alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (output_c.cpp)

This example Java source code file (output_c.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

file, formdict, instructform, machnode, must, namelist, null, operandform, outputmap, pipeline_use_cycle_mask, pipeline_use_element, replacement

The output_c.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// output_c.cpp - Class CPP file output routines for architecture definition

#include "adlc.hpp"

// Utilities to characterize effect statements
static bool is_def(int usedef) {
  switch(usedef) {
  case Component::DEF:
  case Component::USE_DEF: return true; break;
  }
  return false;
}

static bool is_use(int usedef) {
  switch(usedef) {
  case Component::USE:
  case Component::USE_DEF:
  case Component::USE_KILL: return true; break;
  }
  return false;
}

static bool is_kill(int usedef) {
  switch(usedef) {
  case Component::KILL:
  case Component::USE_KILL: return true; break;
  }
  return false;
}

// Define  an array containing the machine register names, strings.
static void defineRegNames(FILE *fp, RegisterForm *registers) {
  if (registers) {
    fprintf(fp,"\n");
    fprintf(fp,"// An array of character pointers to machine register names.\n");
    fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");

    // Output the register name for each register in the allocation classes
    RegDef *reg_def = NULL;
    RegDef *next = NULL;
    registers->reset_RegDefs();
    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
      next = registers->iter_RegDefs();
      const char *comma = (next != NULL) ? "," : " // no trailing comma";
      fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
    }

    // Finish defining enumeration
    fprintf(fp,"};\n");

    fprintf(fp,"\n");
    fprintf(fp,"// An array of character pointers to machine register names.\n");
    fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
    reg_def = NULL;
    next = NULL;
    registers->reset_RegDefs();
    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
      next = registers->iter_RegDefs();
      const char *comma = (next != NULL) ? "," : " // no trailing comma";
      fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
    }
    // Finish defining array
    fprintf(fp,"\t};\n");
    fprintf(fp,"\n");

    fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");

  }
}

// Define an array containing the machine register encoding values
static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  if (registers) {
    fprintf(fp,"\n");
    fprintf(fp,"// An array of the machine register encode values\n");
    fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");

    // Output the register encoding for each register in the allocation classes
    RegDef *reg_def = NULL;
    RegDef *next    = NULL;
    registers->reset_RegDefs();
    for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
      next = registers->iter_RegDefs();
      const char* register_encode = reg_def->register_encode();
      const char *comma = (next != NULL) ? "," : " // no trailing comma";
      int encval;
      if (!ADLParser::is_int_token(register_encode, encval)) {
        fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
      } else {
        // Output known constants in hex char format (backward compatibility).
        assert(encval < 256, "Exceeded supported width for register encoding");
        fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
      }
    }
    // Finish defining enumeration
    fprintf(fp,"};\n");

  } // Done defining array
}

// Output an enumeration of register class names
static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
  if (registers) {
    // Output an enumeration of register class names
    fprintf(fp,"\n");
    fprintf(fp,"// Enumeration of register class names\n");
    fprintf(fp, "enum machRegisterClass {\n");
    registers->_rclasses.reset();
    for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
      const char * class_name_to_upper = toUpper(class_name);
      fprintf(fp,"  %s,\n", class_name_to_upper);
      delete[] class_name_to_upper;
    }
    // Finish defining enumeration
    fprintf(fp, "  _last_Mach_Reg_Class\n");
    fprintf(fp, "};\n");
  }
}

// Declare an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::declare_register_masks(FILE *fp_hpp) {
  const char  *rc_name;

  if (_register) {
    // Build enumeration of user-defined register classes.
    defineRegClassEnum(fp_hpp, _register);

    // Generate a list of register masks, one for each class.
    fprintf(fp_hpp,"\n");
    fprintf(fp_hpp,"// Register masks, one for each register class.\n");
    _register->_rclasses.reset();
    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
      const char *prefix = "";
      RegClass *reg_class = _register->getRegClass(rc_name);
      assert(reg_class, "Using an undefined register class");

      const char* rc_name_to_upper = toUpper(rc_name);

      if (reg_class->_user_defined == NULL) {
        fprintf(fp_hpp, "extern const RegMask _%s%s_mask;\n", prefix,  rc_name_to_upper);
        fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { return _%s%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
      } else {
        fprintf(fp_hpp, "inline const RegMask &%s%s_mask() { %s }\n", prefix, rc_name_to_upper, reg_class->_user_defined);
      }

      if (reg_class->_stack_or_reg) {
        assert(reg_class->_user_defined == NULL, "no user defined reg class here");
        fprintf(fp_hpp, "extern const RegMask _%sSTACK_OR_%s_mask;\n", prefix, rc_name_to_upper);
        fprintf(fp_hpp, "inline const RegMask &%sSTACK_OR_%s_mask() { return _%sSTACK_OR_%s_mask; }\n", prefix, rc_name_to_upper, prefix, rc_name_to_upper);
      }
      delete[] rc_name_to_upper;

    }
  }
}

// Generate an enumeration of user-defined register classes
// and a list of register masks, one for each class.
void ArchDesc::build_register_masks(FILE *fp_cpp) {
  const char  *rc_name;

  if (_register) {
    // Generate a list of register masks, one for each class.
    fprintf(fp_cpp,"\n");
    fprintf(fp_cpp,"// Register masks, one for each register class.\n");
    _register->_rclasses.reset();
    for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
      const char *prefix = "";
      RegClass *reg_class = _register->getRegClass(rc_name);
      assert(reg_class, "Using an undefined register class");

      if (reg_class->_user_defined != NULL) {
        continue;
      }

      int len = RegisterForm::RegMask_Size();
      const char* rc_name_to_upper = toUpper(rc_name);
      fprintf(fp_cpp, "const RegMask _%s%s_mask(", prefix, rc_name_to_upper);

      {
        int i;
        for(i = 0; i < len - 1; i++) {
          fprintf(fp_cpp," 0x%x,", reg_class->regs_in_word(i, false));
        }
        fprintf(fp_cpp," 0x%x );\n", reg_class->regs_in_word(i, false));
      }

      if (reg_class->_stack_or_reg) {
        int i;
        fprintf(fp_cpp, "const RegMask _%sSTACK_OR_%s_mask(", prefix, rc_name_to_upper);
        for(i = 0; i < len - 1; i++) {
          fprintf(fp_cpp," 0x%x,",reg_class->regs_in_word(i, true));
        }
        fprintf(fp_cpp," 0x%x );\n",reg_class->regs_in_word(i, true));
      }
      delete[] rc_name_to_upper;
    }
  }
}

// Compute an index for an array in the pipeline_reads_NNN arrays
static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
{
  int templen = 1;
  int paramcount = 0;
  const char *paramname;

  if (pipeclass->_parameters.count() == 0)
    return -1;

  pipeclass->_parameters.reset();
  paramname = pipeclass->_parameters.iter();
  const PipeClassOperandForm *pipeopnd =
    (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
    pipeclass->_parameters.reset();

  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
    const PipeClassOperandForm *tmppipeopnd =
        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];

    if (tmppipeopnd)
      templen += 10 + (int)strlen(tmppipeopnd->_stage);
    else
      templen += 19;

    paramcount++;
  }

  // See if the count is zero
  if (paramcount == 0) {
    return -1;
  }

  char *operand_stages = new char [templen];
  operand_stages[0] = 0;
  int i = 0;
  templen = 0;

  pipeclass->_parameters.reset();
  paramname = pipeclass->_parameters.iter();
  pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
  if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
    pipeclass->_parameters.reset();

  while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
    const PipeClassOperandForm *tmppipeopnd =
        (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
    templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
      tmppipeopnd ? tmppipeopnd->_stage : "undefined",
      (++i < paramcount ? ',' : ' ') );
  }

  // See if the same string is in the table
  int ndx = pipeline_reads.index(operand_stages);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_reads.addName(operand_stages);
    ndx = pipeline_reads.index(operand_stages);

    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
      ndx+1, paramcount, operand_stages);
  }
  else
    delete [] operand_stages;

  return (ndx);
}

// Compute an index for an array in the pipeline_res_stages_NNN arrays
static int pipeline_res_stages_initializer(
  FILE *fp_cpp,
  PipelineForm *pipeline,
  NameList &pipeline_res_stages,
  PipeClassForm *pipeclass)
{
  const PipeClassResourceForm *piperesource;
  int * res_stages = new int [pipeline->_rescount];
  int i;

  for (i = 0; i < pipeline->_rescount; i++)
     res_stages[i] = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
    for (i = 0; i < pipeline->_rescount; i++)
      if ((1 << i) & used_mask) {
        int stage = pipeline->_stages.index(piperesource->_stage);
        if (res_stages[i] < stage+1)
          res_stages[i] = stage+1;
      }
  }

  // Compute the length needed for the resource list
  int commentlen = 0;
  int max_stage = 0;
  for (i = 0; i < pipeline->_rescount; i++) {
    if (res_stages[i] == 0) {
      if (max_stage < 9)
        max_stage = 9;
    }
    else {
      int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
      if (max_stage < stagelen)
        max_stage = stagelen;
    }

    commentlen += (int)strlen(pipeline->_reslist.name(i));
  }

  int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);

  // Allocate space for the resource list
  char * resource_stages = new char [templen];

  templen = 0;
  for (i = 0; i < pipeline->_rescount; i++) {
    const char * const resname =
      res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);

    templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
      resname, max_stage - (int)strlen(resname) + 1,
      (i < pipeline->_rescount-1) ? "," : "",
      pipeline->_reslist.name(i));
  }

  // See if the same string is in the table
  int ndx = pipeline_res_stages.index(resource_stages);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_res_stages.addName(resource_stages);
    ndx = pipeline_res_stages.index(resource_stages);

    fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
      ndx+1, pipeline->_rescount, resource_stages);
  }
  else
    delete [] resource_stages;

  delete [] res_stages;

  return (ndx);
}

// Compute an index for an array in the pipeline_res_cycles_NNN arrays
static int pipeline_res_cycles_initializer(
  FILE *fp_cpp,
  PipelineForm *pipeline,
  NameList &pipeline_res_cycles,
  PipeClassForm *pipeclass)
{
  const PipeClassResourceForm *piperesource;
  int * res_cycles = new int [pipeline->_rescount];
  int i;

  for (i = 0; i < pipeline->_rescount; i++)
     res_cycles[i] = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
    for (i = 0; i < pipeline->_rescount; i++)
      if ((1 << i) & used_mask) {
        int cycles = piperesource->_cycles;
        if (res_cycles[i] < cycles)
          res_cycles[i] = cycles;
      }
  }

  // Pre-compute the string length
  int templen;
  int cyclelen = 0, commentlen = 0;
  int max_cycles = 0;
  char temp[32];

  for (i = 0; i < pipeline->_rescount; i++) {
    if (max_cycles < res_cycles[i])
      max_cycles = res_cycles[i];
    templen = sprintf(temp, "%d", res_cycles[i]);
    if (cyclelen < templen)
      cyclelen = templen;
    commentlen += (int)strlen(pipeline->_reslist.name(i));
  }

  templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;

  // Allocate space for the resource list
  char * resource_cycles = new char [templen];

  templen = 0;

  for (i = 0; i < pipeline->_rescount; i++) {
    templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
      cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
  }

  // See if the same string is in the table
  int ndx = pipeline_res_cycles.index(resource_cycles);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_res_cycles.addName(resource_cycles);
    ndx = pipeline_res_cycles.index(resource_cycles);

    fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
      ndx+1, pipeline->_rescount, resource_cycles);
  }
  else
    delete [] resource_cycles;

  delete [] res_cycles;

  return (ndx);
}

//typedef unsigned long long uint64_t;

// Compute an index for an array in the pipeline_res_mask_NNN arrays
static int pipeline_res_mask_initializer(
  FILE *fp_cpp,
  PipelineForm *pipeline,
  NameList &pipeline_res_mask,
  NameList &pipeline_res_args,
  PipeClassForm *pipeclass)
{
  const PipeClassResourceForm *piperesource;
  const uint rescount      = pipeline->_rescount;
  const uint maxcycleused  = pipeline->_maxcycleused;
  const uint cyclemasksize = (maxcycleused + 31) >> 5;

  int i, j;
  int element_count = 0;
  uint *res_mask = new uint [cyclemasksize];
  uint resources_used             = 0;
  uint resources_used_exclusively = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
    element_count++;
  }

  // Pre-compute the string length
  int templen;
  int commentlen = 0;
  int max_cycles = 0;

  int cyclelen = ((maxcycleused + 3) >> 2);
  int masklen = (rescount + 3) >> 2;

  int cycledigit = 0;
  for (i = maxcycleused; i > 0; i /= 10)
    cycledigit++;

  int maskdigit = 0;
  for (i = rescount; i > 0; i /= 10)
    maskdigit++;

  static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
  static const char* pipeline_use_element    = "Pipeline_Use_Element";

  templen = 1 +
    (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
     (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;

  // Allocate space for the resource list
  char * resource_mask = new char [templen];
  char * last_comma = NULL;

  templen = 0;

  for (pipeclass->_resUsage.reset();
       (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
    int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();

    if (!used_mask) {
      fprintf(stderr, "*** used_mask is 0 ***\n");
    }

    resources_used |= used_mask;

    uint lb, ub;

    for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
    for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);

    if (lb == ub) {
      resources_used_exclusively |= used_mask;
    }

    int formatlen =
      sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
        pipeline_use_element,
        masklen, used_mask,
        cycledigit, lb, cycledigit, ub,
        ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
        pipeline_use_cycle_mask);

    templen += formatlen;

    memset(res_mask, 0, cyclemasksize * sizeof(uint));

    int cycles = piperesource->_cycles;
    uint stage          = pipeline->_stages.index(piperesource->_stage);
    if ((uint)NameList::Not_in_list == stage) {
      fprintf(stderr,
              "pipeline_res_mask_initializer: "
              "semantic error: "
              "pipeline stage undeclared: %s\n",
              piperesource->_stage);
      exit(1);
    }
    uint upper_limit    = stage + cycles - 1;
    uint lower_limit    = stage - 1;
    uint upper_idx      = upper_limit >> 5;
    uint lower_idx      = lower_limit >> 5;
    uint upper_position = upper_limit & 0x1f;
    uint lower_position = lower_limit & 0x1f;

    uint mask = (((uint)1) << upper_position) - 1;

    while (upper_idx > lower_idx) {
      res_mask[upper_idx--] |= mask;
      mask = (uint)-1;
    }

    mask -= (((uint)1) << lower_position) - 1;
    res_mask[upper_idx] |= mask;

    for (j = cyclemasksize-1; j >= 0; j--) {
      formatlen =
        sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
      templen += formatlen;
    }

    resource_mask[templen++] = ')';
    resource_mask[templen++] = ')';
    last_comma = &resource_mask[templen];
    resource_mask[templen++] = ',';
    resource_mask[templen++] = '\n';
  }

  resource_mask[templen] = 0;
  if (last_comma) {
    last_comma[0] = ' ';
  }

  // See if the same string is in the table
  int ndx = pipeline_res_mask.index(resource_mask);

