alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Hashing.java)

This example Java source code file (Hashing.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

annotation, arraylist, checksum, concatenatedhashfunction, hashcode, hashfunction, hashing, hmacmd5, hmacsha256, linearcongruentialgenerator, list, machashfunction, messagedigesthashfunction, override, secretkeyspec, security, util, zip

The Hashing.java Java example source code

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.hash;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.base.Supplier;

import java.security.Key;
import java.security.MessageDigest;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.zip.Adler32;
import java.util.zip.CRC32;
import java.util.zip.Checksum;

import javax.annotation.Nullable;
import javax.crypto.spec.SecretKeySpec;

/**
 * Static methods to obtain {@link HashFunction} instances, and other static hashing-related
 * utilities.
 *
 * <p>A comparison of the various hash functions can be found
 * <a href="http://goo.gl/jS7HH">here.
 *
 * @author Kevin Bourrillion
 * @author Dimitris Andreou
 * @author Kurt Alfred Kluever
 * @since 11.0
 */
@Beta
public final class Hashing {
  /**
   * Returns a general-purpose, <b>temporary-use, non-cryptographic hash function. The algorithm
   * the returned function implements is unspecified and subject to change without notice.
   *
   * <p>Warning: a new random seed for these functions is chosen each time the {@code
   * Hashing} class is loaded. <b>Do not use this method if hash codes may escape the current
   * process in any way, for example being sent over RPC, or saved to disk.
   *
   * <p>Repeated calls to this method on the same loaded {@code Hashing} class, using the same value
   * for {@code minimumBits}, will return identically-behaving {@link HashFunction} instances.
   *
   * @param minimumBits a positive integer (can be arbitrarily large)
   * @return a hash function, described above, that produces hash codes of length {@code
   *     minimumBits} or greater
   */
  public static HashFunction goodFastHash(int minimumBits) {
    int bits = checkPositiveAndMakeMultipleOf32(minimumBits);

    if (bits == 32) {
      return Murmur3_32Holder.GOOD_FAST_HASH_FUNCTION_32;
    }
    if (bits <= 128) {
      return Murmur3_128Holder.GOOD_FAST_HASH_FUNCTION_128;
    }

    // Otherwise, join together some 128-bit murmur3s
    int hashFunctionsNeeded = (bits + 127) / 128;
    HashFunction[] hashFunctions = new HashFunction[hashFunctionsNeeded];
    hashFunctions[0] = Murmur3_128Holder.GOOD_FAST_HASH_FUNCTION_128;
    int seed = GOOD_FAST_HASH_SEED;
    for (int i = 1; i < hashFunctionsNeeded; i++) {
      seed += 1500450271; // a prime; shouldn't matter
      hashFunctions[i] = murmur3_128(seed);
    }
    return new ConcatenatedHashFunction(hashFunctions);
  }

  /**
   * Used to randomize {@link #goodFastHash} instances, so that programs which persist anything
   * dependent on the hash codes they produce will fail sooner.
   */
  private static final int GOOD_FAST_HASH_SEED = (int) System.currentTimeMillis();

  /**
   * Returns a hash function implementing the
   * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp">32-bit murmur3 algorithm,
   * x86 variant</a> (little-endian variant), using the given seed value.
   *
   * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A).
   */
  public static HashFunction murmur3_32(int seed) {
    return new Murmur3_32HashFunction(seed);
  }

  /**
   * Returns a hash function implementing the
   * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp">32-bit murmur3 algorithm,
   * x86 variant</a> (little-endian variant), using a seed value of zero.
   *
   * <p>The exact C++ equivalent is the MurmurHash3_x86_32 function (Murmur3A).
   */
  public static HashFunction murmur3_32() {
    return Murmur3_32Holder.MURMUR3_32;
  }

  private static class Murmur3_32Holder {
    static final HashFunction MURMUR3_32 = new Murmur3_32HashFunction(0);

    /** Returned by {@link #goodFastHash} when {@code minimumBits <= 32}. */
    static final HashFunction GOOD_FAST_HASH_FUNCTION_32 = murmur3_32(GOOD_FAST_HASH_SEED);
  }

