
//    T log10();

    /** Cosine operation.
     * @return cos(this)
     */
    T cos();

    /** Sine operation.
     * @return sin(this)
     */
    T sin();

    /** Tangent operation.
     * @return tan(this)
     */
    T tan();

    /** Arc cosine operation.
     * @return acos(this)
     */
    T acos();

    /** Arc sine operation.
     * @return asin(this)
     */
    T asin();

    /** Arc tangent operation.
     * @return atan(this)
     */
    T atan();

    /** Two arguments arc tangent operation.
     * @param x second argument of the arc tangent
     * @return atan2(this, x)
     * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
     */
    T atan2(T x)
        throws DimensionMismatchException;

    /** Hyperbolic cosine operation.
     * @return cosh(this)
     */
    T cosh();

    /** Hyperbolic sine operation.
     * @return sinh(this)
     */
    T sinh();

    /** Hyperbolic tangent operation.
     * @return tanh(this)
     */
    T tanh();

    /** Inverse hyperbolic cosine operation.
     * @return acosh(this)
     */
    T acosh();

    /** Inverse hyperbolic sine operation.
     * @return asin(this)
     */
    T asinh();

    /** Inverse hyperbolic  tangent operation.
     * @return atanh(this)
     */
    T atanh();

    /**
     * Compute a linear combination.
     * @param a Factors.
     * @param b Factors.
     * @return <code>Σi ai bi.
     * @throws DimensionMismatchException if arrays dimensions don't match
     * @since 3.2
     */
    T linearCombination(T[] a, T[] b)
        throws DimensionMismatchException;

    /**
     * Compute a linear combination.
     * @param a Factors.
     * @param b Factors.
     * @return <code>Σi ai bi.
     * @throws DimensionMismatchException if arrays dimensions don't match
     * @since 3.2
     */
    T linearCombination(double[] a, T[] b)
        throws DimensionMismatchException;

    /**
     * Compute a linear combination.
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @return a<sub>1×b1 +
     * a<sub>2×b2
     * @see #linearCombination(Object, Object, Object, Object, Object, Object)
     * @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
     * @since 3.2
     */
    T linearCombination(T a1, T b1, T a2, T b2);

    /**
     * Compute a linear combination.
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @return a<sub>1×b1 +
     * a<sub>2×b2
     * @see #linearCombination(double, Object, double, Object, double, Object)
     * @see #linearCombination(double, Object, double, Object, double, Object, double, Object)
     * @since 3.2
     */
    T linearCombination(double a1, T b1, double a2, T b2);

    /**
     * Compute a linear combination.
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @param a3 first factor of the third term
     * @param b3 second factor of the third term
     * @return a<sub>1×b1 +
     * a<sub>2×b2 + a3×b3
     * @see #linearCombination(Object, Object, Object, Object)
     * @see #linearCombination(Object, Object, Object, Object, Object, Object, Object, Object)
     * @since 3.2
     */
    T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3);

    /**
     * Compute a linear combination.
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @param a3 first factor of the third term
     * @param b3 second factor of the third term
     * @return a<sub>1×b1 +
     * a<sub>2×b2 + a3×b3
     * @see #linearCombination(double, Object, double, Object)
     * @see #linearCombination(double, Object, double, Object, double, Object, double, Object)
     * @since 3.2
     */
    T linearCombination(double a1, T b1,  double a2, T b2, double a3, T b3);

    /**
     * Compute a linear combination.
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @param a3 first factor of the third term
     * @param b3 second factor of the third term
     * @param a4 first factor of the third term
     * @param b4 second factor of the third term
     * @return a<sub>1×b1 +
     * a<sub>2×b2 + a3×b3 +
     * a<sub>4×b4
     * @see #linearCombination(Object, Object, Object, Object)
     * @see #linearCombination(Object, Object, Object, Object, Object, Object)
     * @since 3.2
     */
    T linearCombination(T a1, T b1, T a2, T b2, T a3, T b3, T a4, T b4);

    /**
     * Compute a linear combination.
     * @param a1 first factor of the first term
     * @param b1 second factor of the first term
     * @param a2 first factor of the second term
     * @param b2 second factor of the second term
     * @param a3 first factor of the third term
     * @param b3 second factor of the third term
     * @param a4 first factor of the third term
     * @param b4 second factor of the third term
     * @return a<sub>1×b1 +
     * a<sub>2×b2 + a3×b3 +
     * a<sub>4×b4
     * @see #linearCombination(double, Object, double, Object)
     * @see #linearCombination(double, Object, double, Object, double, Object)
     * @since 3.2
     */
    T linearCombination(double a1, T b1, double a2, T b2, double a3, T b3, double a4, T b4);

}

Other Java examples (source code examples)

Here is a short list of links related to this Java RealFieldElement.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.