  // No, add it to the table
  if (ndx < 0) {
    pipeline_res_mask.addName(resource_mask);
    ndx = pipeline_res_mask.index(resource_mask);

    if (strlen(resource_mask) > 0)
      fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
        ndx+1, element_count, resource_mask);

    char* args = new char [9 + 2*masklen + maskdigit];

    sprintf(args, "0x%0*x, 0x%0*x, %*d",
      masklen, resources_used,
      masklen, resources_used_exclusively,
      maskdigit, element_count);

    pipeline_res_args.addName(args);
  }
  else {
    delete [] resource_mask;
  }

  delete [] res_mask;
//delete [] res_masks;

  return (ndx);
}

void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
  const char *classname;
  const char *resourcename;
  int resourcenamelen = 0;
  NameList pipeline_reads;
  NameList pipeline_res_stages;
  NameList pipeline_res_cycles;
  NameList pipeline_res_masks;
  NameList pipeline_res_args;
  const int default_latency = 1;
  const int non_operand_latency = 0;
  const int node_latency = 0;

  if (!_pipeline) {
    fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
    fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
    fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
    fprintf(fp_cpp, "}\n");
    return;
  }

  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
  fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
  fprintf(fp_cpp, "    \"undefined\"");

  for (int s = 0; s < _pipeline->_stagecnt; s++)
    fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));

  fprintf(fp_cpp, "\n  };\n\n");
  fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
    _pipeline->_stagecnt);
  fprintf(fp_cpp, "}\n");
  fprintf(fp_cpp, "#endif\n\n");

  fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
  fprintf(fp_cpp, "  // See if the functional units overlap\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
  fprintf(fp_cpp, "  }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
  fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
  fprintf(fp_cpp, "  }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
  fprintf(fp_cpp, "    if (predUse->multiple())\n");
  fprintf(fp_cpp, "      continue;\n\n");
  fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
  fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
  fprintf(fp_cpp, "      if (currUse->multiple())\n");
  fprintf(fp_cpp, "        continue;\n\n");
  fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
  fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
  fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
  fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
  fprintf(fp_cpp, "          y <<= 1;\n");
  fprintf(fp_cpp, "      }\n");
  fprintf(fp_cpp, "    }\n");
  fprintf(fp_cpp, "  }\n\n");
  fprintf(fp_cpp, "  // There is the potential for overlap\n");
  fprintf(fp_cpp, "  return (start);\n");
  fprintf(fp_cpp, "}\n\n");
  fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
  fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
  fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
  fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
  fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
  fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
  fprintf(fp_cpp, "      uint min_delay = %d;\n",
    _pipeline->_maxcycleused+1);
  fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, "        uint curr_delay = delay;\n");
  fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
  fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
  fprintf(fp_cpp, "            y <<= 1;\n");
  fprintf(fp_cpp, "        }\n");
  fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
  fprintf(fp_cpp, "      }\n");
  fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
  fprintf(fp_cpp, "    }\n");
  fprintf(fp_cpp, "    else {\n");
  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
  fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
  fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
  fprintf(fp_cpp, "            y <<= 1;\n");
  fprintf(fp_cpp, "        }\n");
  fprintf(fp_cpp, "      }\n");
  fprintf(fp_cpp, "    }\n");
  fprintf(fp_cpp, "  }\n\n");
  fprintf(fp_cpp, "  return (delay);\n");
  fprintf(fp_cpp, "}\n\n");
  fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
  fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
  fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
  fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
  fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
  fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
  fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
  fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
  fprintf(fp_cpp, "          break;\n");
  fprintf(fp_cpp, "        }\n");
  fprintf(fp_cpp, "      }\n");
  fprintf(fp_cpp, "    }\n");
  fprintf(fp_cpp, "    else {\n");
  fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
  fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
  fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
  fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
  fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
  fprintf(fp_cpp, "      }\n");
  fprintf(fp_cpp, "    }\n");
  fprintf(fp_cpp, "  }\n");
  fprintf(fp_cpp, "}\n\n");

  fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
  fprintf(fp_cpp, "  int const default_latency = 1;\n");
  fprintf(fp_cpp, "\n");
#if 0
  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
  fprintf(fp_cpp, "  }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
  fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
  fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
  fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
  fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
  fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
  fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
  fprintf(fp_cpp, "  }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
  fprintf(fp_cpp, "    return (default_latency);\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
  fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
#if 0
  fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
  fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
  fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
  fprintf(fp_cpp, "  }\n");
  fprintf(fp_cpp, "#endif\n\n");
#endif
  fprintf(fp_cpp, "  return (delta);\n");
  fprintf(fp_cpp, "}\n\n");

  if (!_pipeline)
    /* Do Nothing */;

  else if (_pipeline->_maxcycleused <=
#ifdef SPARC
    64
#else
    32
#endif
      ) {
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
    fprintf(fp_cpp, "}\n\n");
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
    fprintf(fp_cpp, "}\n\n");
  }
  else {
    uint l;
    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
    for (l = 1; l <= masklen; l++)
      fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
    fprintf(fp_cpp, ");\n");
    fprintf(fp_cpp, "}\n\n");
    fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
    fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
    for (l = 1; l <= masklen; l++)
      fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
    fprintf(fp_cpp, ");\n");
    fprintf(fp_cpp, "}\n\n");
    fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
    for (l = 1; l <= masklen; l++)
      fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
    fprintf(fp_cpp, "\n}\n\n");
  }

  /* Get the length of all the resource names */
  for (_pipeline->_reslist.reset(), resourcenamelen = 0;
       (resourcename = _pipeline->_reslist.iter()) != NULL;
       resourcenamelen += (int)strlen(resourcename));

  // Create the pipeline class description

  fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
  fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");

  fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
  for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
    fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
    for (int i2 = masklen-1; i2 >= 0; i2--)
      fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
    fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
  }
  fprintf(fp_cpp, "};\n\n");

  fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
    _pipeline->_rescount);

  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
    fprintf(fp_cpp, "\n");
    fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
    int maxWriteStage = -1;
    int maxMoreInstrs = 0;
    int paramcount = 0;
    int i = 0;
    const char *paramname;
    int resource_count = (_pipeline->_rescount + 3) >> 2;

    // Scan the operands, looking for last output stage and number of inputs
    for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
      const PipeClassOperandForm *pipeopnd =
          (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
      if (pipeopnd) {
        if (pipeopnd->_iswrite) {
           int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
           int moreinsts = pipeopnd->_more_instrs;
          if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
            maxWriteStage = stagenum;
            maxMoreInstrs = moreinsts;
          }
        }
      }

      if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
        paramcount++;
    }

    // Create the list of stages for the operands that are read
    // Note that we will build a NameList to reduce the number of copies

    int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);

    int pipeline_res_stages_index = pipeline_res_stages_initializer(
      fp_cpp, _pipeline, pipeline_res_stages, pipeclass);

    int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
      fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);

    int pipeline_res_mask_index = pipeline_res_mask_initializer(
      fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);

#if 0
    // Process the Resources
    const PipeClassResourceForm *piperesource;

    unsigned resources_used = 0;
    unsigned exclusive_resources_used = 0;
    unsigned resource_groups = 0;
    for (pipeclass->_resUsage.reset();
         (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
      int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
      if (used_mask)
        resource_groups++;
      resources_used |= used_mask;
      if ((used_mask & (used_mask-1)) == 0)
        exclusive_resources_used |= used_mask;
    }

    if (resource_groups > 0) {
      fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
        pipeclass->_num, resource_groups);
      for (pipeclass->_resUsage.reset(), i = 1;
           (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
           i++ ) {
        int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
        if (used_mask) {
          fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
        }
      }
      fprintf(fp_cpp, "};\n\n");
    }
#endif

    // Create the pipeline class description
    fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
      pipeclass->_num);
    if (maxWriteStage < 0)
      fprintf(fp_cpp, "(uint)stage_undefined");
    else if (maxMoreInstrs == 0)
      fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
    else
      fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
    fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
      paramcount,
      pipeclass->hasFixedLatency() ? "true" : "false",
      pipeclass->fixedLatency(),
      pipeclass->InstructionCount(),
      pipeclass->hasBranchDelay() ? "true" : "false",
      pipeclass->hasMultipleBundles() ? "true" : "false",
      pipeclass->forceSerialization() ? "true" : "false",
      pipeclass->mayHaveNoCode() ? "true" : "false" );
    if (paramcount > 0) {
      fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
        pipeline_reads_index+1);
    }
    else
      fprintf(fp_cpp, " NULL,");
    fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
      pipeline_res_stages_index+1);
    fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
      pipeline_res_cycles_index+1);
    fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
      pipeline_res_args.name(pipeline_res_mask_index));
    if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
      fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
        pipeline_res_mask_index+1);
    else
      fprintf(fp_cpp, "NULL");
    fprintf(fp_cpp, "));\n");
  }

  // Generate the Node::latency method if _pipeline defined
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
  fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
  if (_pipeline) {
#if 0
    fprintf(fp_cpp, "#ifndef PRODUCT\n");
    fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
    fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
    fprintf(fp_cpp, " }\n");
    fprintf(fp_cpp, "#endif\n");
#endif
    fprintf(fp_cpp, "  uint j;\n");
    fprintf(fp_cpp, "  // verify in legal range for inputs\n");
    fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
    fprintf(fp_cpp, "  // verify input is not null\n");
    fprintf(fp_cpp, "  Node *pred = in(i);\n");
    fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
      non_operand_latency);
    fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
    fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
    fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
    fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
    fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
    fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
    fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
    fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
      node_latency);
    fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
    fprintf(fp_cpp, "  j = m->oper_input_base();\n");
    fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
      non_operand_latency);
    fprintf(fp_cpp, "  // determine which operand this is in\n");
    fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
    fprintf(fp_cpp, "  int delta = %d;\n\n",
      non_operand_latency);
    fprintf(fp_cpp, "  uint k;\n");
    fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
    fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
    fprintf(fp_cpp, "    if (i < j)\n");
    fprintf(fp_cpp, "      break;\n");
    fprintf(fp_cpp, "  }\n");
    fprintf(fp_cpp, "  if (k < n)\n");
    fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
    fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
  }
  else {
    fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
    fprintf(fp_cpp, "  return %d;\n",
      non_operand_latency);
  }
  fprintf(fp_cpp, "}\n\n");

  // Output the list of nop nodes
  fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
  const char *nop;
  int nopcnt = 0;
  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );

  fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d], Compile *C) {\n", nopcnt);
  int i = 0;
  for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
    fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new (C) %sNode();\n", i, nop);
  }
  fprintf(fp_cpp, "};\n\n");
  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
  fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
  fprintf(fp_cpp, "    \"\",\n");
  fprintf(fp_cpp, "    \"use nop delay\",\n");
  fprintf(fp_cpp, "    \"use unconditional delay\",\n");
  fprintf(fp_cpp, "    \"use conditional delay\",\n");
  fprintf(fp_cpp, "    \"used in conditional delay\",\n");
  fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
  fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
  fprintf(fp_cpp, "  };\n\n");

  fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
  for (i = 0; i < _pipeline->_rescount; i++)
    fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
  fprintf(fp_cpp, "};\n\n");

  // See if the same string is in the table
  fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
  fprintf(fp_cpp, "  if (_flags) {\n");
  fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
  fprintf(fp_cpp, "    needs_comma = true;\n");
  fprintf(fp_cpp, "  };\n");
  fprintf(fp_cpp, "  if (instr_count()) {\n");
  fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
  fprintf(fp_cpp, "    needs_comma = true;\n");
  fprintf(fp_cpp, "  };\n");
  fprintf(fp_cpp, "  uint r = resources_used();\n");
  fprintf(fp_cpp, "  if (r) {\n");
  fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
  fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
  fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
  fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
  fprintf(fp_cpp, "    needs_comma = true;\n");
  fprintf(fp_cpp, "  };\n");
  fprintf(fp_cpp, "  st->print(\"\\n\");\n");
  fprintf(fp_cpp, "}\n");
  fprintf(fp_cpp, "#endif\n");
}

// ---------------------------------------------------------------------------
//------------------------------Utilities to build Instruction Classes--------
// ---------------------------------------------------------------------------

static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
  fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
          node, regMask);
}

static void print_block_index(FILE *fp, int inst_position) {
  assert( inst_position >= 0, "Instruction number less than zero");
  fprintf(fp, "block_index");
  if( inst_position != 0 ) {
    fprintf(fp, " - %d", inst_position);
  }
}

// Scan the peepmatch and output a test for each instruction
static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  int         parent        = -1;
  int         inst_position = 0;
  const char* inst_name     = NULL;
  int         input         = 0;
  fprintf(fp, "  // Check instruction sub-tree\n");
  pmatch->reset();
  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
       inst_name != NULL;
       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
    // If this is not a placeholder
    if( ! pmatch->is_placeholder() ) {
      // Define temporaries 'inst#', based on parent and parent's input index
      if( parent != -1 ) {                // root was initialized
        fprintf(fp, "  // Identify previous instruction if inside this block\n");
        fprintf(fp, "  if( ");
        print_block_index(fp, inst_position);
        fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
        print_block_index(fp, inst_position);
        fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
        fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
      }

      // When not the root
      // Test we have the correct instruction by comparing the rule.
      if( parent != -1 ) {
        fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
                inst_position, inst_position, inst_name);
      }
    } else {
      // Check that user did not try to constrain a placeholder
      assert( ! pconstraint->constrains_instruction(inst_position),
              "fatal(): Can not constrain a placeholder instruction");
    }
  }
}

// Build mapping for register indices, num_edges to input
static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
  int         parent        = -1;
  int         inst_position = 0;
  const char* inst_name     = NULL;
  int         input         = 0;
  fprintf(fp, "      // Build map to register info\n");
  pmatch->reset();
  for( pmatch->next_instruction( parent, inst_position, inst_name, input );
       inst_name != NULL;
       pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
    // If this is not a placeholder
    if( ! pmatch->is_placeholder() ) {
      // Define temporaries 'inst#', based on self's inst_position
      InstructForm *inst = globals[inst_name]->is_instruction();
      if( inst != NULL ) {
        char inst_prefix[]  = "instXXXX_";
        sprintf(inst_prefix, "inst%d_",   inst_position);
        char receiver[]     = "instXXXX->";
        sprintf(receiver,    "inst%d->", inst_position);
        inst->index_temps( fp, globals, inst_prefix, receiver );
      }
    }
  }
}

// Generate tests for the constraints
static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
  fprintf(fp, "\n");
  fprintf(fp, "      // Check constraints on sub-tree-leaves\n");

  // Build mapping from num_edges to local variables
  build_instruction_index_mapping( fp, globals, pmatch );

  // Build constraint tests
  if( pconstraint != NULL ) {
    fprintf(fp, "      matches = matches &&");
    bool   first_constraint = true;
    while( pconstraint != NULL ) {
      // indentation and connecting '&&'
      const char *indentation = "      ";
      fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));

      // Only have '==' relation implemented
      if( strcmp(pconstraint->_relation,"==") != 0 ) {
        assert( false, "Unimplemented()" );
      }