  /**
   * Returns a hash function implementing the
   * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp">128-bit murmur3 algorithm,
   * x64 variant</a> (little-endian variant), using the given seed value.
   *
   * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F).
   */
  public static HashFunction murmur3_128(int seed) {
    return new Murmur3_128HashFunction(seed);
  }

  /**
   * Returns a hash function implementing the
   * <a href="http://smhasher.googlecode.com/svn/trunk/MurmurHash3.cpp">128-bit murmur3 algorithm,
   * x64 variant</a> (little-endian variant), using a seed value of zero.
   *
   * <p>The exact C++ equivalent is the MurmurHash3_x64_128 function (Murmur3F).
   */
  public static HashFunction murmur3_128() {
    return Murmur3_128Holder.MURMUR3_128;
  }

  private static class Murmur3_128Holder {
    static final HashFunction MURMUR3_128 = new Murmur3_128HashFunction(0);

    /** Returned by {@link #goodFastHash} when {@code 32 < minimumBits <= 128}. */
    static final HashFunction GOOD_FAST_HASH_FUNCTION_128 = murmur3_128(GOOD_FAST_HASH_SEED);
  }

  /**
   * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit
   * SipHash-2-4 algorithm</a> using a seed value of {@code k = 00 01 02 ...}.
   *
   * @since 15.0
   */
  public static HashFunction sipHash24() {
    return SipHash24Holder.SIP_HASH_24;
  }

  private static class SipHash24Holder {
    static final HashFunction SIP_HASH_24 =
        new SipHashFunction(2, 4, 0x0706050403020100L, 0x0f0e0d0c0b0a0908L);
  }

  /**
   * Returns a hash function implementing the <a href="https://131002.net/siphash/">64-bit
   * SipHash-2-4 algorithm</a> using the given seed.
   *
   * @since 15.0
   */
  public static HashFunction sipHash24(long k0, long k1) {
    return new SipHashFunction(2, 4, k0, k1);
  }

  /**
   * Returns a hash function implementing the MD5 hash algorithm (128 hash bits) by delegating to
   * the MD5 {@link MessageDigest}.
   *
   * <p>Warning: MD5 is not cryptographically secure or collision-resistant and is not
   * recommended for use in new code. It should be used for legacy compatibility reasons only.
   * Please consider using a hash function in the SHA-2 family of functions (e.g., SHA-256).
   */
  public static HashFunction md5() {
    return Md5Holder.MD5;
  }

  private static class Md5Holder {
    static final HashFunction MD5 = new MessageDigestHashFunction("MD5", "Hashing.md5()");
  }

  /**
   * Returns a hash function implementing the SHA-1 algorithm (160 hash bits) by delegating to the
   * SHA-1 {@link MessageDigest}.
   *
   * <p>Warning: SHA1 is not cryptographically secure and is not recommended for use in new
   * code. It should be used for legacy compatibility reasons only. Please consider using a hash
   * function in the SHA-2 family of functions (e.g., SHA-256).
   */
  public static HashFunction sha1() {
    return Sha1Holder.SHA_1;
  }

  private static class Sha1Holder {
    static final HashFunction SHA_1 = new MessageDigestHashFunction("SHA-1", "Hashing.sha1()");
  }

  /**
   * Returns a hash function implementing the SHA-256 algorithm (256 hash bits) by delegating to the
   * SHA-256 {@link MessageDigest}.
   */
  public static HashFunction sha256() {
    return Sha256Holder.SHA_256;
  }

  private static class Sha256Holder {
    static final HashFunction SHA_256 =
        new MessageDigestHashFunction("SHA-256", "Hashing.sha256()");
  }

  /**
   * Returns a hash function implementing the SHA-384 algorithm (384 hash bits) by delegating to the
   * SHA-384 {@link MessageDigest}.
   *
   * @since 19.0
   */
  public static HashFunction sha384() {
    return Sha384Holder.SHA_384;
  }

  private static class Sha384Holder {
    static final HashFunction SHA_384 =
        new MessageDigestHashFunction("SHA-384", "Hashing.sha384()");
  }

