alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (vm_version_x86.hpp)

This example Java source code file (vm_version_x86.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bytesize, cpu_3dnow_prefetch, cpu_aes, cpu_avx, cpu_cx8, cpu_lzcnt, cpu_sse2, cpu_sse4_1, cpu_sse4_2, cpu_sse4a, cpu_tsc, extcpuid5ex, pentium, tplcpuidbebx

The vm_version_x86.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef CPU_X86_VM_VM_VERSION_X86_HPP
#define CPU_X86_VM_VM_VERSION_X86_HPP

#include "runtime/globals_extension.hpp"
#include "runtime/vm_version.hpp"

class VM_Version : public Abstract_VM_Version {
public:
  // cpuid result register layouts.  These are all unions of a uint32_t
  // (in case anyone wants access to the register as a whole) and a bitfield.

  union StdCpuid1Eax {
    uint32_t value;
    struct {
      uint32_t stepping   : 4,
               model      : 4,
               family     : 4,
               proc_type  : 2,
                          : 2,
               ext_model  : 4,
               ext_family : 8,
                          : 4;
    } bits;
  };

  union StdCpuid1Ebx { // example, unused
    uint32_t value;
    struct {
      uint32_t brand_id         : 8,
               clflush_size     : 8,
               threads_per_cpu  : 8,
               apic_id          : 8;
    } bits;
  };

  union StdCpuid1Ecx {
    uint32_t value;
    struct {
      uint32_t sse3     : 1,
               clmul    : 1,
                        : 1,
               monitor  : 1,
                        : 1,
               vmx      : 1,
                        : 1,
               est      : 1,
                        : 1,
               ssse3    : 1,
               cid      : 1,
                        : 2,
               cmpxchg16: 1,
                        : 4,
               dca      : 1,
               sse4_1   : 1,
               sse4_2   : 1,
                        : 2,
               popcnt   : 1,
                        : 1,
               aes      : 1,
                        : 1,
               osxsave  : 1,
               avx      : 1,
                        : 3;
    } bits;
  };

  union StdCpuid1Edx {
    uint32_t value;
    struct {
      uint32_t          : 4,
               tsc      : 1,
                        : 3,
               cmpxchg8 : 1,
                        : 6,
               cmov     : 1,
                        : 3,
               clflush  : 1,
                        : 3,
               mmx      : 1,
               fxsr     : 1,
               sse      : 1,
               sse2     : 1,
                        : 1,
               ht       : 1,
                        : 3;
    } bits;
  };

  union DcpCpuid4Eax {
    uint32_t value;
    struct {
      uint32_t cache_type    : 5,
                             : 21,
               cores_per_cpu : 6;
    } bits;
  };

  union DcpCpuid4Ebx {
    uint32_t value;
    struct {
      uint32_t L1_line_size  : 12,
               partitions    : 10,
               associativity : 10;
    } bits;
  };

  union TplCpuidBEbx {
    uint32_t value;
    struct {
      uint32_t logical_cpus : 16,
                            : 16;
    } bits;
  };

  union ExtCpuid1Ecx {
    uint32_t value;
    struct {
      uint32_t LahfSahf     : 1,
               CmpLegacy    : 1,
                            : 4,
               lzcnt        : 1,
               sse4a        : 1,
               misalignsse  : 1,
               prefetchw    : 1,
                            : 22;
    } bits;
  };

  union ExtCpuid1Edx {
    uint32_t value;
    struct {
      uint32_t           : 22,
               mmx_amd   : 1,
               mmx       : 1,
               fxsr      : 1,
                         : 4,
               long_mode : 1,
               tdnow2    : 1,
               tdnow     : 1;
    } bits;
  };

  union ExtCpuid5Ex {
    uint32_t value;
    struct {
      uint32_t L1_line_size : 8,
               L1_tag_lines : 8,
               L1_assoc     : 8,
               L1_size      : 8;
    } bits;
  };

  union ExtCpuid7Edx {
    uint32_t value;
    struct {
      uint32_t               : 8,
              tsc_invariance : 1,
                             : 23;
    } bits;
  };

  union ExtCpuid8Ecx {
    uint32_t value;
    struct {
      uint32_t cores_per_cpu : 8,
                             : 24;
    } bits;
  };

  union SefCpuid7Eax {
    uint32_t value;
  };

  union SefCpuid7Ebx {
    uint32_t value;
    struct {
      uint32_t fsgsbase : 1,
                        : 2,
                   bmi1 : 1,
                        : 1,
                   avx2 : 1,
                        : 2,
                   bmi2 : 1,
                   erms : 1,
                        : 22;
    } bits;
  };