      // LEFT
      int left_index       = pconstraint->_left_inst;
      const char *left_op  = pconstraint->_left_op;
      // Access info on the instructions whose operands are compared
      InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
      assert( inst_left, "Parser should guaranty this is an instruction");
      int left_op_base  = inst_left->oper_input_base(globals);
      // Access info on the operands being compared
      int left_op_index  = inst_left->operand_position(left_op, Component::USE);
      if( left_op_index == -1 ) {
        left_op_index = inst_left->operand_position(left_op, Component::DEF);
        if( left_op_index == -1 ) {
          left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
        }
      }
      assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
      ComponentList components_left = inst_left->_components;
      const char *left_comp_type = components_left.at(left_op_index)->_type;
      OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
      Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);


      // RIGHT
      int right_op_index = -1;
      int right_index      = pconstraint->_right_inst;
      const char *right_op = pconstraint->_right_op;
      if( right_index != -1 ) { // Match operand
        // Access info on the instructions whose operands are compared
        InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
        assert( inst_right, "Parser should guaranty this is an instruction");
        int right_op_base = inst_right->oper_input_base(globals);
        // Access info on the operands being compared
        right_op_index = inst_right->operand_position(right_op, Component::USE);
        if( right_op_index == -1 ) {
          right_op_index = inst_right->operand_position(right_op, Component::DEF);
          if( right_op_index == -1 ) {
            right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
          }
        }
        assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
        ComponentList components_right = inst_right->_components;
        const char *right_comp_type = components_right.at(right_op_index)->_type;
        OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
        Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
        assert( right_interface_type == left_interface_type, "Both must be same interface");

      } else {                  // Else match register
        // assert( false, "should be a register" );
      }

      //
      // Check for equivalence
      //
      // fprintf(fp, "phase->eqv( ");
      // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
      //         left_index,  left_op_base,  left_op_index,  left_op,
      //         right_index, right_op_base, right_op_index, right_op );
      // fprintf(fp, ")");
      //
      switch( left_interface_type ) {
      case Form::register_interface: {
        // Check that they are allocated to the same register
        // Need parameter for index position if not result operand
        char left_reg_index[] = ",instXXXX_idxXXXX";
        if( left_op_index != 0 ) {
          assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
          // Must have index into operands
          sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
        } else {
          strcpy(left_reg_index, "");
        }
        fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
                left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
        fprintf(fp, " == ");

        if( right_index != -1 ) {
          char right_reg_index[18] = ",instXXXX_idxXXXX";
          if( right_op_index != 0 ) {
            assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
            // Must have index into operands
            sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
          } else {
            strcpy(right_reg_index, "");
          }
          fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
                  right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
        } else {
          fprintf(fp, "%s_enc", right_op );
        }
        fprintf(fp,")");
        break;
      }
      case Form::constant_interface: {
        // Compare the '->constant()' values
        fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
                left_index,  left_op_index,  left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
                right_index, right_op, right_index, right_op_index );
        break;
      }
      case Form::memory_interface: {
        // Compare 'base', 'index', 'scale', and 'disp'
        // base
        fprintf(fp, "( \n");
        fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
          left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
        // index
        fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
        // scale
        fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
                left_index,  left_op_index,  left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
                right_index, right_op, right_index, right_op_index );
        // disp
        fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
                left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
        fprintf(fp, " == ");
        fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
                right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
        fprintf(fp, ") \n");
        break;
      }
      case Form::conditional_interface: {
        // Compare the condition code being tested
        assert( false, "Unimplemented()" );
        break;
      }
      default: {
        assert( false, "ShouldNotReachHere()" );
        break;
      }
      }

      // Advance to next constraint
      pconstraint = pconstraint->next();
      first_constraint = false;
    }

    fprintf(fp, ";\n");
  }
}

// // EXPERIMENTAL -- TEMPORARY code
// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
//   int op_index = instr->operand_position(op_name, Component::USE);
//   if( op_index == -1 ) {
//     op_index = instr->operand_position(op_name, Component::DEF);
//     if( op_index == -1 ) {
//       op_index = instr->operand_position(op_name, Component::USE_DEF);
//     }
//   }
//   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
//
//   ComponentList components_right = instr->_components;
//   char *right_comp_type = components_right.at(op_index)->_type;
//   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
//   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
//
//   return;
// }

// Construct the new sub-tree
static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
  fprintf(fp, "      // IF instructions and constraints matched\n");
  fprintf(fp, "      if( matches ) {\n");
  fprintf(fp, "        // generate the new sub-tree\n");
  fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
  if( preplace != NULL ) {
    // Get the root of the new sub-tree
    const char *root_inst = NULL;
    preplace->next_instruction(root_inst);
    InstructForm *root_form = globals[root_inst]->is_instruction();
    assert( root_form != NULL, "Replacement instruction was not previously defined");
    fprintf(fp, "        %sNode *root = new (C) %sNode();\n", root_inst, root_inst);

    int         inst_num;
    const char *op_name;
    int         opnds_index = 0;            // define result operand
    // Then install the use-operands for the new sub-tree
    // preplace->reset();             // reset breaks iteration
    for( preplace->next_operand( inst_num, op_name );
         op_name != NULL;
         preplace->next_operand( inst_num, op_name ) ) {
      InstructForm *inst_form;
      inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
      assert( inst_form, "Parser should guaranty this is an instruction");
      int inst_op_num = inst_form->operand_position(op_name, Component::USE);
      if( inst_op_num == NameList::Not_in_list )
        inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
      assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
      // find the name of the OperandForm from the local name
      const Form *form   = inst_form->_localNames[op_name];
      OperandForm  *op_form = form->is_operand();
      if( opnds_index == 0 ) {
        // Initial setup of new instruction
        fprintf(fp, "        // ----- Initial setup -----\n");
        //
        // Add control edge for this node
        fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
        // Add unmatched edges from root of match tree
        int op_base = root_form->oper_input_base(globals);
        for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
          fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
                                          inst_num, unmatched_edge);
        }
        // If new instruction captures bottom type
        if( root_form->captures_bottom_type(globals) ) {
          // Get bottom type from instruction whose result we are replacing
          fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
        }
        // Define result register and result operand
        fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
        fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
        fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
        fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(C); // result\n", inst_num);
        fprintf(fp, "        // ----- Done with initial setup -----\n");
      } else {
        if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
          // Do not have ideal edges for constants after matching
          fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
                  inst_op_num, inst_num, inst_op_num,
                  inst_op_num, inst_num, inst_op_num+1, inst_op_num );
          fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
                  inst_num, inst_op_num );
        } else {
          fprintf(fp, "        // no ideal edge for constants after matching\n");
        }
        fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone(C);\n",
                opnds_index, inst_num, inst_op_num );
      }
      ++opnds_index;
    }
  }else {
    // Replacing subtree with empty-tree
    assert( false, "ShouldNotReachHere();");
  }

  // Return the new sub-tree
  fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
  fprintf(fp, "        return root;  // return new root;\n");
  fprintf(fp, "      }\n");
}


// Define the Peephole method for an instruction node
void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
  // Generate Peephole function header
  fprintf(fp, "MachNode *%sNode::peephole( Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile* C ) {\n", node->_ident);
  fprintf(fp, "  bool  matches = true;\n");

  // Identify the maximum instruction position,
  // generate temporaries that hold current instruction
  //
  //   MachNode  *inst0 = NULL;
  //   ...
  //   MachNode  *instMAX = NULL;
  //
  int max_position = 0;
  Peephole *peep;
  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
    PeepMatch *pmatch = peep->match();
    assert( pmatch != NULL, "fatal(), missing peepmatch rule");
    if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
  }
  for( int i = 0; i <= max_position; ++i ) {
    if( i == 0 ) {
      fprintf(fp, "  MachNode *inst0 = this;\n");
    } else {
      fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
    }
  }

  // For each peephole rule in architecture description
  //   Construct a test for the desired instruction sub-tree
  //   then check the constraints
  //   If these match, Generate the new subtree
  for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
    int         peephole_number = peep->peephole_number();
    PeepMatch      *pmatch      = peep->match();
    PeepConstraint *pconstraint = peep->constraints();
    PeepReplace    *preplace    = peep->replacement();

    // Root of this peephole is the current MachNode
    assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
            "root of PeepMatch does not match instruction");

    // Make each peephole rule individually selectable
    fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
    fprintf(fp, "    matches = true;\n");
    // Scan the peepmatch and output a test for each instruction
    check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );

    // Check constraints and build replacement inside scope
    fprintf(fp, "    // If instruction subtree matches\n");
    fprintf(fp, "    if( matches ) {\n");

    // Generate tests for the constraints
    check_peepconstraints( fp, _globalNames, pmatch, pconstraint );

    // Construct the new sub-tree
    generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );

    // End of scope for this peephole's constraints
    fprintf(fp, "    }\n");
    // Closing brace '}' to make each peephole rule individually selectable
    fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
    fprintf(fp, "\n");
  }

  fprintf(fp, "  return NULL;  // No peephole rules matched\n");
  fprintf(fp, "}\n");
  fprintf(fp, "\n");
}

// Define the Expand method for an instruction node
void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
  unsigned      cnt  = 0;          // Count nodes we have expand into
  unsigned      i;

  // Generate Expand function header
  fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
  fprintf(fp, "  Compile* C = Compile::current();\n");
  // Generate expand code
  if( node->expands() ) {
    const char   *opid;
    int           new_pos, exp_pos;
    const char   *new_id   = NULL;
    const Form   *frm      = NULL;
    InstructForm *new_inst = NULL;
    OperandForm  *new_oper = NULL;
    unsigned      numo     = node->num_opnds() +
                                node->_exprule->_newopers.count();

    // If necessary, generate any operands created in expand rule
    if (node->_exprule->_newopers.count()) {
      for(node->_exprule->_newopers.reset();
          (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
        frm = node->_localNames[new_id];
        assert(frm, "Invalid entry in new operands list of expand rule");
        new_oper = frm->is_operand();
        char *tmp = (char *)node->_exprule->_newopconst[new_id];
        if (tmp == NULL) {
          fprintf(fp,"  MachOper *op%d = new (C) %sOper();\n",
                  cnt, new_oper->_ident);
        }
        else {
          fprintf(fp,"  MachOper *op%d = new (C) %sOper(%s);\n",
                  cnt, new_oper->_ident, tmp);
        }
      }
    }
    cnt = 0;
    // Generate the temps to use for DAG building
    for(i = 0; i < numo; i++) {
      if (i < node->num_opnds()) {
        fprintf(fp,"  MachNode *tmp%d = this;\n", i);
      }
      else {
        fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
      }
    }
    // Build mapping from num_edges to local variables
    fprintf(fp,"  unsigned num0 = 0;\n");
    for( i = 1; i < node->num_opnds(); i++ ) {
      fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
    }

    // Build a mapping from operand index to input edges
    fprintf(fp,"  unsigned idx0 = oper_input_base();\n");

    // The order in which the memory input is added to a node is very
    // strange.  Store nodes get a memory input before Expand is
    // called and other nodes get it afterwards or before depending on
    // match order so oper_input_base is wrong during expansion.  This
    // code adjusts it so that expansion will work correctly.
    int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
    if (has_memory_edge) {
      fprintf(fp,"  if (mem == (Node*)1) {\n");
      fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
      fprintf(fp,"  }\n");
    }

    for( i = 0; i < node->num_opnds(); i++ ) {
      fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
              i+1,i,i);
    }

    // Declare variable to hold root of expansion
    fprintf(fp,"  MachNode *result = NULL;\n");

    // Iterate over the instructions 'node' expands into
    ExpandRule  *expand       = node->_exprule;
    NameAndList *expand_instr = NULL;
    for(expand->reset_instructions();
        (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
      new_id = expand_instr->name();

      InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
      if (expand_instruction->has_temps()) {
        globalAD->syntax_err(node->_linenum, "In %s: expand rules using instructs with TEMPs aren't supported: %s",
                             node->_ident, new_id);
      }

      // Build the node for the instruction
      fprintf(fp,"\n  %sNode *n%d = new (C) %sNode();\n", new_id, cnt, new_id);
      // Add control edge for this node
      fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
      // Build the operand for the value this node defines.
      Form *form = (Form*)_globalNames[new_id];
      assert( form, "'new_id' must be a defined form name");
      // Grab the InstructForm for the new instruction
      new_inst = form->is_instruction();
      assert( new_inst, "'new_id' must be an instruction name");
      if( node->is_ideal_if() && new_inst->is_ideal_if() ) {
        fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n",cnt);
        fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n",cnt);
      }

      if( node->is_ideal_fastlock() && new_inst->is_ideal_fastlock() ) {
        fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n",cnt);
      }

      // Fill in the bottom_type where requested
      if (node->captures_bottom_type(_globalNames) &&
          new_inst->captures_bottom_type(_globalNames)) {
        fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
      }

      const char *resultOper = new_inst->reduce_result();
      fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator( %s, C ));\n",
              cnt, machOperEnum(resultOper));

      // get the formal operand NameList
      NameList *formal_lst = &new_inst->_parameters;
      formal_lst->reset();

      // Handle any memory operand
      int memory_operand = new_inst->memory_operand(_globalNames);
      if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
        int node_mem_op = node->memory_operand(_globalNames);
        assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
                "expand rule member needs memory but top-level inst doesn't have any" );
        if (has_memory_edge) {
          // Copy memory edge
          fprintf(fp,"  if (mem != (Node*)1) {\n");
          fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
          fprintf(fp,"  }\n");
        }
      }

      // Iterate over the new instruction's operands
      int prev_pos = -1;
      for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
        // Use 'parameter' at current position in list of new instruction's formals
        // instead of 'opid' when looking up info internal to new_inst
        const char *parameter = formal_lst->iter();
        // Check for an operand which is created in the expand rule
        if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
          new_pos = new_inst->operand_position(parameter,Component::USE);
          exp_pos += node->num_opnds();
          // If there is no use of the created operand, just skip it
          if (new_pos != NameList::Not_in_list) {
            //Copy the operand from the original made above
            fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone(C)); // %s\n",
                    cnt, new_pos, exp_pos-node->num_opnds(), opid);
            // Check for who defines this operand & add edge if needed
            fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
            fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
          }
        }
        else {
          // Use operand name to get an index into instruction component list
          // ins = (InstructForm *) _globalNames[new_id];
          exp_pos = node->operand_position_format(opid);
          assert(exp_pos != -1, "Bad expand rule");
          if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
            // For the add_req calls below to work correctly they need
            // to added in the same order that a match would add them.
            // This means that they would need to be in the order of
            // the components list instead of the formal parameters.
            // This is a sort of hidden invariant that previously
            // wasn't checked and could lead to incorrectly
            // constructed nodes.
            syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
                       node->_ident, new_inst->_ident);
          }
          prev_pos = exp_pos;

          new_pos = new_inst->operand_position(parameter,Component::USE);
          if (new_pos != -1) {
            // Copy the operand from the ExpandNode to the new node
            fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
                    cnt, new_pos, exp_pos, opid);
            // For each operand add appropriate input edges by looking at tmp's
            fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
            // Grab corresponding edges from ExpandNode and insert them here
            fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
            fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
            fprintf(fp,"    }\n");
            fprintf(fp,"  }\n");
            // This value is generated by one of the new instructions
            fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
          }
        }