  /**
   * Returns a hash function implementing the SHA-512 algorithm (512 hash bits) by delegating to the
   * SHA-512 {@link MessageDigest}.
   */
  public static HashFunction sha512() {
    return Sha512Holder.SHA_512;
  }

  private static class Sha512Holder {
    static final HashFunction SHA_512 =
        new MessageDigestHashFunction("SHA-512", "Hashing.sha512()");
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * MD5 (128 hash bits) hash function and the given secret key.
   *
   *
   * @param key the secret key
   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
   * @since 20.0
   */
  public static HashFunction hmacMd5(Key key) {
    return new MacHashFunction("HmacMD5", key, hmacToString("hmacMd5", key));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * MD5 (128 hash bits) hash function and a {@link SecretSpecKey} created from the given byte array
   * and the MD5 algorithm.
   *
   *
   * @param key the key material of the secret key
   * @since 20.0
   */
  public static HashFunction hmacMd5(byte[] key) {
    return hmacMd5(new SecretKeySpec(checkNotNull(key), "HmacMD5"));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * SHA-1 (160 hash bits) hash function and the given secret key.
   *
   *
   * @param key the secret key
   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
   * @since 20.0
   */
  public static HashFunction hmacSha1(Key key) {
    return new MacHashFunction("HmacSHA1", key, hmacToString("hmacSha1", key));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * SHA-1 (160 hash bits) hash function and a {@link SecretSpecKey} created from the given byte
   * array and the SHA-1 algorithm.
   *
   *
   * @param key the key material of the secret key
   * @since 20.0
   */
  public static HashFunction hmacSha1(byte[] key) {
    return hmacSha1(new SecretKeySpec(checkNotNull(key), "HmacSHA1"));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * SHA-256 (256 hash bits) hash function and the given secret key.
   *
   *
   * @param key the secret key
   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
   * @since 20.0
   */
  public static HashFunction hmacSha256(Key key) {
    return new MacHashFunction("HmacSHA256", key, hmacToString("hmacSha256", key));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * SHA-256 (256 hash bits) hash function and a {@link SecretSpecKey} created from the given byte
   * array and the SHA-256 algorithm.
   *
   *
   * @param key the key material of the secret key
   * @since 20.0
   */
  public static HashFunction hmacSha256(byte[] key) {
    return hmacSha256(new SecretKeySpec(checkNotNull(key), "HmacSHA256"));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * SHA-512 (512 hash bits) hash function and the given secret key.
   *
   *
   * @param key the secret key
   * @throws IllegalArgumentException if the given key is inappropriate for initializing this MAC
   * @since 20.0
   */
  public static HashFunction hmacSha512(Key key) {
    return new MacHashFunction("HmacSHA512", key, hmacToString("hmacSha512", key));
  }

  /**
   * Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the
   * SHA-512 (512 hash bits) hash function and a {@link SecretSpecKey} created from the given byte
   * array and the SHA-512 algorithm.
   *
   *
   * @param key the key material of the secret key
   * @since 20.0
   */
  public static HashFunction hmacSha512(byte[] key) {
    return hmacSha512(new SecretKeySpec(checkNotNull(key), "HmacSHA512"));
  }

  private static String hmacToString(String methodName, Key key) {
    return String.format(
        "Hashing.%s(Key[algorithm=%s, format=%s])",
        methodName,
        key.getAlgorithm(),
        key.getFormat());
  }

  /**
   * Returns a hash function implementing the CRC32C checksum algorithm (32 hash bits) as described
   * by RFC 3720, Section 12.1.
   *
   * @since 18.0
   */
  public static HashFunction crc32c() {
    return Crc32cHolder.CRC_32_C;
  }

  private static final class Crc32cHolder {
    static final HashFunction CRC_32_C = new Crc32cHashFunction();
  }

