home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (GillStepInterpolator.java)

This example Java source code file (GillStepInterpolator.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

gillstepinterpolator, one_minus_inv_sqrt_2, one_plus_inv_sqrt_2, override, rungekuttastepinterpolator

The GillStepInterpolator.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.ode.sampling.StepInterpolator;
import org.apache.commons.math3.util.FastMath;

/**
 * This class implements a step interpolator for the Gill fourth
 * order Runge-Kutta integrator.
 *
 * <p>This interpolator allows to compute dense output inside the last
 * step computed. The interpolation equation is consistent with the
 * integration scheme :
 * <ul>
 *   <li>Using reference point at step start:
* y(t<sub>n + θ h) = y (tn) * + θ (h/6) [ (6 - 9 θ + 4 θ<sup>2) y'1 * + ( 6 θ - 4 θ<sup>2) ((1-1/√2) y'2 + (1+1/√2)) y'3) * + ( - 3 θ + 4 θ<sup>2) y'4 * ] * </li> * <li>Using reference point at step start:
* y(t<sub>n + θ h) = y (tn + h) * - (1 - θ) (h/6) [ (1 - 5 θ + 4 θ<sup>2) y'1 * + (2 + 2 θ - 4 θ<sup>2) ((1-1/√2) y'2 + (1+1/√2)) y'3) * + (1 + θ + 4 θ<sup>2) y'4 * ] * </li> * </ul> * </p> * where θ belongs to [0 ; 1] and where y'<sub>1 to y'4 * are the four evaluations of the derivatives already computed during * the step.</p> * * @see GillIntegrator * @since 1.2 */ class GillStepInterpolator extends RungeKuttaStepInterpolator { /** First Gill coefficient. */ private static final double ONE_MINUS_INV_SQRT_2 = 1 - FastMath.sqrt(0.5); /** Second Gill coefficient. */ private static final double ONE_PLUS_INV_SQRT_2 = 1 + FastMath.sqrt(0.5); /** Serializable version identifier. */ private static final long serialVersionUID = 20111120L; /** Simple constructor. * This constructor builds an instance that is not usable yet, the * {@link * org.apache.commons.math3.ode.sampling.AbstractStepInterpolator#reinitialize} * method should be called before using the instance in order to * initialize the internal arrays. This constructor is used only * in order to delay the initialization in some cases. The {@link * RungeKuttaIntegrator} class uses the prototyping design pattern * to create the step interpolators by cloning an uninitialized model * and later initializing the copy. */ // CHECKSTYLE: stop RedundantModifier // the public modifier here is needed for serialization public GillStepInterpolator() { } // CHECKSTYLE: resume RedundantModifier /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ GillStepInterpolator(final GillStepInterpolator interpolator) { super(interpolator); } /** {@inheritDoc} */ @Override protected StepInterpolator doCopy() { return new GillStepInterpolator(this); } /** {@inheritDoc} */ @Override protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) { final double twoTheta = 2 * theta; final double fourTheta2 = twoTheta * twoTheta; final double coeffDot1 = theta * (twoTheta - 3) + 1; final double cDot23 = twoTheta * (1 - theta); final double coeffDot2 = cDot23 * ONE_MINUS_INV_SQRT_2; final double coeffDot3 = cDot23 * ONE_PLUS_INV_SQRT_2; final double coeffDot4 = theta * (twoTheta - 1); if ((previousState != null) && (theta <= 0.5)) { final double s = theta * h / 6.0; final double c23 = s * (6 * theta - fourTheta2); final double coeff1 = s * (6 - 9 * theta + fourTheta2); final double coeff2 = c23 * ONE_MINUS_INV_SQRT_2; final double coeff3 = c23 * ONE_PLUS_INV_SQRT_2; final double coeff4 = s * (-3 * theta + fourTheta2); for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; final double yDot3 = yDotK[2][i]; final double yDot4 = yDotK[3][i]; interpolatedState[i] = previousState[i] + coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 + coeff4 * yDot4; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4; } } else { final double s = oneMinusThetaH / 6.0; final double c23 = s * (2 + twoTheta - fourTheta2); final double coeff1 = s * (1 - 5 * theta + fourTheta2); final double coeff2 = c23 * ONE_MINUS_INV_SQRT_2; final double coeff3 = c23 * ONE_PLUS_INV_SQRT_2; final double coeff4 = s * (1 + theta + fourTheta2); for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; final double yDot3 = yDotK[2][i]; final double yDot4 = yDotK[3][i]; interpolatedState[i] = currentState[i] - coeff1 * yDot1 - coeff2 * yDot2 - coeff3 * yDot3 - coeff4 * yDot4; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 + coeffDot4 * yDot4; } } } }

Other Java examples (source code examples)

Here is a short list of links related to this Java GillStepInterpolator.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.