        // Update the DAG tmp's for values defined by this instruction
        int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
        Effect *eform = (Effect *)new_inst->_effects[parameter];
        // If this operand is a definition in either an effects rule
        // or a match rule
        if((eform) && (is_def(eform->_use_def))) {
          // Update the temp associated with this operand
          fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
        }
        else if( new_def_pos != -1 ) {
          // Instruction defines a value but user did not declare it
          // in the 'effect' clause
          fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
        }
      } // done iterating over a new instruction's operands

      // Invoke Expand() for the newly created instruction.
      fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
      assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
    } // done iterating over new instructions
    fprintf(fp,"\n");
  } // done generating expand rule

  // Generate projections for instruction's additional DEFs and KILLs
  if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
    // Get string representing the MachNode that projections point at
    const char *machNode = "this";
    // Generate the projections
    fprintf(fp,"  // Add projection edges for additional defs or kills\n");

    // Examine each component to see if it is a DEF or KILL
    node->_components.reset();
    // Skip the first component, if already handled as (SET dst (...))
    Component *comp = NULL;
    // For kills, the choice of projection numbers is arbitrary
    int proj_no = 1;
    bool declared_def  = false;
    bool declared_kill = false;

    while( (comp = node->_components.iter()) != NULL ) {
      // Lookup register class associated with operand type
      Form        *form = (Form*)_globalNames[comp->_type];
      assert( form, "component type must be a defined form");
      OperandForm *op   = form->is_operand();

      if (comp->is(Component::TEMP)) {
        fprintf(fp, "  // TEMP %s\n", comp->_name);
        if (!declared_def) {
          // Define the variable "def" to hold new MachProjNodes
          fprintf(fp, "  MachTempNode *def;\n");
          declared_def = true;
        }
        if (op && op->_interface && op->_interface->is_RegInterface()) {
          fprintf(fp,"  def = new (C) MachTempNode(state->MachOperGenerator( %s, C ));\n",
                  machOperEnum(op->_ident));
          fprintf(fp,"  add_req(def);\n");
          // The operand for TEMP is already constructed during
          // this mach node construction, see buildMachNode().
          //
          // int idx  = node->operand_position_format(comp->_name);
          // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator( %s, C ));\n",
          //         idx, machOperEnum(op->_ident));
        } else {
          assert(false, "can't have temps which aren't registers");
        }
      } else if (comp->isa(Component::KILL)) {
        fprintf(fp, "  // DEF/KILL %s\n", comp->_name);

        if (!declared_kill) {
          // Define the variable "kill" to hold new MachProjNodes
          fprintf(fp, "  MachProjNode *kill;\n");
          declared_kill = true;
        }

        assert( op, "Support additional KILLS for base operands");
        const char *regmask    = reg_mask(*op);
        const char *ideal_type = op->ideal_type(_globalNames, _register);

        if (!op->is_bound_register()) {
          syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
                     node->_ident, comp->_type, comp->_name);
        }

        fprintf(fp,"  kill = ");
        fprintf(fp,"new (C) MachProjNode( %s, %d, (%s), Op_%s );\n",
                machNode, proj_no++, regmask, ideal_type);
        fprintf(fp,"  proj_list.push(kill);\n");
      }
    }
  }

  if( !node->expands() && node->_matrule != NULL ) {
    // Remove duplicated operands and inputs which use the same name.
    // Seach through match operands for the same name usage.
    uint cur_num_opnds = node->num_opnds();
    if( cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds() ) {
      Component *comp = NULL;
      // Build mapping from num_edges to local variables
      fprintf(fp,"  unsigned num0 = 0;\n");
      for( i = 1; i < cur_num_opnds; i++ ) {
        fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();",i,i);
        fprintf(fp, " \t// %s\n", node->opnd_ident(i));
      }
      // Build a mapping from operand index to input edges
      fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
      for( i = 0; i < cur_num_opnds; i++ ) {
        fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
                i+1,i,i);
      }

      uint new_num_opnds = 1;
      node->_components.reset();
      // Skip first unique operands.
      for( i = 1; i < cur_num_opnds; i++ ) {
        comp = node->_components.iter();
        if (i != node->unique_opnds_idx(i)) {
          break;
        }
        new_num_opnds++;
      }
      // Replace not unique operands with next unique operands.
      for( ; i < cur_num_opnds; i++ ) {
        comp = node->_components.iter();
        uint j = node->unique_opnds_idx(i);
        // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
        if( j != node->unique_opnds_idx(j) ) {
          fprintf(fp,"  set_opnd_array(%d, opnd_array(%d)->clone(C)); // %s\n",
                  new_num_opnds, i, comp->_name);
          // delete not unique edges here
          fprintf(fp,"  for(unsigned i = 0; i < num%d; i++) {\n", i);
          fprintf(fp,"    set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
          fprintf(fp,"  }\n");
          fprintf(fp,"  num%d = num%d;\n", new_num_opnds, i);
          fprintf(fp,"  idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
          new_num_opnds++;
        }
      }
      // delete the rest of edges
      fprintf(fp,"  for(int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
      fprintf(fp,"    del_req(i);\n");
      fprintf(fp,"  }\n");
      fprintf(fp,"  _num_opnds = %d;\n", new_num_opnds);
      assert(new_num_opnds == node->num_unique_opnds(), "what?");
    }
  }

  // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
  // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
  if (node->is_mach_constant()) {
    fprintf(fp,"  add_req(C->mach_constant_base_node());\n");
  }

  fprintf(fp,"\n");
  if( node->expands() ) {
    fprintf(fp,"  return result;\n");
  } else {
    fprintf(fp,"  return this;\n");
  }
  fprintf(fp,"}\n");
  fprintf(fp,"\n");
}


//------------------------------Emit Routines----------------------------------
// Special classes and routines for defining node emit routines which output
// target specific instruction object encodings.
// Define the ___Node::emit() routine
//
// (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
// (2)   // ...  encoding defined by user
// (3)
// (4) }
//

class DefineEmitState {
private:
  enum reloc_format { RELOC_NONE        = -1,
                      RELOC_IMMEDIATE   =  0,
                      RELOC_DISP        =  1,
                      RELOC_CALL_DISP   =  2 };
  enum literal_status{ LITERAL_NOT_SEEN  = 0,
                       LITERAL_SEEN      = 1,
                       LITERAL_ACCESSED  = 2,
                       LITERAL_OUTPUT    = 3 };
  // Temporaries that describe current operand
  bool          _cleared;
  OpClassForm  *_opclass;
  OperandForm  *_operand;
  int           _operand_idx;
  const char   *_local_name;
  const char   *_operand_name;
  bool          _doing_disp;
  bool          _doing_constant;
  Form::DataType _constant_type;
  DefineEmitState::literal_status _constant_status;
  DefineEmitState::literal_status _reg_status;
  bool          _doing_emit8;
  bool          _doing_emit_d32;
  bool          _doing_emit_d16;
  bool          _doing_emit_hi;
  bool          _doing_emit_lo;
  bool          _may_reloc;
  reloc_format  _reloc_form;
  const char *  _reloc_type;
  bool          _processing_noninput;

  NameList      _strings_to_emit;

  // Stable state, set by constructor
  ArchDesc     &_AD;
  FILE         *_fp;
  EncClass     &_encoding;
  InsEncode    &_ins_encode;
  InstructForm &_inst;

public:
  DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
                  InsEncode &ins_encode, InstructForm &inst)
    : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
      clear();
  }

  void clear() {
    _cleared       = true;
    _opclass       = NULL;
    _operand       = NULL;
    _operand_idx   = 0;
    _local_name    = "";
    _operand_name  = "";
    _doing_disp    = false;
    _doing_constant= false;
    _constant_type = Form::none;
    _constant_status = LITERAL_NOT_SEEN;
    _reg_status      = LITERAL_NOT_SEEN;
    _doing_emit8   = false;
    _doing_emit_d32= false;
    _doing_emit_d16= false;
    _doing_emit_hi = false;
    _doing_emit_lo = false;
    _may_reloc     = false;
    _reloc_form    = RELOC_NONE;
    _reloc_type    = AdlcVMDeps::none_reloc_type();
    _strings_to_emit.clear();
  }

  // Track necessary state when identifying a replacement variable
  // @arg rep_var: The formal parameter of the encoding.
  void update_state(const char *rep_var) {
    // A replacement variable or one of its subfields
    // Obtain replacement variable from list
    if ( (*rep_var) != '$' ) {
      // A replacement variable, '$' prefix
      // check_rep_var( rep_var );
      if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
        // No state needed.
        assert( _opclass == NULL,
                "'primary', 'secondary' and 'tertiary' don't follow operand.");
      }
      else if ((strcmp(rep_var, "constanttablebase") == 0) ||
               (strcmp(rep_var, "constantoffset")    == 0) ||
               (strcmp(rep_var, "constantaddress")   == 0)) {
        if (!_inst.is_mach_constant()) {
          _AD.syntax_err(_encoding._linenum,
                         "Replacement variable %s not allowed in instruct %s (only in MachConstantNode).\n",
                         rep_var, _encoding._name);
        }
      }
      else {
        // Lookup its position in (formal) parameter list of encoding
        int   param_no  = _encoding.rep_var_index(rep_var);
        if ( param_no == -1 ) {
          _AD.syntax_err( _encoding._linenum,
                          "Replacement variable %s not found in enc_class %s.\n",
                          rep_var, _encoding._name);
        }

        // Lookup the corresponding ins_encode parameter
        // This is the argument (actual parameter) to the encoding.
        const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
        if (inst_rep_var == NULL) {
          _AD.syntax_err( _ins_encode._linenum,
                          "Parameter %s not passed to enc_class %s from instruct %s.\n",
                          rep_var, _encoding._name, _inst._ident);
        }

        // Check if instruction's actual parameter is a local name in the instruction
        const Form  *local     = _inst._localNames[inst_rep_var];
        OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
        // Note: assert removed to allow constant and symbolic parameters
        // assert( opc, "replacement variable was not found in local names");
        // Lookup the index position iff the replacement variable is a localName
        int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;

        if ( idx != -1 ) {
          // This is a local in the instruction
          // Update local state info.
          _opclass        = opc;
          _operand_idx    = idx;
          _local_name     = rep_var;
          _operand_name   = inst_rep_var;

          // !!!!!
          // Do not support consecutive operands.
          assert( _operand == NULL, "Unimplemented()");
          _operand = opc->is_operand();
        }
        else if( ADLParser::is_literal_constant(inst_rep_var) ) {
          // Instruction provided a constant expression
          // Check later that encoding specifies $$$constant to resolve as constant
          _constant_status   = LITERAL_SEEN;
        }
        else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
          // Instruction provided an opcode: "primary", "secondary", "tertiary"
          // Check later that encoding specifies $$$constant to resolve as constant
          _constant_status   = LITERAL_SEEN;
        }
        else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
          // Instruction provided a literal register name for this parameter
          // Check that encoding specifies $$$reg to resolve.as register.
          _reg_status        = LITERAL_SEEN;
        }
        else {
          // Check for unimplemented functionality before hard failure
          assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
          assert( false, "ShouldNotReachHere()");
        }
      } // done checking which operand this is.
    } else {
      //
      // A subfield variable, '$$' prefix
      // Check for fields that may require relocation information.
      // Then check that literal register parameters are accessed with 'reg' or 'constant'
      //
      if ( strcmp(rep_var,"$disp") == 0 ) {
        _doing_disp = true;
        assert( _opclass, "Must use operand or operand class before '$disp'");
        if( _operand == NULL ) {
          // Only have an operand class, generate run-time check for relocation
          _may_reloc    = true;
          _reloc_form   = RELOC_DISP;
          _reloc_type   = AdlcVMDeps::oop_reloc_type();
        } else {
          // Do precise check on operand: is it a ConP or not
          //
          // Check interface for value of displacement
          assert( ( _operand->_interface != NULL ),
                  "$disp can only follow memory interface operand");
          MemInterface *mem_interface= _operand->_interface->is_MemInterface();
          assert( mem_interface != NULL,
                  "$disp can only follow memory interface operand");
          const char *disp = mem_interface->_disp;

          if( disp != NULL && (*disp == '$') ) {
            // MemInterface::disp contains a replacement variable,
            // Check if this matches a ConP
            //
            // Lookup replacement variable, in operand's component list
            const char *rep_var_name = disp + 1; // Skip '$'
            const Component *comp = _operand->_components.search(rep_var_name);
            assert( comp != NULL,"Replacement variable not found in components");
            const char      *type = comp->_type;
            // Lookup operand form for replacement variable's type
            const Form *form = _AD.globalNames()[type];
            assert( form != NULL, "Replacement variable's type not found");
            OperandForm *op = form->is_operand();
            assert( op, "Attempting to emit a non-register or non-constant");
            // Check if this is a constant
            if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
              // Check which constant this name maps to: _c0, _c1, ..., _cn
              // const int idx = _operand.constant_position(_AD.globalNames(), comp);
              // assert( idx != -1, "Constant component not found in operand");
              Form::DataType dtype = op->is_base_constant(_AD.globalNames());
              if ( dtype == Form::idealP ) {
                _may_reloc    = true;
                // No longer true that idealP is always an oop
                _reloc_form   = RELOC_DISP;
                _reloc_type   = AdlcVMDeps::oop_reloc_type();
              }
            }

            else if( _operand->is_user_name_for_sReg() != Form::none ) {
              // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
              assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
              _may_reloc   = false;
            } else {
              assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
            }
          }
        } // finished with precise check of operand for relocation.
      } // finished with subfield variable
      else if ( strcmp(rep_var,"$constant") == 0 ) {
        _doing_constant = true;
        if ( _constant_status == LITERAL_NOT_SEEN ) {
          // Check operand for type of constant
          assert( _operand, "Must use operand before '$$constant'");
          Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
          _constant_type = dtype;
          if ( dtype == Form::idealP ) {
            _may_reloc    = true;
            // No longer true that idealP is always an oop
            // // _must_reloc   = true;
            _reloc_form   = RELOC_IMMEDIATE;
            _reloc_type   = AdlcVMDeps::oop_reloc_type();
          } else {
            // No relocation information needed
          }
        } else {
          // User-provided literals may not require relocation information !!!!!
          assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
        }
      }
      else if ( strcmp(rep_var,"$label") == 0 ) {
        // Calls containing labels require relocation
        if ( _inst.is_ideal_call() )  {
          _may_reloc    = true;
          // !!!!! !!!!!
          _reloc_type   = AdlcVMDeps::none_reloc_type();
        }
      }