  /**
   * Returns a hash function implementing the CRC-32 checksum algorithm (32 hash bits) by delegating
   * to the {@link CRC32} {@link Checksum}.
   *
   * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a
   * {@code HashCode} produced by this function, use {@link HashCode#padToLong()}.
   *
   * @since 14.0
   */
  public static HashFunction crc32() {
    return Crc32Holder.CRC_32;
  }

  private static class Crc32Holder {
    static final HashFunction CRC_32 = checksumHashFunction(ChecksumType.CRC_32, "Hashing.crc32()");
  }

  /**
   * Returns a hash function implementing the Adler-32 checksum algorithm (32 hash bits) by
   * delegating to the {@link Adler32} {@link Checksum}.
   *
   * <p>To get the {@code long} value equivalent to {@link Checksum#getValue()} for a
   * {@code HashCode} produced by this function, use {@link HashCode#padToLong()}.
   *
   * @since 14.0
   */
  public static HashFunction adler32() {
    return Adler32Holder.ADLER_32;
  }

  private static class Adler32Holder {
    static final HashFunction ADLER_32 =
        checksumHashFunction(ChecksumType.ADLER_32, "Hashing.adler32()");
  }

  private static HashFunction checksumHashFunction(ChecksumType type, String toString) {
    return new ChecksumHashFunction(type, type.bits, toString);
  }

  enum ChecksumType implements Supplier<Checksum> {
    CRC_32(32) {
      @Override
      public Checksum get() {
        return new CRC32();
      }
    },
    ADLER_32(32) {
      @Override
      public Checksum get() {
        return new Adler32();
      }
    };

    private final int bits;

    ChecksumType(int bits) {
      this.bits = bits;
    }

    @Override
    public abstract Checksum get();
  }

  /**
   * Returns a hash function implementing FarmHash's Fingerprint64, an open-source algorithm.
   *
   * <p>This is designed for generating persistent fingerprints of strings. It isn't
   * cryptographically secure, but it produces a high-quality hash with fewer collisions than some
   * alternatives we've used in the past. FarmHashFingerprints generated using this are byte-wise
   * identical to those created using the C++ version, but note that this uses unsigned integers
   * (see {@link com.google.common.primitives.UnsignedInts}). Comparisons between the two should
   * take this into account.
   *
   * @since 20.0
   */
  public static HashFunction farmHashFingerprint64() {
    return FarmHashFingerprint64Holder.FARMHASH_FINGERPRINT_64;
  }

  private static class FarmHashFingerprint64Holder {
    static final HashFunction FARMHASH_FINGERPRINT_64 = new FarmHashFingerprint64();
  }

  /**
   * Assigns to {@code hashCode} a "bucket" in the range {@code [0, buckets)}, in a uniform manner
   * that minimizes the need for remapping as {@code buckets} grows. That is, {@code
   * consistentHash(h, n)} equals:
   *
   * <ul>
   * <li>{@code n - 1}, with approximate probability {@code 1/n}
   * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n})
   * </ul>
   *
   * <p>This method is suitable for the common use case of dividing work among buckets that meet the
   * following conditions:
   *
   * <ul>
   * <li>You want to assign the same fraction of inputs to each bucket.
   * <li>When you reduce the number of buckets, you can accept that the most recently added buckets
   * will be removed first. More concretely, if you are dividing traffic among tasks, you can
   * decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and {@code
   * consistentHash} will handle it. If, however, you are dividing traffic among servers {@code
   * alpha}, {@code bravo}, and {@code charlie} and you occasionally need to take each of the
   * servers offline, {@code consistentHash} will be a poor fit: It provides no way for you to
   * specify which of the three buckets is disappearing. Thus, if your buckets change from {@code
   * [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will assign all the old {@code alpha}
   * traffic to {@code bravo} and all the old {@code bravo} traffic to {@code charlie}, rather than
   * letting {@code bravo} keep its traffic.
   * </ul>
   *
   *
   * <p>See the Wikipedia article on
   * consistent hashing</a> for more information.
   */
  public static int consistentHash(HashCode hashCode, int buckets) {
    return consistentHash(hashCode.padToLong(), buckets);
  }

