alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (RegionFactory.java)

This example Java source code file (RegionFactory.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

boolean, boundaryattribute, bsptree, differencemerger, hyperplane, intersectionmerger, map, nodescleaner, region, regionfactory, subhyperplane, suppresswarnings, unionmerger, util, vanishingtoleaf

The RegionFactory.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.partitioning;

import java.util.HashMap;
import java.util.Map;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.partitioning.BSPTree.VanishingCutHandler;
import org.apache.commons.math3.geometry.partitioning.Region.Location;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane.SplitSubHyperplane;

/** This class is a factory for {@link Region}.

 * @param <S> Type of the space.

 * @since 3.0
 */
public class RegionFactory<S extends Space> {

    /** Visitor removing internal nodes attributes. */
    private final NodesCleaner nodeCleaner;

    /** Simple constructor.
     */
    public RegionFactory() {
        nodeCleaner = new NodesCleaner();
    }

    /** Build a convex region from a collection of bounding hyperplanes.
     * @param hyperplanes collection of bounding hyperplanes
     * @return a new convex region, or null if the collection is empty
     */
    public Region<S> buildConvex(final Hyperplane ... hyperplanes) {
        if ((hyperplanes == null) || (hyperplanes.length == 0)) {
            return null;
        }

        // use the first hyperplane to build the right class
        final Region<S> region = hyperplanes[0].wholeSpace();

        // chop off parts of the space
        BSPTree<S> node = region.getTree(false);
        node.setAttribute(Boolean.TRUE);
        for (final Hyperplane<S> hyperplane : hyperplanes) {
            if (node.insertCut(hyperplane)) {
                node.setAttribute(null);
                node.getPlus().setAttribute(Boolean.FALSE);
                node = node.getMinus();
                node.setAttribute(Boolean.TRUE);
            } else {
                // the hyperplane could not be inserted in the current leaf node
                // either it is completely outside (which means the input hyperplanes
                // are wrong), or it is parallel to a previous hyperplane
                SubHyperplane<S> s = hyperplane.wholeHyperplane();
                for (BSPTree<S> tree = node; tree.getParent() != null && s != null; tree = tree.getParent()) {
                    final Hyperplane<S>         other = tree.getParent().getCut().getHyperplane();
                    final SplitSubHyperplane<S> split = s.split(other);
                    switch (split.getSide()) {
                        case HYPER :
                            // the hyperplane is parallel to a previous hyperplane
                            if (!hyperplane.sameOrientationAs(other)) {
                                // this hyperplane is opposite to the other one,
                                // the region is thinner than the tolerance, we consider it empty
                                return getComplement(hyperplanes[0].wholeSpace());
                            }
                            // the hyperplane is an extension of an already known hyperplane, we just ignore it
                            break;
                        case PLUS :
                        // the hyperplane is outside of the current convex zone,
                        // the input hyperplanes are inconsistent
                        throw new MathIllegalArgumentException(LocalizedFormats.NOT_CONVEX_HYPERPLANES);
                        default :
                            s = split.getMinus();
                    }
                }
            }
        }

        return region;

    }

    /** Compute the union of two regions.
     * @param region1 first region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @param region2 second region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @return a new region, result of {@code region1 union region2}
     */
    public Region<S> union(final Region region1, final Region region2) {
        final BSPTree<S> tree =
            region1.getTree(false).merge(region2.getTree(false), new UnionMerger());
        tree.visit(nodeCleaner);
        return region1.buildNew(tree);
    }

    /** Compute the intersection of two regions.
     * @param region1 first region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @param region2 second region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @return a new region, result of {@code region1 intersection region2}
     */
    public Region<S> intersection(final Region region1, final Region region2) {
        final BSPTree<S> tree =
            region1.getTree(false).merge(region2.getTree(false), new IntersectionMerger());
        tree.visit(nodeCleaner);
        return region1.buildNew(tree);
    }

    /** Compute the symmetric difference (exclusive or) of two regions.
     * @param region1 first region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @param region2 second region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @return a new region, result of {@code region1 xor region2}
     */
    public Region<S> xor(final Region region1, final Region region2) {
        final BSPTree<S> tree =
            region1.getTree(false).merge(region2.getTree(false), new XorMerger());
        tree.visit(nodeCleaner);
        return region1.buildNew(tree);
    }