      // literal register parameter must be accessed as a 'reg' field.
      if ( _reg_status != LITERAL_NOT_SEEN ) {
        assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
        if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
          _reg_status  = LITERAL_ACCESSED;
        } else {
          assert( false, "invalid access to literal register parameter");
        }
      }
      // literal constant parameters must be accessed as a 'constant' field
      if ( _constant_status != LITERAL_NOT_SEEN ) {
        assert( _constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
        if( strcmp(rep_var,"$constant") == 0 ) {
          _constant_status  = LITERAL_ACCESSED;
        } else {
          assert( false, "invalid access to literal constant parameter");
        }
      }
    } // end replacement and/or subfield

  }

  void add_rep_var(const char *rep_var) {
    // Handle subfield and replacement variables.
    if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
      // Check for emit prefix, '$$emit32'
      assert( _cleared, "Can not nest $$$emit32");
      if ( strcmp(rep_var,"$$emit32") == 0 ) {
        _doing_emit_d32 = true;
      }
      else if ( strcmp(rep_var,"$$emit16") == 0 ) {
        _doing_emit_d16 = true;
      }
      else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
        _doing_emit_hi  = true;
      }
      else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
        _doing_emit_lo  = true;
      }
      else if ( strcmp(rep_var,"$$emit8") == 0 ) {
        _doing_emit8    = true;
      }
      else {
        _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
        assert( false, "fatal();");
      }
    }
    else {
      // Update state for replacement variables
      update_state( rep_var );
      _strings_to_emit.addName(rep_var);
    }
    _cleared  = false;
  }

  void emit_replacement() {
    // A replacement variable or one of its subfields
    // Obtain replacement variable from list
    // const char *ec_rep_var = encoding->_rep_vars.iter();
    const char *rep_var;
    _strings_to_emit.reset();
    while ( (rep_var = _strings_to_emit.iter()) != NULL ) {

      if ( (*rep_var) == '$' ) {
        // A subfield variable, '$$' prefix
        emit_field( rep_var );
      } else {
        if (_strings_to_emit.peek() != NULL &&
            strcmp(_strings_to_emit.peek(), "$Address") == 0) {
          fprintf(_fp, "Address::make_raw(");

          emit_rep_var( rep_var );
          fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);

          _reg_status = LITERAL_ACCESSED;
          emit_rep_var( rep_var );
          fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);

          _reg_status = LITERAL_ACCESSED;
          emit_rep_var( rep_var );
          fprintf(_fp,"->scale(), ");

          _reg_status = LITERAL_ACCESSED;
          emit_rep_var( rep_var );
          Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
          if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
            fprintf(_fp,"->disp(ra_,this,0), ");
          } else {
            fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
          }

          _reg_status = LITERAL_ACCESSED;
          emit_rep_var( rep_var );
          fprintf(_fp,"->disp_reloc())");

          // skip trailing $Address
          _strings_to_emit.iter();
        } else {
          // A replacement variable, '$' prefix
          const char* next = _strings_to_emit.peek();
          const char* next2 = _strings_to_emit.peek(2);
          if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
              (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
            // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
            // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
            fprintf(_fp, "as_Register(");
            // emit the operand reference
            emit_rep_var( rep_var );
            rep_var = _strings_to_emit.iter();
            assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
            // handle base or index
            emit_field(rep_var);
            rep_var = _strings_to_emit.iter();
            assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
            // close up the parens
            fprintf(_fp, ")");
          } else {
            emit_rep_var( rep_var );
          }
        }
      } // end replacement and/or subfield
    }
  }

  void emit_reloc_type(const char* type) {
    fprintf(_fp, "%s", type)
      ;
  }


  void emit() {
    //
    //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
    //
    // Emit the function name when generating an emit function
    if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
      const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
      // In general, relocatable isn't known at compiler compile time.
      // Check results of prior scan
      if ( ! _may_reloc ) {
        // Definitely don't need relocation information
        fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
        emit_replacement(); fprintf(_fp, ")");
      }
      else {
        // Emit RUNTIME CHECK to see if value needs relocation info
        // If emitting a relocatable address, use 'emit_d32_reloc'
        const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
        assert( (_doing_disp || _doing_constant)
                && !(_doing_disp && _doing_constant),
                "Must be emitting either a displacement or a constant");
        fprintf(_fp,"\n");
        fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
                _operand_idx, disp_constant);
        fprintf(_fp,"  ");
        fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
        emit_replacement();             fprintf(_fp,", ");
        fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
                _operand_idx, disp_constant);
        fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
        fprintf(_fp,"\n");
        fprintf(_fp,"} else {\n");
        fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
        emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
      }
    }
    else if ( _doing_emit_d16 ) {
      // Relocation of 16-bit values is not supported
      fprintf(_fp,"emit_d16(cbuf, ");
      emit_replacement(); fprintf(_fp, ")");
      // No relocation done for 16-bit values
    }
    else if ( _doing_emit8 ) {
      // Relocation of 8-bit values is not supported
      fprintf(_fp,"emit_d8(cbuf, ");
      emit_replacement(); fprintf(_fp, ")");
      // No relocation done for 8-bit values
    }
    else {
      // Not an emit# command, just output the replacement string.
      emit_replacement();
    }

    // Get ready for next state collection.
    clear();
  }

private:

  // recognizes names which represent MacroAssembler register types
  // and return the conversion function to build them from OptoReg
  const char* reg_conversion(const char* rep_var) {
    if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
    if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
#if defined(IA32) || defined(AMD64)
    if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
#endif
    return NULL;
  }

  void emit_field(const char *rep_var) {
    const char* reg_convert = reg_conversion(rep_var);

    // A subfield variable, '$$subfield'
    if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
      // $reg form or the $Register MacroAssembler type conversions
      assert( _operand_idx != -1,
              "Must use this subfield after operand");
      if( _reg_status == LITERAL_NOT_SEEN ) {
        if (_processing_noninput) {
          const Form  *local     = _inst._localNames[_operand_name];
          OperandForm *oper      = local->is_operand();
          const RegDef* first = oper->get_RegClass()->find_first_elem();
          if (reg_convert != NULL) {
            fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
          } else {
            fprintf(_fp, "%s_enc", first->_regname);
          }
        } else {
          fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
          // Add parameter for index position, if not result operand
          if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
          fprintf(_fp,")");
          fprintf(_fp, "/* %s */", _operand_name);
        }
      } else {
        assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
        // Register literal has already been sent to output file, nothing more needed
      }
    }
    else if ( strcmp(rep_var,"$base") == 0 ) {
      assert( _operand_idx != -1,
              "Must use this subfield after operand");
      assert( ! _may_reloc, "UnImplemented()");
      fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
    }
    else if ( strcmp(rep_var,"$index") == 0 ) {
      assert( _operand_idx != -1,
              "Must use this subfield after operand");
      assert( ! _may_reloc, "UnImplemented()");
      fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
    }
    else if ( strcmp(rep_var,"$scale") == 0 ) {
      assert( ! _may_reloc, "UnImplemented()");
      fprintf(_fp,"->scale()");
    }
    else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
      assert( ! _may_reloc, "UnImplemented()");
      fprintf(_fp,"->ccode()");
    }
    else if ( strcmp(rep_var,"$constant") == 0 ) {
      if( _constant_status == LITERAL_NOT_SEEN ) {
        if ( _constant_type == Form::idealD ) {
          fprintf(_fp,"->constantD()");
        } else if ( _constant_type == Form::idealF ) {
          fprintf(_fp,"->constantF()");
        } else if ( _constant_type == Form::idealL ) {
          fprintf(_fp,"->constantL()");
        } else {
          fprintf(_fp,"->constant()");
        }
      } else {
        assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
        // Constant literal has already been sent to output file, nothing more needed
      }
    }
    else if ( strcmp(rep_var,"$disp") == 0 ) {
      Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
      if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
        fprintf(_fp,"->disp(ra_,this,0)");
      } else {
        fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
      }
    }
    else if ( strcmp(rep_var,"$label") == 0 ) {
      fprintf(_fp,"->label()");
    }
    else if ( strcmp(rep_var,"$method") == 0 ) {
      fprintf(_fp,"->method()");
    }
    else {
      printf("emit_field: %s\n",rep_var);
      globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
                           rep_var, _inst._ident);
      assert( false, "UnImplemented()");
    }
  }


  void emit_rep_var(const char *rep_var) {
    _processing_noninput = false;
    // A replacement variable, originally '$'
    if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
      if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
        // Missing opcode
        _AD.syntax_err( _inst._linenum,
                        "Missing $%s opcode definition in %s, used by encoding %s\n",
                        rep_var, _inst._ident, _encoding._name);
      }
    }
    else if (strcmp(rep_var, "constanttablebase") == 0) {
      fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
    }
    else if (strcmp(rep_var, "constantoffset") == 0) {
      fprintf(_fp, "constant_offset()");
    }
    else if (strcmp(rep_var, "constantaddress") == 0) {
      fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
    }
    else {
      // Lookup its position in parameter list
      int   param_no  = _encoding.rep_var_index(rep_var);
      if ( param_no == -1 ) {
        _AD.syntax_err( _encoding._linenum,
                        "Replacement variable %s not found in enc_class %s.\n",
                        rep_var, _encoding._name);
      }
      // Lookup the corresponding ins_encode parameter
      const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);

      // Check if instruction's actual parameter is a local name in the instruction
      const Form  *local     = _inst._localNames[inst_rep_var];
      OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
      // Note: assert removed to allow constant and symbolic parameters
      // assert( opc, "replacement variable was not found in local names");
      // Lookup the index position iff the replacement variable is a localName
      int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
      if( idx != -1 ) {
        if (_inst.is_noninput_operand(idx)) {
          // This operand isn't a normal input so printing it is done
          // specially.
          _processing_noninput = true;
        } else {
          // Output the emit code for this operand
          fprintf(_fp,"opnd_array(%d)",idx);
        }
        assert( _operand == opc->is_operand(),
                "Previous emit $operand does not match current");
      }
      else if( ADLParser::is_literal_constant(inst_rep_var) ) {
        // else check if it is a constant expression
        // Removed following assert to allow primitive C types as arguments to encodings
        // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
        fprintf(_fp,"(%s)", inst_rep_var);
        _constant_status = LITERAL_OUTPUT;
      }
      else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
        // else check if "primary", "secondary", "tertiary"
        assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
        if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
          // Missing opcode
          _AD.syntax_err( _inst._linenum,
                          "Missing $%s opcode definition in %s\n",
                          rep_var, _inst._ident);

        }
        _constant_status = LITERAL_OUTPUT;
      }
      else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
        // Instruction provided a literal register name for this parameter
        // Check that encoding specifies $$$reg to resolve.as register.
        assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
        fprintf(_fp,"(%s_enc)", inst_rep_var);
        _reg_status = LITERAL_OUTPUT;
      }
      else {
        // Check for unimplemented functionality before hard failure
        assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
        assert( false, "ShouldNotReachHere()");
      }
      // all done
    }
  }

};  // end class DefineEmitState


void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {

  //(1)
  // Output instruction's emit prototype
  fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
          inst._ident);

  fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);

  //(2)
  // Print the size
  fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);

  // (3) and (4)
  fprintf(fp,"}\n");
}

// defineEmit -----------------------------------------------------------------
void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
  InsEncode* encode = inst._insencode;

  // (1)
  // Output instruction's emit prototype
  fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);

  // If user did not define an encode section,
  // provide stub that does not generate any machine code.
  if( (_encode == NULL) || (encode == NULL) ) {
    fprintf(fp, "  // User did not define an encode section.\n");
    fprintf(fp, "}\n");
    return;
  }

  // Save current instruction's starting address (helps with relocation).
  fprintf(fp, "  cbuf.set_insts_mark();\n");

  // For MachConstantNodes which are ideal jump nodes, fill the jump table.
  if (inst.is_mach_constant() && inst.is_ideal_jump()) {
    fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
  }

  // Output each operand's offset into the array of registers.
  inst.index_temps(fp, _globalNames);

  // Output this instruction's encodings
  const char *ec_name;
  bool        user_defined = false;
  encode->reset();
  while ((ec_name = encode->encode_class_iter()) != NULL) {
    fprintf(fp, "  {\n");
    // Output user-defined encoding
    user_defined           = true;

    const char *ec_code    = NULL;
    const char *ec_rep_var = NULL;
    EncClass   *encoding   = _encode->encClass(ec_name);
    if (encoding == NULL) {
      fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
      abort();
    }

    if (encode->current_encoding_num_args() != encoding->num_args()) {
      globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
                           inst._ident, encode->current_encoding_num_args(),
                           ec_name, encoding->num_args());
    }

    DefineEmitState pending(fp, *this, *encoding, *encode, inst);
    encoding->_code.reset();
    encoding->_rep_vars.reset();
    // Process list of user-defined strings,
    // and occurrences of replacement variables.
    // Replacement Vars are pushed into a list and then output
    while ((ec_code = encoding->_code.iter()) != NULL) {
      if (!encoding->_code.is_signal(ec_code)) {
        // Emit pending code
        pending.emit();
        pending.clear();
        // Emit this code section
        fprintf(fp, "%s", ec_code);
      } else {
        // A replacement variable or one of its subfields
        // Obtain replacement variable from list
        ec_rep_var  = encoding->_rep_vars.iter();
        pending.add_rep_var(ec_rep_var);
      }
    }
    // Emit pending code
    pending.emit();
    pending.clear();
    fprintf(fp, "  }\n");
  } // end while instruction's encodings

  // Check if user stated which encoding to user
  if ( user_defined == false ) {
    fprintf(fp, "  // User did not define which encode class to use.\n");
  }

  // (3) and (4)
  fprintf(fp, "}\n\n");
}

// defineEvalConstant ---------------------------------------------------------
void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
  InsEncode* encode = inst._constant;

  // (1)
  // Output instruction's emit prototype
  fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);

  // For ideal jump nodes, add a jump-table entry.
  if (inst.is_ideal_jump()) {
    fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
  }

  // If user did not define an encode section,
  // provide stub that does not generate any machine code.
  if ((_encode == NULL) || (encode == NULL)) {
    fprintf(fp, "  // User did not define an encode section.\n");
    fprintf(fp, "}\n");
    return;
  }

  // Output this instruction's encodings
  const char *ec_name;
  bool        user_defined = false;
  encode->reset();
  while ((ec_name = encode->encode_class_iter()) != NULL) {
    fprintf(fp, "  {\n");
    // Output user-defined encoding
    user_defined           = true;

    const char *ec_code    = NULL;
    const char *ec_rep_var = NULL;
    EncClass   *encoding   = _encode->encClass(ec_name);
    if (encoding == NULL) {
      fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
      abort();
    }

    if (encode->current_encoding_num_args() != encoding->num_args()) {
      globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
                           inst._ident, encode->current_encoding_num_args(),
                           ec_name, encoding->num_args());
    }

    DefineEmitState pending(fp, *this, *encoding, *encode, inst);
    encoding->_code.reset();
    encoding->_rep_vars.reset();
    // Process list of user-defined strings,
    // and occurrences of replacement variables.
    // Replacement Vars are pushed into a list and then output
    while ((ec_code = encoding->_code.iter()) != NULL) {
      if (!encoding->_code.is_signal(ec_code)) {
        // Emit pending code
        pending.emit();
        pending.clear();
        // Emit this code section
        fprintf(fp, "%s", ec_code);
      } else {
        // A replacement variable or one of its subfields
        // Obtain replacement variable from list
        ec_rep_var  = encoding->_rep_vars.iter();
        pending.add_rep_var(ec_rep_var);
      }
    }
    // Emit pending code
    pending.emit();
    pending.clear();
    fprintf(fp, "  }\n");
  } // end while instruction's encodings

