alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (TopKSelector.java)

This example Java source code file (TopKSelector.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

annotation, comparable, comparator, gwtcompatible, list, math, object, topkselector, util

The TopKSelector.java Java example source code

/*
 * Copyright (C) 2014 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.GwtCompatible;
import com.google.common.math.IntMath;

import java.math.RoundingMode;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;

import javax.annotation.Nullable;

/**
 * An accumulator that selects the "top" {@code k} elements added to it, relative to a provided
 * comparator. "Top" can mean the greatest or the lowest elements, specified in the factory used to
 * create the {@code TopKSelector} instance.
 *
 * <p>If your input data is available as an {@link Iterable} or {@link Iterator}, prefer
 * {@link Ordering#leastOf(Iterable, int)}, which provides the same implementation with an
 * interface tailored to that use case.
 *
 * <p>This uses the same efficient implementation as {@link Ordering#leastOf(Iterable, int)},
 * offering expected O(n + k log k) performance (worst case O(n log k)) for n calls to
 * {@link #offer} and a call to {@link #topK}, with O(k) memory. In comparison, quickselect has the
 * same asymptotics but requires O(n) memory, and a {@code PriorityQueue} implementation takes O(n
 * log k). In benchmarks, this implementation performs at least as well as either implementation,
 * and degrades more gracefully for worst-case input.
 *
 * <p>The implementation does not necessarily use a stable sorting algorithm; when multiple
 * equivalent elements are added to it, it is undefined which will come first in the output.
 *
 * @author Louis Wasserman
 */
@GwtCompatible final class TopKSelector<T> {

  /**
   * Returns a {@code TopKSelector} that collects the lowest {@code k} elements added to it,
   * relative to the natural ordering of the elements, and returns them via {@link #topK} in
   * ascending order.
   *
   * @throws IllegalArgumentException if {@code k < 0}
   */
  public static <T extends Comparable TopKSelector least(int k) {
    return least(k, Ordering.natural());
  }

  /**
   * Returns a {@code TopKSelector} that collects the greatest {@code k} elements added to it,
   * relative to the natural ordering of the elements, and returns them via {@link #topK} in
   * descending order.
   *
   * @throws IllegalArgumentException if {@code k < 0}
   */
  public static <T extends Comparable TopKSelector greatest(int k) {
    return greatest(k, Ordering.natural());
  }

  /**
   * Returns a {@code TopKSelector} that collects the lowest {@code k} elements added to it,
   * relative to the specified comparator, and returns them via {@link #topK} in ascending order.
   *
   * @throws IllegalArgumentException if {@code k < 0}
   */
  public static <T> TopKSelector least(int k, Comparator comparator) {
    return new TopKSelector<T>(comparator, k);
  }

  /**
   * Returns a {@code TopKSelector} that collects the greatest {@code k} elements added to it,
   * relative to the specified comparator, and returns them via {@link #topK} in descending order.
   *
   * @throws IllegalArgumentException if {@code k < 0}
   */
  public static <T> TopKSelector greatest(int k, Comparator comparator) {
    return new TopKSelector<T>(Ordering.from(comparator).reverse(), k);
  }

  private final int k;
  private final Comparator<? super T> comparator;

  /*
   * We are currently considering the elements in buffer in the range [0, bufferSize) as candidates
   * for the top k elements. Whenever the buffer is filled, we quickselect the top k elements to the
   * range [0, k) and ignore the remaining elements.
   */
  private final T[] buffer;
  private int bufferSize;

  /**
   * The largest of the lowest k elements we've seen so far relative to this comparator. If
   * bufferSize >= k, then we can ignore any elements greater than this value.
   */
  private T threshold;

  private TopKSelector(Comparator<? super T> comparator, int k) {
    this.comparator = checkNotNull(comparator, "comparator");
    this.k = k;
    checkArgument(k >= 0, "k must be nonnegative, was %s", k);
    this.buffer = (T[]) new Object[k * 2];
    this.bufferSize = 0;
    this.threshold = null;
  }

  /**
   * Adds {@code elem} as a candidate for the top {@code k} elements. This operation takes
   * amortized O(1) time.
   */
  public void offer(@Nullable T elem) {
    if (k == 0) {
      return;
    } else if (bufferSize == 0) {
      buffer[0] = elem;
      threshold = elem;
      bufferSize = 1;
    } else if (bufferSize < k) {
      buffer[bufferSize++] = elem;
      if (comparator.compare(elem, threshold) > 0) {
        threshold = elem;
      }
    } else if (comparator.compare(elem, threshold) < 0) {
      // Otherwise, we can ignore elem; we've seen k better elements.
      buffer[bufferSize++] = elem;
      if (bufferSize == 2 * k) {
        trim();
      }
    }
  }