    /** Compute the difference of two regions.
     * @param region1 first region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @param region2 second region (will be unusable after the operation as
     * parts of it will be reused in the new region)
     * @return a new region, result of {@code region1 minus region2}
     */
    public Region<S> difference(final Region region1, final Region region2) {
        final BSPTree<S> tree =
            region1.getTree(false).merge(region2.getTree(false), new DifferenceMerger(region1, region2));
        tree.visit(nodeCleaner);
        return region1.buildNew(tree);
    }

    /** Get the complement of the region (exchanged interior/exterior).
     * @param region region to complement, it will not modified, a new
     * region independent region will be built
     * @return a new region, complement of the specified one
     */
    /** Get the complement of the region (exchanged interior/exterior).
     * @param region region to complement, it will not modified, a new
     * region independent region will be built
     * @return a new region, complement of the specified one
     */
    public Region<S> getComplement(final Region region) {
        return region.buildNew(recurseComplement(region.getTree(false)));
    }

    /** Recursively build the complement of a BSP tree.
     * @param node current node of the original tree
     * @return new tree, complement of the node
     */
    private BSPTree<S> recurseComplement(final BSPTree node) {

        // transform the tree, except for boundary attribute splitters
        final Map<BSPTree> map = new HashMap, BSPTree>();
        final BSPTree<S> transformedTree = recurseComplement(node, map);

        // set up the boundary attributes splitters
        for (final Map.Entry<BSPTree> entry : map.entrySet()) {
            if (entry.getKey().getCut() != null) {
                @SuppressWarnings("unchecked")
                BoundaryAttribute<S> original = (BoundaryAttribute) entry.getKey().getAttribute();
                if (original != null) {
                    @SuppressWarnings("unchecked")
                    BoundaryAttribute<S> transformed = (BoundaryAttribute) entry.getValue().getAttribute();
                    for (final BSPTree<S> splitter : original.getSplitters()) {
                        transformed.getSplitters().add(map.get(splitter));
                    }
                }
            }
        }

        return transformedTree;

    }

    /** Recursively build the complement of a BSP tree.
     * @param node current node of the original tree
     * @param map transformed nodes map
     * @return new tree, complement of the node
     */
    private BSPTree<S> recurseComplement(final BSPTree node,
                                         final Map<BSPTree> map) {

        final BSPTree<S> transformedNode;
        if (node.getCut() == null) {
            transformedNode = new BSPTree<S>(((Boolean) node.getAttribute()) ? Boolean.FALSE : Boolean.TRUE);
        } else {

            @SuppressWarnings("unchecked")
            BoundaryAttribute<S> attribute = (BoundaryAttribute) node.getAttribute();
            if (attribute != null) {
                final SubHyperplane<S> plusOutside =
                        (attribute.getPlusInside() == null) ? null : attribute.getPlusInside().copySelf();
                final SubHyperplane<S> plusInside  =
                        (attribute.getPlusOutside() == null) ? null : attribute.getPlusOutside().copySelf();
                // we start with an empty list of splitters, it will be filled in out of recursion
                attribute = new BoundaryAttribute<S>(plusOutside, plusInside, new NodesSet());
            }

            transformedNode = new BSPTree<S>(node.getCut().copySelf(),
                                             recurseComplement(node.getPlus(),  map),
                                             recurseComplement(node.getMinus(), map),
                                             attribute);
        }

        map.put(node, transformedNode);
        return transformedNode;

    }

    /** BSP tree leaf merger computing union of two regions. */
    private class UnionMerger implements BSPTree.LeafMerger<S> {
        /** {@inheritDoc} */
        public BSPTree<S> merge(final BSPTree leaf, final BSPTree tree,
                                final BSPTree<S> parentTree,
                                final boolean isPlusChild, final boolean leafFromInstance) {
            if ((Boolean) leaf.getAttribute()) {
                // the leaf node represents an inside cell
                leaf.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
                return leaf;
            }
            // the leaf node represents an outside cell
            tree.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(false));
            return tree;
        }
    }