  // Check if user stated which encoding to user
  if (user_defined == false) {
    fprintf(fp, "  // User did not define which encode class to use.\n");
  }

  // (3) and (4)
  fprintf(fp, "}\n");
}

// ---------------------------------------------------------------------------
//--------Utilities to build MachOper and MachNode derived Classes------------
// ---------------------------------------------------------------------------

//------------------------------Utilities to build Operand Classes------------
static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
  uint num_edges = oper.num_edges(globals);
  if( num_edges != 0 ) {
    // Method header
    fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
            oper._ident);

    // Assert that the index is in range.
    fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
            num_edges);

    // Figure out if all RegMasks are the same.
    const char* first_reg_class = oper.in_reg_class(0, globals);
    bool all_same = true;
    assert(first_reg_class != NULL, "did not find register mask");

    for (uint index = 1; all_same && index < num_edges; index++) {
      const char* some_reg_class = oper.in_reg_class(index, globals);
      assert(some_reg_class != NULL, "did not find register mask");
      if (strcmp(first_reg_class, some_reg_class) != 0) {
        all_same = false;
      }
    }

    if (all_same) {
      // Return the sole RegMask.
      if (strcmp(first_reg_class, "stack_slots") == 0) {
        fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
      } else {
        const char* first_reg_class_to_upper = toUpper(first_reg_class);
        fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
        delete[] first_reg_class_to_upper;
      }
    } else {
      // Build a switch statement to return the desired mask.
      fprintf(fp,"  switch (index) {\n");

      for (uint index = 0; index < num_edges; index++) {
        const char *reg_class = oper.in_reg_class(index, globals);
        assert(reg_class != NULL, "did not find register mask");
        if( !strcmp(reg_class, "stack_slots") ) {
          fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
        } else {
          const char* reg_class_to_upper = toUpper(reg_class);
          fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
          delete[] reg_class_to_upper;
        }
      }
      fprintf(fp,"  }\n");
      fprintf(fp,"  ShouldNotReachHere();\n");
      fprintf(fp,"  return NULL;\n");
    }

    // Method close
    fprintf(fp, "}\n\n");
  }
}

// generate code to create a clone for a class derived from MachOper
//
// (0)  MachOper  *MachOperXOper::clone(Compile* C) const {
// (1)    return new (C) MachXOper( _ccode, _c0, _c1, ..., _cn);
// (2)  }
//
static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
  fprintf(fp,"MachOper *%sOper::clone(Compile* C) const {\n", oper._ident);
  // Check for constants that need to be copied over
  const int  num_consts    = oper.num_consts(globalNames);
  const bool is_ideal_bool = oper.is_ideal_bool();
  if( (num_consts > 0) ) {
    fprintf(fp,"  return new (C) %sOper(", oper._ident);
    // generate parameters for constants
    int i = 0;
    fprintf(fp,"_c%d", i);
    for( i = 1; i < num_consts; ++i) {
      fprintf(fp,", _c%d", i);
    }
    // finish line (1)
    fprintf(fp,");\n");
  }
  else {
    assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
    fprintf(fp,"  return new (C) %sOper();\n", oper._ident);
  }
  // finish method
  fprintf(fp,"}\n");
}

// Helper functions for bug 4796752, abstracted with minimal modification
// from define_oper_interface()
OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
  OperandForm *op = NULL;
  // Check for replacement variable
  if( *encoding == '$' ) {
    // Replacement variable
    const char *rep_var = encoding + 1;
    // Lookup replacement variable, rep_var, in operand's component list
    const Component *comp = oper._components.search(rep_var);
    assert( comp != NULL, "Replacement variable not found in components");
    // Lookup operand form for replacement variable's type
    const char      *type = comp->_type;
    Form            *form = (Form*)globals[type];
    assert( form != NULL, "Replacement variable's type not found");
    op = form->is_operand();
    assert( op, "Attempting to emit a non-register or non-constant");
  }

  return op;
}

int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
  int idx = -1;
  // Check for replacement variable
  if( *encoding == '$' ) {
    // Replacement variable
    const char *rep_var = encoding + 1;
    // Lookup replacement variable, rep_var, in operand's component list
    const Component *comp = oper._components.search(rep_var);
    assert( comp != NULL, "Replacement variable not found in components");
    // Lookup operand form for replacement variable's type
    const char      *type = comp->_type;
    Form            *form = (Form*)globals[type];
    assert( form != NULL, "Replacement variable's type not found");
    OperandForm *op = form->is_operand();
    assert( op, "Attempting to emit a non-register or non-constant");
    // Check that this is a constant and find constant's index:
    if (op->_matrule && op->_matrule->is_base_constant(globals)) {
      idx  = oper.constant_position(globals, comp);
    }
  }

  return idx;
}

bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
  bool is_regI = false;

  OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  if( op != NULL ) {
    // Check that this is a register
    if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
      // Register
      const char* ideal  = op->ideal_type(globals);
      is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
    }
  }

  return is_regI;
}

bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
  bool is_conP = false;

  OperandForm *op = rep_var_to_operand(encoding, oper, globals);
  if( op != NULL ) {
    // Check that this is a constant pointer
    if (op->_matrule && op->_matrule->is_base_constant(globals)) {
      // Constant
      Form::DataType dtype = op->is_base_constant(globals);
      is_conP = (dtype == Form::idealP);
    }
  }

  return is_conP;
}


// Define a MachOper interface methods
void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
                                     const char *name, const char *encoding) {
  bool emit_position = false;
  int position = -1;

  fprintf(fp,"  virtual int            %s", name);
  // Generate access method for base, index, scale, disp, ...
  if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
    fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
    emit_position = true;
  } else if ( (strcmp(name,"disp") == 0) ) {
    fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
  } else {
    fprintf(fp,"() const { \n");
  }

  // Check for hexadecimal value OR replacement variable
  if( *encoding == '$' ) {
    // Replacement variable
    const char *rep_var = encoding + 1;
    fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
    // Lookup replacement variable, rep_var, in operand's component list
    const Component *comp = oper._components.search(rep_var);
    assert( comp != NULL, "Replacement variable not found in components");
    // Lookup operand form for replacement variable's type
    const char      *type = comp->_type;
    Form            *form = (Form*)globals[type];
    assert( form != NULL, "Replacement variable's type not found");
    OperandForm *op = form->is_operand();
    assert( op, "Attempting to emit a non-register or non-constant");
    // Check that this is a register or a constant and generate code:
    if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
      // Register
      int idx_offset = oper.register_position( globals, rep_var);
      position = idx_offset;
      fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
      if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
      fprintf(fp,"));\n");
    } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
      // StackSlot for an sReg comes either from input node or from self, when idx==0
      fprintf(fp,"    if( idx != 0 ) {\n");
      fprintf(fp,"      // Access stack offset (register number) for input operand\n");
      fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
      fprintf(fp,"    }\n");
      fprintf(fp,"    // Access stack offset (register number) from myself\n");
      fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
    } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
      // Constant
      // Check which constant this name maps to: _c0, _c1, ..., _cn
      const int idx = oper.constant_position(globals, comp);
      assert( idx != -1, "Constant component not found in operand");
      // Output code for this constant, type dependent.
      fprintf(fp,"    return (int)" );
      oper.access_constant(fp, globals, (uint)idx /* , const_type */);
      fprintf(fp,";\n");
    } else {
      assert( false, "Attempting to emit a non-register or non-constant");
    }
  }
  else if( *encoding == '0' && *(encoding+1) == 'x' ) {
    // Hex value
    fprintf(fp,"    return %s;\n", encoding);
  } else {
    assert( false, "Do not support octal or decimal encode constants");
  }
  fprintf(fp,"  }\n");

  if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
    fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
    MemInterface *mem_interface = oper._interface->is_MemInterface();
    const char *base = mem_interface->_base;
    const char *disp = mem_interface->_disp;
    if( emit_position && (strcmp(name,"base") == 0)
        && base != NULL && is_regI(base, oper, globals)
        && disp != NULL && is_conP(disp, oper, globals) ) {
      // Found a memory access using a constant pointer for a displacement
      // and a base register containing an integer offset.
      // In this case the base and disp are reversed with respect to what
      // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
      // Provide a non-NULL return for disp_as_type() that will allow adr_type()
      // to correctly compute the access type for alias analysis.
      //
      // See BugId 4796752, operand indOffset32X in i486.ad
      int idx = rep_var_to_constant_index(disp, oper, globals);
      fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
    }
  }
}

//
// Construct the method to copy _idx, inputs and operands to new node.
static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
  fprintf(fp_cpp, "void MachNode::fill_new_machnode( MachNode* node, Compile* C) const {\n");
  if( !used ) {
    fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
    fprintf(fp_cpp, "  ShouldNotCallThis();\n");
    fprintf(fp_cpp, "}\n");
  } else {
    // New node must use same node index for access through allocator's tables
    fprintf(fp_cpp, "  // New node must use same node index\n");
    fprintf(fp_cpp, "  node->set_idx( _idx );\n");
    // Copy machine-independent inputs
    fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
    fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
    fprintf(fp_cpp, "    node->add_req(in(j));\n");
    fprintf(fp_cpp, "  }\n");
    // Copy machine operands to new MachNode
    fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
    fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
    fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
    fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
    fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
    fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
    fprintf(fp_cpp, "      to[i] = _opnds[i]->clone(C);\n");
    fprintf(fp_cpp, "  }\n");
    fprintf(fp_cpp, "}\n");
  }
  fprintf(fp_cpp, "\n");
}

//------------------------------defineClasses----------------------------------
// Define members of MachNode and MachOper classes based on
// operand and instruction lists
void ArchDesc::defineClasses(FILE *fp) {

  // Define the contents of an array containing the machine register names
  defineRegNames(fp, _register);
  // Define an array containing the machine register encoding values
  defineRegEncodes(fp, _register);
  // Generate an enumeration of user-defined register classes
  // and a list of register masks, one for each class.
  // Only define the RegMask value objects in the expand file.
  // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
  declare_register_masks(_HPP_file._fp);
  // build_register_masks(fp);
  build_register_masks(_CPP_EXPAND_file._fp);
  // Define the pipe_classes
  build_pipe_classes(_CPP_PIPELINE_file._fp);

  // Generate Machine Classes for each operand defined in AD file
  fprintf(fp,"\n");
  fprintf(fp,"\n");
  fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
  // Iterate through all operands
  _operands.reset();
  OperandForm *oper;
  for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( oper->ideal_only() ) continue;
    // !!!!!
    // The declaration of labelOper is in machine-independent file: machnode
    if ( strcmp(oper->_ident,"label") == 0 ) {
      defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);

      fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
      fprintf(fp,"  return  new (C) %sOper(_label, _block_num);\n", oper->_ident);
      fprintf(fp,"}\n");

      fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
              oper->_ident, machOperEnum(oper->_ident));
      // // Currently all XXXOper::Hash() methods are identical (990820)
      // define_hash(fp, oper->_ident);
      // // Currently all XXXOper::Cmp() methods are identical (990820)
      // define_cmp(fp, oper->_ident);
      fprintf(fp,"\n");

      continue;
    }

    // The declaration of methodOper is in machine-independent file: machnode
    if ( strcmp(oper->_ident,"method") == 0 ) {
      defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);

      fprintf(fp,"MachOper  *%sOper::clone(Compile* C) const {\n", oper->_ident);
      fprintf(fp,"  return  new (C) %sOper(_method);\n", oper->_ident);
      fprintf(fp,"}\n");

      fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
              oper->_ident, machOperEnum(oper->_ident));
      // // Currently all XXXOper::Hash() methods are identical (990820)
      // define_hash(fp, oper->_ident);
      // // Currently all XXXOper::Cmp() methods are identical (990820)
      // define_cmp(fp, oper->_ident);
      fprintf(fp,"\n");

      continue;
    }

    defineIn_RegMask(fp, _globalNames, *oper);
    defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
    // // Currently all XXXOper::Hash() methods are identical (990820)
    // define_hash(fp, oper->_ident);
    // // Currently all XXXOper::Cmp() methods are identical (990820)
    // define_cmp(fp, oper->_ident);

    // side-call to generate output that used to be in the header file:
    extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
    gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);

  }


  // Generate Machine Classes for each instruction defined in AD file
  fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
  // Output the definitions for out_RegMask() // & kill_RegMask()
  _instructions.reset();
  InstructForm *instr;
  MachNodeForm *machnode;
  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( instr->ideal_only() ) continue;

    defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
  }

  bool used = false;
  // Output the definitions for expand rules & peephole rules
  _instructions.reset();
  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( instr->ideal_only() ) continue;
    // If there are multiple defs/kills, or an explicit expand rule, build rule
    if( instr->expands() || instr->needs_projections() ||
        instr->has_temps() ||
        instr->is_mach_constant() ||
        instr->_matrule != NULL &&
        instr->num_opnds() != instr->num_unique_opnds() )
      defineExpand(_CPP_EXPAND_file._fp, instr);
    // If there is an explicit peephole rule, build it
    if ( instr->peepholes() )
      definePeephole(_CPP_PEEPHOLE_file._fp, instr);

    // Output code to convert to the cisc version, if applicable
    used |= instr->define_cisc_version(*this, fp);

    // Output code to convert to the short branch version, if applicable
    used |= instr->define_short_branch_methods(*this, fp);
  }

  // Construct the method called by cisc_version() to copy inputs and operands.
  define_fill_new_machnode(used, fp);

  // Output the definitions for labels
  _instructions.reset();
  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
    // Ensure this is a machine-world instruction
    if ( instr->ideal_only() ) continue;

    // Access the fields for operand Label
    int label_position = instr->label_position();
    if( label_position != -1 ) {
      // Set the label
      fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
      fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
              label_position );
      fprintf(fp,"  oper->_label     = label;\n");
      fprintf(fp,"  oper->_block_num = block_num;\n");
      fprintf(fp,"}\n");
      // Save the label
      fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
      fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
              label_position );
      fprintf(fp,"  *label = oper->_label;\n");
      fprintf(fp,"  *block_num = oper->_block_num;\n");
      fprintf(fp,"}\n");
    }
  }

  // Output the definitions for methods
  _instructions.reset();
  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
    // Ensure this is a machine-world instruction
    if ( instr->ideal_only() ) continue;

    // Access the fields for operand Label
    int method_position = instr->method_position();
    if( method_position != -1 ) {
      // Access the method's address
      fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
      fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
              method_position );
      fprintf(fp,"}\n");
      fprintf(fp,"\n");
    }
  }