  /**
   * Assigns to {@code input} a "bucket" in the range {@code [0, buckets)}, in a uniform manner that
   * minimizes the need for remapping as {@code buckets} grows. That is, {@code consistentHash(h,
   * n)} equals:
   *
   * <ul>
   * <li>{@code n - 1}, with approximate probability {@code 1/n}
   * <li>{@code consistentHash(h, n - 1)}, otherwise (probability {@code 1 - 1/n})
   * </ul>
   *
   * <p>This method is suitable for the common use case of dividing work among buckets that meet the
   * following conditions:
   *
   * <ul>
   * <li>You want to assign the same fraction of inputs to each bucket.
   * <li>When you reduce the number of buckets, you can accept that the most recently added buckets
   * will be removed first. More concretely, if you are dividing traffic among tasks, you can
   * decrease the number of tasks from 15 and 10, killing off the final 5 tasks, and {@code
   * consistentHash} will handle it. If, however, you are dividing traffic among servers {@code
   * alpha}, {@code bravo}, and {@code charlie} and you occasionally need to take each of the
   * servers offline, {@code consistentHash} will be a poor fit: It provides no way for you to
   * specify which of the three buckets is disappearing. Thus, if your buckets change from {@code
   * [alpha, bravo, charlie]} to {@code [bravo, charlie]}, it will assign all the old {@code alpha}
   * traffic to {@code bravo} and all the old {@code bravo} traffic to {@code charlie}, rather than
   * letting {@code bravo} keep its traffic.
   * </ul>
   *
   *
   * <p>See the Wikipedia article on
   * consistent hashing</a> for more information.
   */
  public static int consistentHash(long input, int buckets) {
    checkArgument(buckets > 0, "buckets must be positive: %s", buckets);
    LinearCongruentialGenerator generator = new LinearCongruentialGenerator(input);
    int candidate = 0;
    int next;

    // Jump from bucket to bucket until we go out of range
    while (true) {
      next = (int) ((candidate + 1) / generator.nextDouble());
      if (next >= 0 && next < buckets) {
        candidate = next;
      } else {
        return candidate;
      }
    }
  }

  /**
   * Returns a hash code, having the same bit length as each of the input hash codes, that combines
   * the information of these hash codes in an ordered fashion. That is, whenever two equal hash
   * codes are produced by two calls to this method, it is <i>as likely as possible that each
   * was computed from the <i>same input hash codes in the same order.
   *
   * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all
   *     have the same bit length
   */
  public static HashCode combineOrdered(Iterable<HashCode> hashCodes) {
    Iterator<HashCode> iterator = hashCodes.iterator();
    checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine.");
    int bits = iterator.next().bits();
    byte[] resultBytes = new byte[bits / 8];
    for (HashCode hashCode : hashCodes) {
      byte[] nextBytes = hashCode.asBytes();
      checkArgument(
          nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length.");
      for (int i = 0; i < nextBytes.length; i++) {
        resultBytes[i] = (byte) (resultBytes[i] * 37 ^ nextBytes[i]);
      }
    }
    return HashCode.fromBytesNoCopy(resultBytes);
  }

  /**
   * Returns a hash code, having the same bit length as each of the input hash codes, that combines
   * the information of these hash codes in an unordered fashion. That is, whenever two equal hash
   * codes are produced by two calls to this method, it is <i>as likely as possible that each
   * was computed from the <i>same input hash codes in some order.
   *
   * @throws IllegalArgumentException if {@code hashCodes} is empty, or the hash codes do not all
   *     have the same bit length
   */
  public static HashCode combineUnordered(Iterable<HashCode> hashCodes) {
    Iterator<HashCode> iterator = hashCodes.iterator();
    checkArgument(iterator.hasNext(), "Must be at least 1 hash code to combine.");
    byte[] resultBytes = new byte[iterator.next().bits() / 8];
    for (HashCode hashCode : hashCodes) {
      byte[] nextBytes = hashCode.asBytes();
      checkArgument(
          nextBytes.length == resultBytes.length, "All hashcodes must have the same bit length.");
      for (int i = 0; i < nextBytes.length; i++) {
        resultBytes[i] += nextBytes[i];
      }
    }
    return HashCode.fromBytesNoCopy(resultBytes);
  }

