|
|
Java example source code file (MultiStartMultivariateVectorOptimizerTest.java)
The MultiStartMultivariateVectorOptimizerTest.java Java example source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math3.optim.nonlinear.vector; import org.apache.commons.math3.analysis.MultivariateMatrixFunction; import org.apache.commons.math3.analysis.MultivariateVectorFunction; import org.apache.commons.math3.linear.BlockRealMatrix; import org.apache.commons.math3.linear.RealMatrix; import org.apache.commons.math3.optim.InitialGuess; import org.apache.commons.math3.optim.MaxEval; import org.apache.commons.math3.optim.OptimizationData; import org.apache.commons.math3.optim.PointVectorValuePair; import org.apache.commons.math3.optim.SimpleBounds; import org.apache.commons.math3.optim.SimpleVectorValueChecker; import org.apache.commons.math3.optim.nonlinear.vector.jacobian.GaussNewtonOptimizer; import org.apache.commons.math3.random.GaussianRandomGenerator; import org.apache.commons.math3.random.JDKRandomGenerator; import org.apache.commons.math3.random.RandomVectorGenerator; import org.apache.commons.math3.random.UncorrelatedRandomVectorGenerator; import org.junit.Assert; import org.junit.Test; /** * <p>Some of the unit tests are re-implementations of the MINPACK and test files. * The redistribution policy for MINPACK is available <a * href="http://www.netlib.org/minpack/disclaimer">here</a>, for * convenience, it is reproduced below.</p> * * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0"> * <tr> | * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * <ol> * <li>Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer.</li> * <li>Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution.</li> * <li>The end-user documentation included with the redistribution, if any, * must include the following acknowledgment: * <code>This product includes software developed by the University of * Chicago, as Operator of Argonne National Laboratory.</code> * Alternately, this acknowledgment may appear in the software itself, * if and wherever such third-party acknowledgments normally appear.</li> * <li>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL * BE CORRECTED.</strong> * <li>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong> * <ol> | * </table> * * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) * @author Burton S. Garbow (original fortran minpack tests) * @author Kenneth E. Hillstrom (original fortran minpack tests) * @author Jorge J. More (original fortran minpack tests) * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) */ @Deprecated public class MultiStartMultivariateVectorOptimizerTest { @Test(expected=NullPointerException.class) public void testGetOptimaBeforeOptimize() { JacobianMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartMultivariateVectorOptimizer optimizer = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); optimizer.getOptima(); } @Test public void testTrivial() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); JacobianMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartMultivariateVectorOptimizer optimizer = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); PointVectorValuePair optimum = optimizer.optimize(new MaxEval(100), problem.getModelFunction(), problem.getModelFunctionJacobian(), problem.getTarget(), new Weight(new double[] { 1 }), new InitialGuess(new double[] { 0 })); Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10); Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10); PointVectorValuePair[] optima = optimizer.getOptima(); Assert.assertEquals(10, optima.length); for (int i = 0; i < optima.length; i++) { Assert.assertEquals(1.5, optima[i].getPoint()[0], 1e-10); Assert.assertEquals(3.0, optima[i].getValue()[0], 1e-10); } Assert.assertTrue(optimizer.getEvaluations() > 20); Assert.assertTrue(optimizer.getEvaluations() < 50); Assert.assertEquals(100, optimizer.getMaxEvaluations()); } @Test public void testIssue914() { LinearProblem problem = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 }); JacobianMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)) { @Override public PointVectorValuePair optimize(OptimizationData... optData) { // filter out simple bounds, as they are not supported // by the underlying optimizer, and we don't really care for this test OptimizationData[] filtered = optData.clone(); for (int i = 0; i < filtered.length; ++i) { if (filtered[i] instanceof SimpleBounds) { filtered[i] = null; } } return super.optimize(filtered); } }; JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(16069223052l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartMultivariateVectorOptimizer optimizer = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); optimizer.optimize(new MaxEval(100), problem.getModelFunction(), problem.getModelFunctionJacobian(), problem.getTarget(), new Weight(new double[] { 1 }), new InitialGuess(new double[] { 0 }), new SimpleBounds(new double[] { -1.0e-10 }, new double[] { 1.0e-10 })); PointVectorValuePair[] optima = optimizer.getOptima(); // only the first start should have succeeded Assert.assertEquals(1, optima.length); } /** * Test demonstrating that the user exception is finally thrown if none * of the runs succeed. */ @Test(expected=TestException.class) public void testNoOptimum() { JacobianMultivariateVectorOptimizer underlyingOptimizer = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6)); JDKRandomGenerator g = new JDKRandomGenerator(); g.setSeed(12373523445l); RandomVectorGenerator generator = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g)); MultiStartMultivariateVectorOptimizer optimizer = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator); optimizer.optimize(new MaxEval(100), new Target(new double[] { 0 }), new Weight(new double[] { 1 }), new InitialGuess(new double[] { 0 }), new ModelFunction(new MultivariateVectorFunction() { public double[] value(double[] point) { throw new TestException(); } })); } private static class TestException extends RuntimeException { private static final long serialVersionUID = 1L;} private static class LinearProblem { private final RealMatrix factors; private final double[] target; public LinearProblem(double[][] factors, double[] target) { this.factors = new BlockRealMatrix(factors); this.target = target; } public Target getTarget() { return new Target(target); } public ModelFunction getModelFunction() { return new ModelFunction(new MultivariateVectorFunction() { public double[] value(double[] variables) { return factors.operate(variables); } }); } public ModelFunctionJacobian getModelFunctionJacobian() { return new ModelFunctionJacobian(new MultivariateMatrixFunction() { public double[][] value(double[] point) { return factors.getData(); } }); } } }
Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.