  // Define this instruction's number of relocation entries, base is '0'
  _instructions.reset();
  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
    // Output the definition for number of relocation entries
    uint reloc_size = instr->reloc(_globalNames);
    if ( reloc_size != 0 ) {
      fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
      fprintf(fp,"  return %d;\n", reloc_size);
      fprintf(fp,"}\n");
      fprintf(fp,"\n");
    }
  }
  fprintf(fp,"\n");

  // Output the definitions for code generation
  //
  // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
  //   // ...  encoding defined by user
  //   return ptr;
  // }
  //
  _instructions.reset();
  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( instr->ideal_only() ) continue;

    if (instr->_insencode)         defineEmit        (fp, *instr);
    if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
    if (instr->_size)              defineSize        (fp, *instr);

    // side-call to generate output that used to be in the header file:
    extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
    gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
  }

  // Output the definitions for alias analysis
  _instructions.reset();
  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( instr->ideal_only() ) continue;

    // Analyze machine instructions that either USE or DEF memory.
    int memory_operand = instr->memory_operand(_globalNames);
    // Some guys kill all of memory
    if ( instr->is_wide_memory_kill(_globalNames) ) {
      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
    }

    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
        fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
        fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
      } else {
        fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
  }
    }
  }

  // Get the length of the longest identifier
  int max_ident_len = 0;
  _instructions.reset();

  for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
      int ident_len = (int)strlen(instr->_ident);
      if( max_ident_len < ident_len )
        max_ident_len = ident_len;
    }
  }

  // Emit specifically for Node(s)
  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
    max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
    max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
  fprintf(_CPP_PIPELINE_file._fp, "\n");

  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
    max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
  fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
    max_ident_len, "MachNode");
  fprintf(_CPP_PIPELINE_file._fp, "\n");

  // Output the definitions for machine node specific pipeline data
  _machnodes.reset();

  for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
    fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
      machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
  }

  fprintf(_CPP_PIPELINE_file._fp, "\n");

  // Output the definitions for instruction pipeline static data references
  _instructions.reset();

  for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
    if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
      fprintf(_CPP_PIPELINE_file._fp, "\n");
      fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
        max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
      fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
        max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
    }
  }
}


// -------------------------------- maps ------------------------------------

// Information needed to generate the ReduceOp mapping for the DFA
class OutputReduceOp : public OutputMap {
public:
  OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
    : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};

  void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
  void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
                       OutputMap::closing();
  }
  void map(OpClassForm &opc)  {
    const char *reduce = opc._ident;
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(OperandForm &oper) {
    // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
    const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
    // operand stackSlot does not have a match rule, but produces a stackSlot
    if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(InstructForm &inst) {
    const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(char         *reduce) {
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
};

// Information needed to generate the LeftOp mapping for the DFA
class OutputLeftOp : public OutputMap {
public:
  OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
    : OutputMap(hpp, cpp, globals, AD, "leftOp") {};

  void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
  void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
                       OutputMap::closing();
  }
  void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  void map(OperandForm &oper) {
    const char *reduce = oper.reduce_left(_globals);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(char        *name) {
    const char *reduce = _AD.reduceLeft(name);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(InstructForm &inst) {
    const char *reduce = inst.reduce_left(_globals);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
};


// Information needed to generate the RightOp mapping for the DFA
class OutputRightOp : public OutputMap {
public:
  OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
    : OutputMap(hpp, cpp, globals, AD, "rightOp") {};

  void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
  void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
  void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
                       OutputMap::closing();
  }
  void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
  void map(OperandForm &oper) {
    const char *reduce = oper.reduce_right(_globals);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(char        *name) {
    const char *reduce = _AD.reduceRight(name);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
  void map(InstructForm &inst) {
    const char *reduce = inst.reduce_right(_globals);
    if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
    else          fprintf(_cpp, "  0");
  }
};


// Information needed to generate the Rule names for the DFA
class OutputRuleName : public OutputMap {
public:
  OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
    : OutputMap(hpp, cpp, globals, AD, "ruleName") {};

  void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
  void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
  void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
                       OutputMap::closing();
  }
  void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
  void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
  void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
  void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
};


// Information needed to generate the swallowed mapping for the DFA
class OutputSwallowed : public OutputMap {
public:
  OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
    : OutputMap(hpp, cpp, globals, AD, "swallowed") {};

  void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
  void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
  void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
                       OutputMap::closing();
  }
  void map(OperandForm &oper) { // Generate the entry for this opcode
    const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
    fprintf(_cpp, "  %s", swallowed);
  }
  void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
  void map(char        *name) { fprintf(_cpp, "  false"); }
  void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
};


// Information needed to generate the decision array for instruction chain rule
class OutputInstChainRule : public OutputMap {
public:
  OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
    : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};

  void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
  void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
  void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
                       OutputMap::closing();
  }
  void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
  void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
  void map(char        *name)  { fprintf(_cpp, "  false"); }
  void map(InstructForm &inst) { // Check for simple chain rule
    const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
    fprintf(_cpp, "  %s", chain);
  }
};


//---------------------------build_map------------------------------------
// Build  mapping from enumeration for densely packed operands
// TO result and child types.
void ArchDesc::build_map(OutputMap &map) {
  FILE         *fp_hpp = map.decl_file();
  FILE         *fp_cpp = map.def_file();
  int           idx    = 0;
  OperandForm  *op;
  OpClassForm  *opc;
  InstructForm *inst;

  // Construct this mapping
  map.declaration();
  fprintf(fp_cpp,"\n");
  map.definition();

  // Output the mapping for operands
  map.record_position(OutputMap::BEGIN_OPERANDS, idx );
  _operands.reset();
  for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( op->ideal_only() )  continue;

    // Generate the entry for this opcode
    fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
    ++idx;
  };
  fprintf(fp_cpp, "  // last operand\n");

  // Place all user-defined operand classes into the mapping
  map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
  _opclass.reset();
  for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
    fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
    ++idx;
  };
  fprintf(fp_cpp, "  // last operand class\n");

  // Place all internally defined operands into the mapping
  map.record_position(OutputMap::BEGIN_INTERNALS, idx );
  _internalOpNames.reset();
  char *name = NULL;
  for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
    fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
    ++idx;
  };
  fprintf(fp_cpp, "  // last internally defined operand\n");

  // Place all user-defined instructions into the mapping
  if( map.do_instructions() ) {
    map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
    // Output all simple instruction chain rules first
    map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
    {
      _instructions.reset();
      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
        // Ensure this is a machine-world instruction
        if ( inst->ideal_only() )  continue;
        if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
        if ( inst->rematerialize(_globalNames, get_registers()) ) continue;

        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
        ++idx;
      };
      map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
      _instructions.reset();
      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
        // Ensure this is a machine-world instruction
        if ( inst->ideal_only() )  continue;
        if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
        if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;

        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
        ++idx;
      };
      map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
    }
    // Output all instructions that are NOT simple chain rules
    {
      _instructions.reset();
      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
        // Ensure this is a machine-world instruction
        if ( inst->ideal_only() )  continue;
        if ( inst->is_simple_chain_rule(_globalNames) ) continue;
        if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;

        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
        ++idx;
      };
      map.record_position(OutputMap::END_REMATERIALIZE, idx );
      _instructions.reset();
      for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
        // Ensure this is a machine-world instruction
        if ( inst->ideal_only() )  continue;
        if ( inst->is_simple_chain_rule(_globalNames) ) continue;
        if ( inst->rematerialize(_globalNames, get_registers()) ) continue;

        fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
        ++idx;
      };
    }
    fprintf(fp_cpp, "  // last instruction\n");
    map.record_position(OutputMap::END_INSTRUCTIONS, idx );
  }
  // Finish defining table
  map.closing();
};


// Helper function for buildReduceMaps
char reg_save_policy(const char *calling_convention) {
  char callconv;

  if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
  else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
  else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
  else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
  else                                         callconv = 'Z';

  return callconv;
}

//---------------------------generate_assertion_checks-------------------
void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
  fprintf(fp_cpp, "\n");

  fprintf(fp_cpp, "#ifndef PRODUCT\n");
  fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
  globalDefs().print_asserts(fp_cpp);
  fprintf(fp_cpp, "}\n");
  fprintf(fp_cpp, "#endif\n");
  fprintf(fp_cpp, "\n");
}

//---------------------------addSourceBlocks-----------------------------
void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
  if (_source.count() > 0)
    _source.output(fp_cpp);

  generate_adlc_verification(fp_cpp);
}
//---------------------------addHeaderBlocks-----------------------------
void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
  if (_header.count() > 0)
    _header.output(fp_hpp);
}
//-------------------------addPreHeaderBlocks----------------------------
void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
  // Output #defines from definition block
  globalDefs().print_defines(fp_hpp);

  if (_pre_header.count() > 0)
    _pre_header.output(fp_hpp);
}

//---------------------------buildReduceMaps-----------------------------
// Build  mapping from enumeration for densely packed operands
// TO result and child types.
void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
  RegDef       *rdef;
  RegDef       *next;

  // The emit bodies currently require functions defined in the source block.

  // Build external declarations for mappings
  fprintf(fp_hpp, "\n");
  fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
  fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
  fprintf(fp_hpp, "extern const int   register_save_type[];\n");
  fprintf(fp_hpp, "\n");

  // Construct Save-Policy array
  fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
  fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
  _register->reset_RegDefs();
  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
    next              = _register->iter_RegDefs();
    char policy       = reg_save_policy(rdef->_callconv);
    const char *comma = (next != NULL) ? "," : " // no trailing comma";
    fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  }
  fprintf(fp_cpp, "};\n\n");

  // Construct Native Save-Policy array
  fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
  fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
  _register->reset_RegDefs();
  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
    next        = _register->iter_RegDefs();
    char policy = reg_save_policy(rdef->_c_conv);
    const char *comma = (next != NULL) ? "," : " // no trailing comma";
    fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
  }
  fprintf(fp_cpp, "};\n\n");

  // Construct Register Save Type array
  fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
  fprintf(fp_cpp, "const        int register_save_type[] = {\n");
  _register->reset_RegDefs();
  for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
    next = _register->iter_RegDefs();
    const char *comma = (next != NULL) ? "," : " // no trailing comma";
    fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
  }
  fprintf(fp_cpp, "};\n\n");

  // Construct the table for reduceOp
  OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
  build_map(output_reduce_op);
  // Construct the table for leftOp
  OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
  build_map(output_left_op);
  // Construct the table for rightOp
  OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
  build_map(output_right_op);
  // Construct the table of rule names
  OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
  build_map(output_rule_name);
  // Construct the boolean table for subsumed operands
  OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
  build_map(output_swallowed);
  // // // Preserve in case we decide to use this table instead of another
  //// Construct the boolean table for instruction chain rules
  //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
  //build_map(output_inst_chain);

}


//---------------------------buildMachOperGenerator---------------------------

// Recurse through match tree, building path through corresponding state tree,
// Until we reach the constant we are looking for.
static void path_to_constant(FILE *fp, FormDict &globals,
                             MatchNode *mnode, uint idx) {
  if ( ! mnode) return;

  unsigned    position = 0;
  const char *result   = NULL;
  const char *name     = NULL;
  const char *optype   = NULL;

  // Base Case: access constant in ideal node linked to current state node
  // Each type of constant has its own access function
  if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
       && mnode->base_operand(position, globals, result, name, optype) ) {
    if (         strcmp(optype,"ConI") == 0 ) {
      fprintf(fp, "_leaf->get_int()");
    } else if ( (strcmp(optype,"ConP") == 0) ) {
      fprintf(fp, "_leaf->bottom_type()->is_ptr()");
    } else if ( (strcmp(optype,"ConN") == 0) ) {
      fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
    } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
      fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
    } else if ( (strcmp(optype,"ConF") == 0) ) {
      fprintf(fp, "_leaf->getf()");
    } else if ( (strcmp(optype,"ConD") == 0) ) {
      fprintf(fp, "_leaf->getd()");
    } else if ( (strcmp(optype,"ConL") == 0) ) {
      fprintf(fp, "_leaf->get_long()");
    } else if ( (strcmp(optype,"Con")==0) ) {
      // !!!!! - Update if adding a machine-independent constant type
      fprintf(fp, "_leaf->get_int()");
      assert( false, "Unsupported constant type, pointer or indefinite");
    } else if ( (strcmp(optype,"Bool") == 0) ) {
      fprintf(fp, "_leaf->as_Bool()->_test._test");
    } else {
      assert( false, "Unsupported constant type");
    }
    return;
  }

  // If constant is in left child, build path and recurse
  uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
  uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
  if ( (mnode->_lChild) && (lConsts > idx) ) {
    fprintf(fp, "_kids[0]->");
    path_to_constant(fp, globals, mnode->_lChild, idx);
    return;
  }
  // If constant is in right child, build path and recurse
  if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
    idx = idx - lConsts;
    fprintf(fp, "_kids[1]->");
    path_to_constant(fp, globals, mnode->_rChild, idx);
    return;
  }
  assert( false, "ShouldNotReachHere()");
}

// Generate code that is executed when generating a specific Machine Operand
static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
                            OperandForm &op) {
  const char *opName         = op._ident;
  const char *opEnumName     = AD.machOperEnum(opName);
  uint        num_consts     = op.num_consts(globalNames);

  // Generate the case statement for this opcode
  fprintf(fp, "  case %s:", opEnumName);
  fprintf(fp, "\n    return new (C) %sOper(", opName);
  // Access parameters for constructor from the stat object
  //
  // Build access to condition code value
  if ( (num_consts > 0) ) {
    uint i = 0;
    path_to_constant(fp, globalNames, op._matrule, i);
    for ( i = 1; i < num_consts; ++i ) {
      fprintf(fp, ", ");
      path_to_constant(fp, globalNames, op._matrule, i);
    }
  }
  fprintf(fp, " );\n");
}


// Build switch to invoke "new" MachNode or MachOper
void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
  int idx = 0;

  // Build switch to invoke 'new' for a specific MachOper
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp,
          "//------------------------- MachOper Generator ---------------\n");
  fprintf(fp_cpp,
          "// A switch statement on the dense-packed user-defined type system\n"
          "// that invokes 'new' on the corresponding class constructor.\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
  fprintf(fp_cpp, "(int opcode, Compile* C)");
  fprintf(fp_cpp, "{\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "  switch(opcode) {\n");

  // Place all user-defined operands into the mapping
  _operands.reset();
  int  opIndex = 0;
  OperandForm *op;
  for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( op->ideal_only() )  continue;

    genMachOperCase(fp_cpp, _globalNames, *this, *op);
  };

  // Do not iterate over operand classes for the  operand generator!!!