  union XemXcr0Eax {
    uint32_t value;
    struct {
      uint32_t x87 : 1,
               sse : 1,
               ymm : 1,
                   : 29;
    } bits;
  };

protected:
  static int _cpu;
  static int _model;
  static int _stepping;
  static int _cpuFeatures;     // features returned by the "cpuid" instruction
                               // 0 if this instruction is not available
  static const char* _features_str;

  enum {
    CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
    CPU_CMOV   = (1 << 1),
    CPU_FXSR   = (1 << 2),
    CPU_HT     = (1 << 3),
    CPU_MMX    = (1 << 4),
    CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
                                    // may not necessarily support other 3dnow instructions
    CPU_SSE    = (1 << 6),
    CPU_SSE2   = (1 << 7),
    CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
    CPU_SSSE3  = (1 << 9),
    CPU_SSE4A  = (1 << 10),
    CPU_SSE4_1 = (1 << 11),
    CPU_SSE4_2 = (1 << 12),
    CPU_POPCNT = (1 << 13),
    CPU_LZCNT  = (1 << 14),
    CPU_TSC    = (1 << 15),
    CPU_TSCINV = (1 << 16),
    CPU_AVX    = (1 << 17),
    CPU_AVX2   = (1 << 18),
    CPU_AES    = (1 << 19),
    CPU_ERMS   = (1 << 20), // enhanced 'rep movsb/stosb' instructions
    CPU_CLMUL  = (1 << 21) // carryless multiply for CRC
  } cpuFeatureFlags;

  enum {
    // AMD
    CPU_FAMILY_AMD_11H       = 0x11,
    // Intel
    CPU_FAMILY_INTEL_CORE    = 6,
    CPU_MODEL_NEHALEM        = 0x1e,
    CPU_MODEL_NEHALEM_EP     = 0x1a,
    CPU_MODEL_NEHALEM_EX     = 0x2e,
    CPU_MODEL_WESTMERE       = 0x25,
    CPU_MODEL_WESTMERE_EP    = 0x2c,
    CPU_MODEL_WESTMERE_EX    = 0x2f,
    CPU_MODEL_SANDYBRIDGE    = 0x2a,
    CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
    CPU_MODEL_IVYBRIDGE_EP   = 0x3a
  } cpuExtendedFamily;

  // cpuid information block.  All info derived from executing cpuid with
  // various function numbers is stored here.  Intel and AMD info is
  // merged in this block: accessor methods disentangle it.
  //
  // The info block is laid out in subblocks of 4 dwords corresponding to
  // eax, ebx, ecx and edx, whether or not they contain anything useful.
  struct CpuidInfo {
    // cpuid function 0
    uint32_t std_max_function;
    uint32_t std_vendor_name_0;
    uint32_t std_vendor_name_1;
    uint32_t std_vendor_name_2;

    // cpuid function 1
    StdCpuid1Eax std_cpuid1_eax;
    StdCpuid1Ebx std_cpuid1_ebx;
    StdCpuid1Ecx std_cpuid1_ecx;
    StdCpuid1Edx std_cpuid1_edx;

    // cpuid function 4 (deterministic cache parameters)
    DcpCpuid4Eax dcp_cpuid4_eax;
    DcpCpuid4Ebx dcp_cpuid4_ebx;
    uint32_t     dcp_cpuid4_ecx; // unused currently
    uint32_t     dcp_cpuid4_edx; // unused currently

    // cpuid function 7 (structured extended features)
    SefCpuid7Eax sef_cpuid7_eax;
    SefCpuid7Ebx sef_cpuid7_ebx;
    uint32_t     sef_cpuid7_ecx; // unused currently
    uint32_t     sef_cpuid7_edx; // unused currently

    // cpuid function 0xB (processor topology)
    // ecx = 0
    uint32_t     tpl_cpuidB0_eax;
    TplCpuidBEbx tpl_cpuidB0_ebx;
    uint32_t     tpl_cpuidB0_ecx; // unused currently
    uint32_t     tpl_cpuidB0_edx; // unused currently

    // ecx = 1
    uint32_t     tpl_cpuidB1_eax;
    TplCpuidBEbx tpl_cpuidB1_ebx;
    uint32_t     tpl_cpuidB1_ecx; // unused currently
    uint32_t     tpl_cpuidB1_edx; // unused currently

    // ecx = 2
    uint32_t     tpl_cpuidB2_eax;
    TplCpuidBEbx tpl_cpuidB2_ebx;
    uint32_t     tpl_cpuidB2_ecx; // unused currently
    uint32_t     tpl_cpuidB2_edx; // unused currently

    // cpuid function 0x80000000 // example, unused
    uint32_t ext_max_function;
    uint32_t ext_vendor_name_0;
    uint32_t ext_vendor_name_1;
    uint32_t ext_vendor_name_2;

