alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (MathTesting.java)

This example Java source code file (MathTesting.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

biginteger, function, immutablelist, immutableset, integral_double_candidates, iterable, long, math, negate_long, negative_biginteger_candidates, negative_integer_candidates, negative_long_candidates, nonzero_long_candidates, override, to_long

The MathTesting.java Java example source code

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static java.math.BigInteger.ONE;
import static java.math.BigInteger.ZERO;
import static java.math.RoundingMode.CEILING;
import static java.math.RoundingMode.DOWN;
import static java.math.RoundingMode.FLOOR;
import static java.math.RoundingMode.HALF_DOWN;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;
import static java.math.RoundingMode.UP;
import static java.util.Arrays.asList;

import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Function;
import com.google.common.base.Predicate;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.primitives.Doubles;

import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * Exhaustive input sets for every integral type.
 *
 * @author Louis Wasserman
 */
@GwtCompatible
public class MathTesting {
  static final ImmutableSet<RoundingMode> ALL_ROUNDING_MODES = ImmutableSet.copyOf(RoundingMode
      .values());

  static final ImmutableList<RoundingMode> ALL_SAFE_ROUNDING_MODES = ImmutableList.of(DOWN, UP,
      FLOOR, CEILING, HALF_EVEN, HALF_UP, HALF_DOWN);

  // Exponents to test for the pow() function.
  static final ImmutableList<Integer> EXPONENTS = ImmutableList.of(0, 1, 2, 3, 4, 7, 10, 15,
      20, 25, 40, 70);

  /* Helper function to make a Long value from an Integer. */
  private static final Function<Integer, Long> TO_LONG = new Function() {
    @Override
    public Long apply(Integer n) {
      return Long.valueOf(n);
    }
  };

  /* Helper function to make a BigInteger value from a Long. */
  private static final Function<Long, BigInteger> TO_BIGINTEGER =
      new Function<Long, BigInteger>() {
        @Override
        public BigInteger apply(Long n) {
          return BigInteger.valueOf(n);
        }
      };

  private static final Function<Integer, Integer> NEGATE_INT = new Function() {
    @Override
    public Integer apply(Integer x) {
      return -x;
    }
  };

  private static final Function<Long, Long> NEGATE_LONG = new Function() {
    @Override
    public Long apply(Long x) {
      return -x;
    }
  };

  private static final Function<BigInteger, BigInteger> NEGATE_BIGINT =
      new Function<BigInteger, BigInteger>() {
        @Override
        public BigInteger apply(BigInteger x) {
          return x.negate();
        }
      };

  /*
   * This list contains values that attempt to provoke overflow in integer operations. It contains
   * positive values on or near 2^N for N near multiples of 8 (near byte boundaries).
   */
  static final ImmutableSet<Integer> POSITIVE_INTEGER_CANDIDATES;

  static final Iterable<Integer> NEGATIVE_INTEGER_CANDIDATES;

  static final Iterable<Integer> NONZERO_INTEGER_CANDIDATES;

  static final Iterable<Integer> ALL_INTEGER_CANDIDATES;

  static {
    ImmutableSet.Builder<Integer> intValues = ImmutableSet.builder();
    // Add boundary values manually to avoid over/under flow (this covers 2^N for 0 and 31).
    intValues.add(Integer.MAX_VALUE - 1, Integer.MAX_VALUE);
    // Add values up to 40. This covers cases like "square of a prime" and such.
    for (int i = 1; i <= 40; i++) {
      intValues.add(i);
    }
    // Now add values near 2^N for lots of values of N.
    for (int exponent : asList(2, 3, 4, 9, 15, 16, 17, 24, 25, 30)) {
      int x = 1 << exponent;
      intValues.add(x, x + 1, x - 1);
    }
    intValues.add(9999).add(10000).add(10001).add(1000000); // near powers of 10
    intValues.add(5792).add(5793); // sqrt(2^25) rounded up and down
    POSITIVE_INTEGER_CANDIDATES = intValues.build();
    NEGATIVE_INTEGER_CANDIDATES = ImmutableList.copyOf(Iterables.concat(
        Iterables.transform(POSITIVE_INTEGER_CANDIDATES, NEGATE_INT),
        ImmutableList.of(Integer.MIN_VALUE)));
    NONZERO_INTEGER_CANDIDATES = ImmutableList.copyOf(
        Iterables.concat(POSITIVE_INTEGER_CANDIDATES, NEGATIVE_INTEGER_CANDIDATES));
    ALL_INTEGER_CANDIDATES = Iterables.concat(NONZERO_INTEGER_CANDIDATES, ImmutableList.of(0));
  }