  // Place all internal operands into the mapping
  _internalOpNames.reset();
  const char *iopn;
  for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
    const char *opEnumName = machOperEnum(iopn);
    // Generate the case statement for this opcode
    fprintf(fp_cpp, "  case %s:", opEnumName);
    fprintf(fp_cpp, "    return NULL;\n");
  };

  // Generate the default case for switch(opcode)
  fprintf(fp_cpp, "  \n");
  fprintf(fp_cpp, "  default:\n");
  fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
  fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  fprintf(fp_cpp, "    break;\n");
  fprintf(fp_cpp, "  }\n");

  // Generate the closing for method Matcher::MachOperGenerator
  fprintf(fp_cpp, "  return NULL;\n");
  fprintf(fp_cpp, "};\n");
}


//---------------------------buildMachNode-------------------------------------
// Build a new MachNode, for MachNodeGenerator or cisc-spilling
void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
  const char *opType  = NULL;
  const char *opClass = inst->_ident;

  // Create the MachNode object
  fprintf(fp_cpp, "%s %sNode *node = new (C) %sNode();\n",indent, opClass,opClass);

  if ( (inst->num_post_match_opnds() != 0) ) {
    // Instruction that contains operands which are not in match rule.
    //
    // Check if the first post-match component may be an interesting def
    bool           dont_care = false;
    ComponentList &comp_list = inst->_components;
    Component     *comp      = NULL;
    comp_list.reset();
    if ( comp_list.match_iter() != NULL )    dont_care = true;

    // Insert operands that are not in match-rule.
    // Only insert a DEF if the do_care flag is set
    comp_list.reset();
    while ( comp = comp_list.post_match_iter() ) {
      // Check if we don't care about DEFs or KILLs that are not USEs
      if ( dont_care && (! comp->isa(Component::USE)) ) {
        continue;
      }
      dont_care = true;
      // For each operand not in the match rule, call MachOperGenerator
      // with the enum for the opcode that needs to be built.
      ComponentList clist = inst->_components;
      int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
      const char *opcode = machOperEnum(comp->_type);
      fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
      fprintf(fp_cpp, "MachOperGenerator(%s, C));\n", opcode);
      }
  }
  else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
    // An instruction that chains from a constant!
    // In this case, we need to subsume the constant into the node
    // at operand position, oper_input_base().
    //
    // Fill in the constant
    fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
            inst->oper_input_base(_globalNames));
    // #####
    // Check for multiple constants and then fill them in.
    // Just like MachOperGenerator
    const char *opName = inst->_matrule->_rChild->_opType;
    fprintf(fp_cpp, "new (C) %sOper(", opName);
    // Grab operand form
    OperandForm *op = (_globalNames[opName])->is_operand();
    // Look up the number of constants
    uint num_consts = op->num_consts(_globalNames);
    if ( (num_consts > 0) ) {
      uint i = 0;
      path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
      for ( i = 1; i < num_consts; ++i ) {
        fprintf(fp_cpp, ", ");
        path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
      }
    }
    fprintf(fp_cpp, " );\n");
    // #####
  }

  // Fill in the bottom_type where requested
  if ( inst->captures_bottom_type(_globalNames) ) {
    fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
  }
  if( inst->is_ideal_if() ) {
    fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
    fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
  }
  if( inst->is_ideal_fastlock() ) {
    fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
  }

}

//---------------------------declare_cisc_version------------------------------
// Build CISC version of this instruction
void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
  if( AD.can_cisc_spill() ) {
    InstructForm *inst_cisc = cisc_spill_alternate();
    if (inst_cisc != NULL) {
      fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
      fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset, Compile* C);\n");
      fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
      fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
    }
  }
}

//---------------------------define_cisc_version-------------------------------
// Build CISC version of this instruction
bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
  InstructForm *inst_cisc = this->cisc_spill_alternate();
  if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
    const char   *name      = inst_cisc->_ident;
    assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
    OperandForm *cisc_oper = AD.cisc_spill_operand();
    assert( cisc_oper != NULL, "insanity check");
    const char *cisc_oper_name  = cisc_oper->_ident;
    assert( cisc_oper_name != NULL, "insanity check");
    //
    // Set the correct reg_mask_or_stack for the cisc operand
    fprintf(fp_cpp, "\n");
    fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
    // Lookup the correct reg_mask_or_stack
    const char *reg_mask_name = cisc_reg_mask_name();
    fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
    fprintf(fp_cpp, "}\n");
    //
    // Construct CISC version of this instruction
    fprintf(fp_cpp, "\n");
    fprintf(fp_cpp, "// Build CISC version of this instruction\n");
    fprintf(fp_cpp, "MachNode *%sNode::cisc_version( int offset, Compile* C ) {\n", this->_ident);
    // Create the MachNode object
    fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
    // Fill in the bottom_type where requested
    if ( this->captures_bottom_type(AD.globalNames()) ) {
      fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
    }

    uint cur_num_opnds = num_opnds();
    if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
      fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
    }

    fprintf(fp_cpp, "\n");
    fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
    fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");
    // Construct operand to access [stack_pointer + offset]
    fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
    fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new (C) %sOper(offset));\n", cisc_oper_name);
    fprintf(fp_cpp, "\n");

    // Return result and exit scope
    fprintf(fp_cpp, "  return node;\n");
    fprintf(fp_cpp, "}\n");
    fprintf(fp_cpp, "\n");
    return true;
  }
  return false;
}

//---------------------------declare_short_branch_methods----------------------
// Build prototypes for short branch methods
void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
  if (has_short_branch_form()) {
    fprintf(fp_hpp, "  virtual MachNode      *short_branch_version(Compile* C);\n");
  }
}

//---------------------------define_short_branch_methods-----------------------
// Build definitions for short branch methods
bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
  if (has_short_branch_form()) {
    InstructForm *short_branch = short_branch_form();
    const char   *name         = short_branch->_ident;

    // Construct short_branch_version() method.
    fprintf(fp_cpp, "// Build short branch version of this instruction\n");
    fprintf(fp_cpp, "MachNode *%sNode::short_branch_version(Compile* C) {\n", this->_ident);
    // Create the MachNode object
    fprintf(fp_cpp, "  %sNode *node = new (C) %sNode();\n", name, name);
    if( is_ideal_if() ) {
      fprintf(fp_cpp, "  node->_prob = _prob;\n");
      fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
    }
    // Fill in the bottom_type where requested
    if ( this->captures_bottom_type(AD.globalNames()) ) {
      fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
    }

    fprintf(fp_cpp, "\n");
    // Short branch version must use same node index for access
    // through allocator's tables
    fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
    fprintf(fp_cpp, "  fill_new_machnode(node, C);\n");

    // Return result and exit scope
    fprintf(fp_cpp, "  return node;\n");
    fprintf(fp_cpp, "}\n");
    fprintf(fp_cpp,"\n");
    return true;
  }
  return false;
}


//---------------------------buildMachNodeGenerator----------------------------
// Build switch to invoke appropriate "new" MachNode for an opcode
void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {

  // Build switch to invoke 'new' for a specific MachNode
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp,
          "//------------------------- MachNode Generator ---------------\n");
  fprintf(fp_cpp,
          "// A switch statement on the dense-packed user-defined type system\n"
          "// that invokes 'new' on the corresponding class constructor.\n");
  fprintf(fp_cpp, "\n");
  fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
  fprintf(fp_cpp, "(int opcode, Compile* C)");
  fprintf(fp_cpp, "{\n");
  fprintf(fp_cpp, "  switch(opcode) {\n");

  // Provide constructor for all user-defined instructions
  _instructions.reset();
  int  opIndex = operandFormCount();
  InstructForm *inst;
  for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Ensure that matrule is defined.
    if ( inst->_matrule == NULL ) continue;

    int         opcode  = opIndex++;
    const char *opClass = inst->_ident;
    char       *opType  = NULL;

    // Generate the case statement for this instruction
    fprintf(fp_cpp, "  case %s_rule:", opClass);

    // Start local scope
    fprintf(fp_cpp, " {\n");
    // Generate code to construct the new MachNode
    buildMachNode(fp_cpp, inst, "     ");
    // Return result and exit scope
    fprintf(fp_cpp, "      return node;\n");
    fprintf(fp_cpp, "    }\n");
  }

  // Generate the default case for switch(opcode)
  fprintf(fp_cpp, "  \n");
  fprintf(fp_cpp, "  default:\n");
  fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
  fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
  fprintf(fp_cpp, "    break;\n");
  fprintf(fp_cpp, "  };\n");

  // Generate the closing for method Matcher::MachNodeGenerator
  fprintf(fp_cpp, "  return NULL;\n");
  fprintf(fp_cpp, "}\n");
}


//---------------------------buildInstructMatchCheck--------------------------
// Output the method to Matcher which checks whether or not a specific
// instruction has a matching rule for the host architecture.
void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
  fprintf(fp_cpp, "\n\n");
  fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
  fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
  fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
  fprintf(fp_cpp, "}\n\n");

  fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
  int i;
  for (i = 0; i < _last_opcode - 1; i++) {
    fprintf(fp_cpp, "    %-5s,  // %s\n",
            _has_match_rule[i] ? "true" : "false",
            NodeClassNames[i]);
  }
  fprintf(fp_cpp, "    %-5s   // %s\n",
          _has_match_rule[i] ? "true" : "false",
          NodeClassNames[i]);
  fprintf(fp_cpp, "};\n");
}

//---------------------------buildFrameMethods---------------------------------
// Output the methods to Matcher which specify frame behavior
void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
  fprintf(fp_cpp,"\n\n");
  // Stack Direction
  fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
          _frame->_direction ? "true" : "false");
  // Sync Stack Slots
  fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
          _frame->_sync_stack_slots);
  // Java Stack Alignment
  fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
          _frame->_alignment);
  // Java Return Address Location
  fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
  if (_frame->_return_addr_loc) {
    fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
            _frame->_return_addr);
  }
  else {
    fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
            _frame->_return_addr);
  }
  // Java Stack Slot Preservation
  fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
  fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
  // Top Of Stack Slot Preservation, for both Java and C
  fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
  fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
  // varargs C out slots killed
  fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
  fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
  // Java Argument Position
  fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
  fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
  fprintf(fp_cpp,"}\n\n");
  // Native Argument Position
  fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
  fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
  fprintf(fp_cpp,"}\n\n");
  // Java Return Value Location
  fprintf(fp_cpp,"OptoRegPair Matcher::return_value(int ideal_reg, bool is_outgoing) {\n");
  fprintf(fp_cpp,"%s\n", _frame->_return_value);
  fprintf(fp_cpp,"}\n\n");
  // Native Return Value Location
  fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(int ideal_reg, bool is_outgoing) {\n");
  fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
  fprintf(fp_cpp,"}\n\n");

  // Inline Cache Register, mask definition, and encoding
  fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
          _frame->_inline_cache_reg);
  fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
  fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");

  // Interpreter's Method Oop Register, mask definition, and encoding
  fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
          _frame->_interpreter_method_oop_reg);
  fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
  fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");

  // Interpreter's Frame Pointer Register, mask definition, and encoding
  fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
  if (_frame->_interpreter_frame_pointer_reg == NULL)
    fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
  else
    fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
            _frame->_interpreter_frame_pointer_reg);

  // Frame Pointer definition
  /* CNC - I can not contemplate having a different frame pointer between
     Java and native code; makes my head hurt to think about it.
  fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
          _frame->_frame_pointer);
  */
  // (Native) Frame Pointer definition
  fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
  fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
          _frame->_frame_pointer);

  // Number of callee-save + always-save registers for calling convention
  fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
  fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
  RegDef *rdef;
  int nof_saved_registers = 0;
  _register->reset_RegDefs();
  while( (rdef = _register->iter_RegDefs()) != NULL ) {
    if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
      ++nof_saved_registers;
  }
  fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
  fprintf(fp_cpp, "};\n\n");
}




static int PrintAdlcCisc = 0;
//---------------------------identify_cisc_spilling----------------------------
// Get info for the CISC_oracle and MachNode::cisc_version()
void ArchDesc::identify_cisc_spill_instructions() {

  if (_frame == NULL)
    return;

  // Find the user-defined operand for cisc-spilling
  if( _frame->_cisc_spilling_operand_name != NULL ) {
    const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
    OperandForm *oper = form ? form->is_operand() : NULL;
    // Verify the user's suggestion
    if( oper != NULL ) {
      // Ensure that match field is defined.
      if ( oper->_matrule != NULL )  {
        MatchRule &mrule = *oper->_matrule;
        if( strcmp(mrule._opType,"AddP") == 0 ) {
          MatchNode *left = mrule._lChild;
          MatchNode *right= mrule._rChild;
          if( left != NULL && right != NULL ) {
            const Form *left_op  = _globalNames[left->_opType]->is_operand();
            const Form *right_op = _globalNames[right->_opType]->is_operand();
            if(  (left_op != NULL && right_op != NULL)
              && (left_op->interface_type(_globalNames) == Form::register_interface)
              && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
              // Successfully verified operand
              set_cisc_spill_operand( oper );
              if( _cisc_spill_debug ) {
                fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
             }
            }
          }
        }
      }
    }
  }

  if( cisc_spill_operand() != NULL ) {
    // N^2 comparison of instructions looking for a cisc-spilling version
    _instructions.reset();
    InstructForm *instr;
    for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
      // Ensure that match field is defined.
      if ( instr->_matrule == NULL )  continue;

      MatchRule &mrule = *instr->_matrule;
      Predicate *pred  =  instr->build_predicate();

      // Grab the machine type of the operand
      const char *rootOp = instr->_ident;
      mrule._machType    = rootOp;

      // Find result type for match
      const char *result = instr->reduce_result();

      if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
      bool  found_cisc_alternate = false;
      _instructions.reset2();
      InstructForm *instr2;
      for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
        // Ensure that match field is defined.
        if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
        if ( instr2->_matrule != NULL
            && (instr != instr2 )                // Skip self
            && (instr2->reduce_result() != NULL) // want same result
            && (strcmp(result, instr2->reduce_result()) == 0)) {
          MatchRule &mrule2 = *instr2->_matrule;
          Predicate *pred2  =  instr2->build_predicate();
          found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
        }
      }
    }
  }
}

//---------------------------build_cisc_spilling-------------------------------
// Get info for the CISC_oracle and MachNode::cisc_version()
void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
  // Output the table for cisc spilling
  fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
  _instructions.reset();
  InstructForm *inst = NULL;
  for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
    // Ensure this is a machine-world instruction
    if ( inst->ideal_only() )  continue;
    const char *inst_name = inst->_ident;
    int   operand   = inst->cisc_spill_operand();
    if( operand != AdlcVMDeps::Not_cisc_spillable ) {
      InstructForm *inst2 = inst->cisc_spill_alternate();
      fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
    }
  }
  fprintf(fp_cpp, "\n\n");
}

//---------------------------identify_short_branches----------------------------
// Get info for our short branch replacement oracle.
void ArchDesc::identify_short_branches() {
  // Walk over all instructions, checking to see if they match a short
  // branching alternate.
  _instructions.reset();
  InstructForm *instr;
  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
    // The instruction must have a match rule.
    if (instr->_matrule != NULL &&
        instr->is_short_branch()) {

      _instructions.reset2();
      InstructForm *instr2;
      while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
        instr2->check_branch_variant(*this, instr);
      }
    }
  }
}


//---------------------------identify_unique_operands---------------------------
// Identify unique operands.
void ArchDesc::identify_unique_operands() {
  // Walk over all instructions.
  _instructions.reset();
  InstructForm *instr;
  while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
    // Ensure this is a machine-world instruction
    if (!instr->ideal_only()) {
      instr->set_unique_opnds();
    }
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java output_c.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.