    // cpuid function 0x80000001
    uint32_t     ext_cpuid1_eax; // reserved
    uint32_t     ext_cpuid1_ebx; // reserved
    ExtCpuid1Ecx ext_cpuid1_ecx;
    ExtCpuid1Edx ext_cpuid1_edx;

    // cpuid functions 0x80000002 thru 0x80000004: example, unused
    uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
    uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
    uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;

    // cpuid function 0x80000005 // AMD L1, Intel reserved
    uint32_t     ext_cpuid5_eax; // unused currently
    uint32_t     ext_cpuid5_ebx; // reserved
    ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
    ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)

    // cpuid function 0x80000007
    uint32_t     ext_cpuid7_eax; // reserved
    uint32_t     ext_cpuid7_ebx; // reserved
    uint32_t     ext_cpuid7_ecx; // reserved
    ExtCpuid7Edx ext_cpuid7_edx; // tscinv

    // cpuid function 0x80000008
    uint32_t     ext_cpuid8_eax; // unused currently
    uint32_t     ext_cpuid8_ebx; // reserved
    ExtCpuid8Ecx ext_cpuid8_ecx;
    uint32_t     ext_cpuid8_edx; // reserved

    // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
    XemXcr0Eax   xem_xcr0_eax;
    uint32_t     xem_xcr0_edx; // reserved
  };

  // The actual cpuid info block
  static CpuidInfo _cpuid_info;

  // Extractors and predicates
  static uint32_t extended_cpu_family() {
    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
    result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
    return result;
  }

  static uint32_t extended_cpu_model() {
    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
    result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
    return result;
  }

  static uint32_t cpu_stepping() {
    uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
    return result;
  }

  static uint logical_processor_count() {
    uint result = threads_per_core();
    return result;
  }

  static uint32_t feature_flags() {
    uint32_t result = 0;
    if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
      result |= CPU_CX8;
    if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
      result |= CPU_CMOV;
    if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
        _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
      result |= CPU_FXSR;
    // HT flag is set for multi-core processors also.
    if (threads_per_core() > 1)
      result |= CPU_HT;
    if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
        _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
      result |= CPU_MMX;
    if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
      result |= CPU_SSE;
    if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
      result |= CPU_SSE2;
    if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
      result |= CPU_SSE3;
    if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
      result |= CPU_SSSE3;
    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
      result |= CPU_SSE4_1;
    if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
      result |= CPU_SSE4_2;
    if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
      result |= CPU_POPCNT;
    if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
        _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
        _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
        _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
      result |= CPU_AVX;
      if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
        result |= CPU_AVX2;
    }
    if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
      result |= CPU_TSC;
    if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
      result |= CPU_TSCINV;
    if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
      result |= CPU_AES;
    if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
      result |= CPU_ERMS;
    if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
      result |= CPU_CLMUL;

    // AMD features.
    if (is_amd()) {
      if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
          (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
        result |= CPU_3DNOW_PREFETCH;
      if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
        result |= CPU_LZCNT;
      if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
        result |= CPU_SSE4A;
    }

    return result;
  }

  static void get_processor_features();

public:
  // Offsets for cpuid asm stub
  static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
  static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
  static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
  static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
  static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
  static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
  static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
  static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
  static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
  static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
  static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
  static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }

  // Initialization
  static void initialize();

  // Asserts
  static void assert_is_initialized() {
    assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
  }

  //
  // Processor family:
  //       3   -  386
  //       4   -  486
  //       5   -  Pentium
  //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
  //              Pentium M, Core Solo, Core Duo, Core2 Duo
  //    family 6 model:   9,        13,       14,        15
  //    0x0f   -  Pentium 4, Opteron
  //
  // Note: The cpu family should be used to select between
  //       instruction sequences which are valid on all Intel
  //       processors.  Use the feature test functions below to
  //       determine whether a particular instruction is supported.
  //
  static int  cpu_family()        { return _cpu;}
  static bool is_P6()             { return cpu_family() >= 6; }
  static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
  static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'

  static bool supports_processor_topology() {
    return (_cpuid_info.std_max_function >= 0xB) &&
           // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
           // Some cpus have max cpuid >= 0xB but do not support processor topology.
           (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
  }

  static uint cores_per_cpu()  {
    uint result = 1;
    if (is_intel()) {
      if (supports_processor_topology()) {
        result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
                 _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
      } else {
        result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
      }
    } else if (is_amd()) {
      result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
    }
    return result;
  }

  static uint threads_per_core()  {
    uint result = 1;
    if (is_intel() && supports_processor_topology()) {
      result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
    } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
      result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
               cores_per_cpu();
    }
    return result;
  }

  static intx prefetch_data_size()  {
    intx result = 0;
    if (is_intel()) {
      result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
    } else if (is_amd()) {
      result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
    }
    if (result < 32) // not defined ?
      result = 32;   // 32 bytes by default on x86 and other x64
    return result;
  }