  /**
   * Quickselects the top k elements from the 2k elements in the buffer.  O(k) expected time,
   * O(k log k) worst case.
   */
  private void trim() {
    int left = 0;
    int right = 2 * k - 1;

    int minThresholdPosition = 0;
    // The leftmost position at which the greatest of the k lower elements
    // -- the new value of threshold -- might be found.

    int iterations = 0;
    int maxIterations = IntMath.log2(right - left, RoundingMode.CEILING) * 3;
    while (left < right) {
      int pivotIndex = (left + right + 1) >>> 1;

      int pivotNewIndex = partition(left, right, pivotIndex);

      if (pivotNewIndex > k) {
        right = pivotNewIndex - 1;
      } else if (pivotNewIndex < k) {
        left = Math.max(pivotNewIndex, left + 1);
        minThresholdPosition = pivotNewIndex;
      } else {
        break;
      }
      iterations++;
      if (iterations >= maxIterations) {
        // We've already taken O(k log k), let's make sure we don't take longer than O(k log k).
        Arrays.sort(buffer, left, right, comparator);
        break;
      }
    }
    bufferSize = k;

    threshold = buffer[minThresholdPosition];
    for (int i = minThresholdPosition + 1; i < k; i++) {
      if (comparator.compare(buffer[i], threshold) > 0) {
        threshold = buffer[i];
      }
    }
  }

  /**
   * Partitions the contents of buffer in the range [left, right] around the pivot element
   * previously stored in buffer[pivotValue]. Returns the new index of the pivot element,
   * pivotNewIndex, so that everything in [left, pivotNewIndex] is <= pivotValue and everything in
   * (pivotNewIndex, right] is > pivotValue.
   */
  private int partition(int left, int right, int pivotIndex) {
    T pivotValue = buffer[pivotIndex];
    buffer[pivotIndex] = buffer[right];

    int pivotNewIndex = left;
    for (int i = left; i < right; i++) {
      if (comparator.compare(buffer[i], pivotValue) < 0) {
        swap(pivotNewIndex, i);
        pivotNewIndex++;
      }
    }
    buffer[right] = buffer[pivotNewIndex];
    buffer[pivotNewIndex] = pivotValue;
    return pivotNewIndex;
  }

  private void swap(int i, int j) {
    T tmp = buffer[i];
    buffer[i] = buffer[j];
    buffer[j] = tmp;
  }

  /**
   * Adds each member of {@code elements} as a candidate for the top {@code k} elements. This
   * operation takes amortized linear time in the length of {@code elements}.
   *
   * <p>If all input data to this {@code TopKSelector} is in a single {@code Iterable},
   * prefer {@link Ordering#leastOf(Iterable, int)}, which provides a simpler API for that use
   * case.
   */
  public void offerAll(Iterable<? extends T> elements) {
    offerAll(elements.iterator());
  }

  /**
   * Adds each member of {@code elements} as a candidate for the top {@code k} elements. This
   * operation takes amortized linear time in the length of {@code elements}. The iterator is
   * consumed after this operation completes.
   *
   * <p>If all input data to this {@code TopKSelector} is in a single {@code Iterator},
   * prefer {@link Ordering#leastOf(Iterator, int)}, which provides a simpler API for that use
   * case.
   */
  public void offerAll(Iterator<? extends T> elements) {
    while (elements.hasNext()) {
      offer(elements.next());
    }
  }

  /**
   * Returns the top {@code k} elements offered to this {@code TopKSelector}, or all elements if
   * fewer than {@code k} have been offered, in the order specified by the factory used to create
   * this {@code TopKSelector}.
   *
   * <p>The returned list is an unmodifiable copy and will not be affected by further changes to
   * this {@code TopKSelector}. This method returns in O(k log k) time.
   */
  public List<T> topK() {
    Arrays.sort(buffer, 0, bufferSize, comparator);
    if (bufferSize > k) {
      Arrays.fill(buffer, k, buffer.length, null);
      bufferSize = k;
      threshold = buffer[k - 1];
    }
    // we have to support null elements, so no ImmutableList for us
    return Collections.unmodifiableList(Arrays.asList(Arrays.copyOf(buffer, bufferSize)));
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java TopKSelector.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.