    /** BSP tree leaf merger computing intersection of two regions. */
    private class IntersectionMerger implements BSPTree.LeafMerger<S> {
        /** {@inheritDoc} */
        public BSPTree<S> merge(final BSPTree leaf, final BSPTree tree,
                                final BSPTree<S> parentTree,
                                final boolean isPlusChild, final boolean leafFromInstance) {
            if ((Boolean) leaf.getAttribute()) {
                // the leaf node represents an inside cell
                tree.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
                return tree;
            }
            // the leaf node represents an outside cell
            leaf.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(false));
            return leaf;
        }
    }

    /** BSP tree leaf merger computing symmetric difference (exclusive or) of two regions. */
    private class XorMerger implements BSPTree.LeafMerger<S> {
        /** {@inheritDoc} */
        public BSPTree<S> merge(final BSPTree leaf, final BSPTree tree,
                                final BSPTree<S> parentTree, final boolean isPlusChild,
                                final boolean leafFromInstance) {
            BSPTree<S> t = tree;
            if ((Boolean) leaf.getAttribute()) {
                // the leaf node represents an inside cell
                t = recurseComplement(t);
            }
            t.insertInTree(parentTree, isPlusChild, new VanishingToLeaf(true));
            return t;
        }
    }

    /** BSP tree leaf merger computing difference of two regions. */
    private class DifferenceMerger implements BSPTree.LeafMerger<S>, VanishingCutHandler {

        /** Region to subtract from. */
        private final Region<S> region1;

        /** Region to subtract. */
        private final Region<S> region2;

        /** Simple constructor.
         * @param region1 region to subtract from
         * @param region2 region to subtract
         */
        DifferenceMerger(final Region<S> region1, final Region region2) {
            this.region1 = region1.copySelf();
            this.region2 = region2.copySelf();
        }

        /** {@inheritDoc} */
        public BSPTree<S> merge(final BSPTree leaf, final BSPTree tree,
                                final BSPTree<S> parentTree, final boolean isPlusChild,
                                final boolean leafFromInstance) {
            if ((Boolean) leaf.getAttribute()) {
                // the leaf node represents an inside cell
                final BSPTree<S> argTree =
                    recurseComplement(leafFromInstance ? tree : leaf);
                argTree.insertInTree(parentTree, isPlusChild, this);
                return argTree;
            }
            // the leaf node represents an outside cell
            final BSPTree<S> instanceTree =
                leafFromInstance ? leaf : tree;
            instanceTree.insertInTree(parentTree, isPlusChild, this);
            return instanceTree;
        }

        /** {@inheritDoc} */
        public BSPTree<S> fixNode(final BSPTree node) {
            // get a representative point in the degenerate cell
            final BSPTree<S> cell = node.pruneAroundConvexCell(Boolean.TRUE, Boolean.FALSE, null);
            final Region<S> r = region1.buildNew(cell);
            final Point<S> p = r.getBarycenter();
            return new BSPTree<S>(region1.checkPoint(p) == Location.INSIDE &&
                                  region2.checkPoint(p) == Location.OUTSIDE);
        }

    }

    /** Visitor removing internal nodes attributes. */
    private class NodesCleaner implements  BSPTreeVisitor<S> {

        /** {@inheritDoc} */
        public Order visitOrder(final BSPTree<S> node) {
            return Order.PLUS_SUB_MINUS;
        }

        /** {@inheritDoc} */
        public void visitInternalNode(final BSPTree<S> node) {
            node.setAttribute(null);
        }

        /** {@inheritDoc} */
        public void visitLeafNode(final BSPTree<S> node) {
        }

    }

    /** Handler replacing nodes with vanishing cuts with leaf nodes. */
    private class VanishingToLeaf implements VanishingCutHandler<S> {

        /** Inside/outside indocator to use for ambiguous nodes. */
        private final boolean inside;

        /** Simple constructor.
         * @param inside inside/outside indicator to use for ambiguous nodes
         */
        VanishingToLeaf(final boolean inside) {
            this.inside = inside;
        }

        /** {@inheritDoc} */
        public BSPTree<S> fixNode(final BSPTree node) {
            if (node.getPlus().getAttribute().equals(node.getMinus().getAttribute())) {
                // no ambiguity
                return new BSPTree<S>(node.getPlus().getAttribute());
            } else {
                // ambiguous node
                return new BSPTree<S>(inside);
            }
        }

    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java RegionFactory.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.