  //
  // Feature identification
  //
  static bool supports_cpuid()    { return _cpuFeatures  != 0; }
  static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
  static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
  static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
  static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
  static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
  static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
  static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
  static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
  static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
  static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
  static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
  static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
  static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
  static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
  static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
  static bool supports_aes()      { return (_cpuFeatures & CPU_AES) != 0; }
  static bool supports_erms()     { return (_cpuFeatures & CPU_ERMS) != 0; }
  static bool supports_clmul()    { return (_cpuFeatures & CPU_CLMUL) != 0; }

  // Intel features
  static bool is_intel_family_core() { return is_intel() &&
                                       extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }

  static bool is_intel_tsc_synched_at_init()  {
    if (is_intel_family_core()) {
      uint32_t ext_model = extended_cpu_model();
      if (ext_model == CPU_MODEL_NEHALEM_EP     ||
          ext_model == CPU_MODEL_WESTMERE_EP    ||
          ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
          ext_model == CPU_MODEL_IVYBRIDGE_EP) {
        // <= 2-socket invariant tsc support. EX versions are usually used
        // in > 2-socket systems and likely don't synchronize tscs at
        // initialization.
        // Code that uses tsc values must be prepared for them to arbitrarily
        // jump forward or backward.
        return true;
      }
    }
    return false;
  }

  // AMD features
  static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
  static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
  static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
  static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }

  static bool is_amd_Barcelona()  { return is_amd() &&
                                           extended_cpu_family() == CPU_FAMILY_AMD_11H; }

  // Intel and AMD newer cores support fast timestamps well
  static bool supports_tscinv_bit() {
    return (_cpuFeatures & CPU_TSCINV) != 0;
  }
  static bool supports_tscinv() {
    return supports_tscinv_bit() &&
           ( (is_amd() && !is_amd_Barcelona()) ||
             is_intel_tsc_synched_at_init() );
  }

  // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
  static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
                                           supports_sse3() && _model != 0x1C; }

  static bool supports_compare_and_exchange() { return true; }

  static const char* cpu_features()           { return _features_str; }

  static intx allocate_prefetch_distance() {
    // This method should be called before allocate_prefetch_style().
    //
    // Hardware prefetching (distance/size in bytes):
    // Pentium 3 -  64 /  32
    // Pentium 4 - 256 / 128
    // Athlon    -  64 /  32 ????
    // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
    // Core      - 128 /  64
    //
    // Software prefetching (distance in bytes / instruction with best score):
    // Pentium 3 - 128 / prefetchnta
    // Pentium 4 - 512 / prefetchnta
    // Athlon    - 128 / prefetchnta
    // Opteron   - 256 / prefetchnta
    // Core      - 256 / prefetchnta
    // It will be used only when AllocatePrefetchStyle > 0

    intx count = AllocatePrefetchDistance;
    if (count < 0) {   // default ?
      if (is_amd()) {  // AMD
        if (supports_sse2())
          count = 256; // Opteron
        else
          count = 128; // Athlon
      } else {         // Intel
        if (supports_sse2())
          if (cpu_family() == 6) {
            count = 256; // Pentium M, Core, Core2
          } else {
            count = 512; // Pentium 4
          }
        else
          count = 128; // Pentium 3 (and all other old CPUs)
      }
    }
    return count;
  }
  static intx allocate_prefetch_style() {
    assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
    // Return 0 if AllocatePrefetchDistance was not defined.
    return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
  }

  // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
  // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
  // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
  // 256 bytes (4 dcache lines) was the nearest runner-up to 576.

  // gc copy/scan is disabled if prefetchw isn't supported, because
  // Prefetch::write emits an inlined prefetchw on Linux.
  // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
  // The used prefetcht0 instruction works for both amd64 and em64t.
  static intx prefetch_copy_interval_in_bytes() {
    intx interval = PrefetchCopyIntervalInBytes;
    return interval >= 0 ? interval : 576;
  }
  static intx prefetch_scan_interval_in_bytes() {
    intx interval = PrefetchScanIntervalInBytes;
    return interval >= 0 ? interval : 576;
  }
  static intx prefetch_fields_ahead() {
    intx count = PrefetchFieldsAhead;
    return count >= 0 ? count : 1;
  }
};

#endif // CPU_X86_VM_VM_VERSION_X86_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java vm_version_x86.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.