home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (FDistributionTest.java)

This example Java source code file (FDistributionTest.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

expecting, failing, fdistribution, fdistributiontest, notstrictlypositiveexception, override, realdistributionabstracttest, test

The FDistributionTest.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.junit.Assert;
import org.junit.Test;

/**
 * Test cases for FDistribution.
 * Extends ContinuousDistributionAbstractTest.  See class javadoc for
 * ContinuousDistributionAbstractTest for details.
 *
 */
public class FDistributionTest extends RealDistributionAbstractTest {

    //-------------- Implementations for abstract methods -----------------------

    /** Creates the default continuous distribution instance to use in tests. */
    @Override
    public FDistribution makeDistribution() {
        return new FDistribution(5.0, 6.0);
    }

    /** Creates the default cumulative probability distribution test input values */
    @Override
    public double[] makeCumulativeTestPoints() {
        // quantiles computed using R version 2.9.2
        return new double[] {0.0346808448626, 0.0937009113303, 0.143313661184, 0.202008445998, 0.293728320107,
                20.8026639595, 8.74589525602, 5.98756512605, 4.38737418741, 3.10751166664};
    }

    /** Creates the default cumulative probability density test expected values */
    @Override
    public double[] makeCumulativeTestValues() {
        return new double[] {0.001, 0.01, 0.025, 0.05, 0.1, 0.999, 0.990, 0.975, 0.950, 0.900};
    }

    /** Creates the default probability density test expected values */
    @Override
    public double[] makeDensityTestValues() {
        return new double[] {0.0689156576706, 0.236735653193, 0.364074131941, 0.481570789649, 0.595880479994,
                0.000133443915657, 0.00286681303403, 0.00969192007502, 0.0242883861471, 0.0605491314658};
    }

    // --------------------- Override tolerance  --------------
    @Override
    public void setUp() {
        super.setUp();
        setTolerance(1e-9);
    }

    //---------------------------- Additional test cases -------------------------

    @Test
    public void testCumulativeProbabilityExtremes() {
        setCumulativeTestPoints(new double[] {-2, 0});
        setCumulativeTestValues(new double[] {0, 0});
        verifyCumulativeProbabilities();
    }

    @Test
    public void testInverseCumulativeProbabilityExtremes() {
        setInverseCumulativeTestPoints(new double[] {0, 1});
        setInverseCumulativeTestValues(new double[] {0, Double.POSITIVE_INFINITY});
        verifyInverseCumulativeProbabilities();
    }

    @Test
    public void testDfAccessors() {
        FDistribution dist = (FDistribution) getDistribution();
        Assert.assertEquals(5d, dist.getNumeratorDegreesOfFreedom(), Double.MIN_VALUE);
        Assert.assertEquals(6d, dist.getDenominatorDegreesOfFreedom(), Double.MIN_VALUE);
    }

    @Test
    public void testPreconditions() {
        try {
            new FDistribution(0, 1);
            Assert.fail("Expecting NotStrictlyPositiveException for df = 0");
        } catch (NotStrictlyPositiveException ex) {
            // Expected.
        }
        try {
            new FDistribution(1, 0);
            Assert.fail("Expecting NotStrictlyPositiveException for df = 0");
        } catch (NotStrictlyPositiveException ex) {
            // Expected.
        }
    }

    @Test
    public void testLargeDegreesOfFreedom() {
        FDistribution fd = new FDistribution(100000, 100000);
        double p = fd.cumulativeProbability(.999);
        double x = fd.inverseCumulativeProbability(p);
        Assert.assertEquals(.999, x, 1.0e-5);
    }

    @Test
    public void testSmallDegreesOfFreedom() {
        FDistribution fd = new FDistribution(1, 1);
        double p = fd.cumulativeProbability(0.975);
        double x = fd.inverseCumulativeProbability(p);
        Assert.assertEquals(0.975, x, 1.0e-5);

        fd = new FDistribution(1, 2);
        p = fd.cumulativeProbability(0.975);
        x = fd.inverseCumulativeProbability(p);
        Assert.assertEquals(0.975, x, 1.0e-5);
    }

    @Test
    public void testMoments() {
        final double tol = 1e-9;
        FDistribution dist;

        dist = new FDistribution(1, 2);
        Assert.assertTrue(Double.isNaN(dist.getNumericalMean()));
        Assert.assertTrue(Double.isNaN(dist.getNumericalVariance()));

        dist = new FDistribution(1, 3);
        Assert.assertEquals(dist.getNumericalMean(), 3d / (3d - 2d), tol);
        Assert.assertTrue(Double.isNaN(dist.getNumericalVariance()));

        dist = new FDistribution(1, 5);
        Assert.assertEquals(dist.getNumericalMean(), 5d / (5d - 2d), tol);
        Assert.assertEquals(dist.getNumericalVariance(), (2d * 5d * 5d * 4d) / 9d, tol);
    }

    @Test
    public void testMath785() {
        // this test was failing due to inaccurate results from ContinuedFraction.

        try {
            double prob = 0.01;
            FDistribution f = new FDistribution(200000, 200000);
            double result = f.inverseCumulativeProbability(prob);
            Assert.assertTrue(result < 1.0);
        } catch (Exception e) {
            Assert.fail("Failing to calculate inverse cumulative probability");
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java FDistributionTest.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.