  /*
   * This list contains values that attempt to provoke overflow in long operations. It contains
   * positive values on or near 2^N for N near multiples of 8 (near byte boundaries). This list is
   * a superset of POSITIVE_INTEGER_CANDIDATES.
   */
  static final ImmutableSet<Long> POSITIVE_LONG_CANDIDATES;

  static final Iterable<Long> NEGATIVE_LONG_CANDIDATES;

  static final Iterable<Long> NONZERO_LONG_CANDIDATES;

  static final Iterable<Long> ALL_LONG_CANDIDATES;

  static {
    ImmutableSet.Builder<Long> longValues = ImmutableSet.builder();
    // First of all add all the integer candidate values.
    longValues.addAll(Iterables.transform(POSITIVE_INTEGER_CANDIDATES, TO_LONG));
    // Add boundary values manually to avoid over/under flow (this covers 2^N for 31 and 63).
    longValues.add(Integer.MAX_VALUE + 1L, Long.MAX_VALUE - 1L, Long.MAX_VALUE);

    // Now add values near 2^N for lots of values of N.
    for (int exponent : asList(32, 33, 39, 40, 41, 47, 48, 49, 55, 56, 57)) {
      long x = 1L << exponent;
      longValues.add(x, x + 1, x - 1);
    }
    longValues.add(194368031998L).add(194368031999L); // sqrt(2^75) rounded up and down
    POSITIVE_LONG_CANDIDATES = longValues.build();
    NEGATIVE_LONG_CANDIDATES =
        Iterables.concat(Iterables.transform(POSITIVE_LONG_CANDIDATES, NEGATE_LONG),
            ImmutableList.of(Long.MIN_VALUE));
    NONZERO_LONG_CANDIDATES = Iterables.concat(POSITIVE_LONG_CANDIDATES, NEGATIVE_LONG_CANDIDATES);
    ALL_LONG_CANDIDATES = Iterables.concat(NONZERO_LONG_CANDIDATES, ImmutableList.of(0L));
  }

  /*
   * This list contains values that attempt to provoke overflow in big integer operations. It
   * contains positive values on or near 2^N for N near multiples of 8 (near byte boundaries). This
   * list is a superset of POSITIVE_LONG_CANDIDATES.
   */
  static final ImmutableSet<BigInteger> POSITIVE_BIGINTEGER_CANDIDATES;

  static final Iterable<BigInteger> NEGATIVE_BIGINTEGER_CANDIDATES;

  static final Iterable<BigInteger> NONZERO_BIGINTEGER_CANDIDATES;

  static final Iterable<BigInteger> ALL_BIGINTEGER_CANDIDATES;

  static {
    ImmutableSet.Builder<BigInteger> bigValues = ImmutableSet.builder();
    // First of all add all the long candidate values.
    bigValues.addAll(Iterables.transform(POSITIVE_LONG_CANDIDATES, TO_BIGINTEGER));
    // Add boundary values manually to avoid over/under flow.
    bigValues.add(BigInteger.valueOf(Long.MAX_VALUE).add(ONE));
    // Now add values near 2^N for lots of values of N.
    for (int exponent : asList(64, 65, 71, 72, 73, 79, 80, 81, 255, 256, 257, 511, 512, 513,
        Double.MAX_EXPONENT - 1, Double.MAX_EXPONENT, Double.MAX_EXPONENT + 1)) {
      BigInteger x = ONE.shiftLeft(exponent);
      bigValues.add(x, x.add(ONE), x.subtract(ONE));
    }
    bigValues.add(new BigInteger("218838949120258359057546633")); // sqrt(2^175) rounded up and
                                                                  // down
    bigValues.add(new BigInteger("218838949120258359057546634"));
    POSITIVE_BIGINTEGER_CANDIDATES = bigValues.build();
    NEGATIVE_BIGINTEGER_CANDIDATES =
        Iterables.transform(POSITIVE_BIGINTEGER_CANDIDATES, NEGATE_BIGINT);
    NONZERO_BIGINTEGER_CANDIDATES =
        Iterables.concat(POSITIVE_BIGINTEGER_CANDIDATES, NEGATIVE_BIGINTEGER_CANDIDATES);
    ALL_BIGINTEGER_CANDIDATES =
        Iterables.concat(NONZERO_BIGINTEGER_CANDIDATES, ImmutableList.of(ZERO));
  }