  /**
   * Checks that the passed argument is positive, and ceils it to a multiple of 32.
   */
  static int checkPositiveAndMakeMultipleOf32(int bits) {
    checkArgument(bits > 0, "Number of bits must be positive");
    return (bits + 31) & ~31;
  }

  /**
   * Returns a hash function which computes its hash code by concatenating the hash codes of the
   * underlying hash functions together. This can be useful if you need to generate hash codes of a
   * specific length.
   *
   * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash
   * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}.
   *
   * @since 19.0
   */
  public static HashFunction concatenating(
      HashFunction first, HashFunction second, HashFunction... rest) {
    // We can't use Lists.asList() here because there's no hash->collect dependency
    List<HashFunction> list = new ArrayList();
    list.add(first);
    list.add(second);
    for (HashFunction hashFunc : rest) {
      list.add(hashFunc);
    }
    return new ConcatenatedHashFunction(list.toArray(new HashFunction[0]));
  }

  /**
   * Returns a hash function which computes its hash code by concatenating the hash codes of the
   * underlying hash functions together. This can be useful if you need to generate hash codes of a
   * specific length.
   *
   * <p>For example, if you need 1024-bit hash codes, you could join two {@link Hashing#sha512} hash
   * functions together: {@code Hashing.concatenating(Hashing.sha512(), Hashing.sha512())}.
   *
   * @since 19.0
   */
  public static HashFunction concatenating(Iterable<HashFunction> hashFunctions) {
    checkNotNull(hashFunctions);
    // We can't use Iterables.toArray() here because there's no hash->collect dependency
    List<HashFunction> list = new ArrayList();
    for (HashFunction hashFunction : hashFunctions) {
      list.add(hashFunction);
    }
    checkArgument(list.size() > 0, "number of hash functions (%s) must be > 0", list.size());
    return new ConcatenatedHashFunction(list.toArray(new HashFunction[0]));
  }

  private static final class ConcatenatedHashFunction extends AbstractCompositeHashFunction {
    private final int bits;

    private ConcatenatedHashFunction(HashFunction... functions) {
      super(functions);
      int bitSum = 0;
      for (HashFunction function : functions) {
        bitSum += function.bits();
        checkArgument(
            function.bits() % 8 == 0,
            "the number of bits (%s) in hashFunction (%s) must be divisible by 8",
            function.bits(),
            function);
      }
      this.bits = bitSum;
    }

    @Override
    HashCode makeHash(Hasher[] hashers) {
      byte[] bytes = new byte[bits / 8];
      int i = 0;
      for (Hasher hasher : hashers) {
        HashCode newHash = hasher.hash();
        i += newHash.writeBytesTo(bytes, i, newHash.bits() / 8);
      }
      return HashCode.fromBytesNoCopy(bytes);
    }

    @Override
    public int bits() {
      return bits;
    }

    @Override
    public boolean equals(@Nullable Object object) {
      if (object instanceof ConcatenatedHashFunction) {
        ConcatenatedHashFunction other = (ConcatenatedHashFunction) object;
        return Arrays.equals(functions, other.functions);
      }
      return false;
    }

    @Override
    public int hashCode() {
      return Arrays.hashCode(functions) * 31 + bits;
    }
  }

  /**
   * Linear CongruentialGenerator to use for consistent hashing. See
   * http://en.wikipedia.org/wiki/Linear_congruential_generator
   */
  private static final class LinearCongruentialGenerator {
    private long state;

    public LinearCongruentialGenerator(long seed) {
      this.state = seed;
    }

    public double nextDouble() {
      state = 2862933555777941757L * state + 1;
      return ((double) ((int) (state >>> 33) + 1)) / (0x1.0p31);
    }
  }

  private Hashing() {}
}
... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.