  static final ImmutableSet<Double> INTEGRAL_DOUBLE_CANDIDATES;
  static final ImmutableSet<Double> FRACTIONAL_DOUBLE_CANDIDATES;
  static final Iterable<Double> INFINITIES = Doubles.asList(
      Double.POSITIVE_INFINITY,
      Double.NEGATIVE_INFINITY);
  static final Iterable<Double> FINITE_DOUBLE_CANDIDATES;
  static final Iterable<Double> POSITIVE_FINITE_DOUBLE_CANDIDATES;
  static final Iterable<Double> ALL_DOUBLE_CANDIDATES;
  static final Iterable<Double> DOUBLE_CANDIDATES_EXCEPT_NAN;
  static {
    ImmutableSet.Builder<Double> integralBuilder = ImmutableSet.builder();
    ImmutableSet.Builder<Double> fractionalBuilder = ImmutableSet.builder();
    integralBuilder.addAll(Doubles.asList(0.0, -0.0, Double.MAX_VALUE, -Double.MAX_VALUE));
    // Add small multiples of MIN_VALUE and MIN_NORMAL
    for (int scale = 1; scale <= 4; scale++) {
      for (double d : Doubles.asList(Double.MIN_VALUE, Double.MIN_NORMAL)) {
        fractionalBuilder.add(d * scale).add(-d * scale);
      }
    }
    for (double d : Doubles.asList(0, 1, 2, 7, 51, 102, Math.scalb(1.0, 53), Integer.MIN_VALUE,
        Integer.MAX_VALUE, Long.MIN_VALUE, Long.MAX_VALUE)) {
      for (double delta : Doubles.asList(0.0, 1.0, 2.0)) {
        integralBuilder.addAll(Doubles.asList(d + delta, d - delta, -d - delta, -d + delta));
      }
      for (double delta : Doubles.asList(0.01, 0.1, 0.25, 0.499, 0.5, 0.501, 0.7, 0.8)) {
        double x = d + delta;
        if (x != Math.round(x)) {
          fractionalBuilder.add(x);
        }
      }
    }
    INTEGRAL_DOUBLE_CANDIDATES = integralBuilder.build();
    fractionalBuilder.add(1.414).add(1.415).add(Math.sqrt(2));
    fractionalBuilder.add(5.656).add(5.657).add(4 * Math.sqrt(2));
    for (double d : INTEGRAL_DOUBLE_CANDIDATES) {
      double x = 1 / d;
      if (x != Math.rint(x)) {
        fractionalBuilder.add(x);
      }
    }
    FRACTIONAL_DOUBLE_CANDIDATES = fractionalBuilder.build();
    FINITE_DOUBLE_CANDIDATES =
        Iterables.concat(FRACTIONAL_DOUBLE_CANDIDATES, INTEGRAL_DOUBLE_CANDIDATES);
    POSITIVE_FINITE_DOUBLE_CANDIDATES =
        Iterables.filter(FINITE_DOUBLE_CANDIDATES, new Predicate<Double>() {
          @Override
          public boolean apply(Double input) {
            return input.doubleValue() > 0.0;
          }
        });
    DOUBLE_CANDIDATES_EXCEPT_NAN = Iterables.concat(FINITE_DOUBLE_CANDIDATES, INFINITIES);
    ALL_DOUBLE_CANDIDATES =
        Iterables.concat(DOUBLE_CANDIDATES_EXCEPT_NAN, asList(Double.NaN));
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java MathTesting.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.