alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (defaultMethods.cpp)

This example Java source code file (defaultMethods.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

check, emptyvtableslot, growablearray, instanceklass, method, methodfamily, node, null, product, statefulmethodfamily, staterestorer, symbol, tracedefaultmethods, traps

The defaultMethods.cpp Java example source code

/*
 * Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/bytecodeAssembler.hpp"
#include "classfile/defaultMethods.hpp"
#include "classfile/symbolTable.hpp"
#include "memory/allocation.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/signature.hpp"
#include "runtime/thread.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.hpp"
#include "oops/method.hpp"
#include "utilities/accessFlags.hpp"
#include "utilities/exceptions.hpp"
#include "utilities/ostream.hpp"
#include "utilities/pair.hpp"
#include "utilities/resourceHash.hpp"

typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;

// Because we use an iterative algorithm when iterating over the type
// hierarchy, we can't use traditional scoped objects which automatically do
// cleanup in the destructor when the scope is exited.  PseudoScope (and
// PseudoScopeMark) provides a similar functionality, but for when you want a
// scoped object in non-stack memory (such as in resource memory, as we do
// here).  You've just got to remember to call 'destroy()' on the scope when
// leaving it (and marks have to be explicitly added).
class PseudoScopeMark : public ResourceObj {
 public:
  virtual void destroy() = 0;
};

class PseudoScope : public ResourceObj {
 private:
  GrowableArray<PseudoScopeMark*> _marks;
 public:

  static PseudoScope* cast(void* data) {
    return static_cast<PseudoScope*>(data);
  }

  void add_mark(PseudoScopeMark* psm) {
   _marks.append(psm);
  }

  void destroy() {
    for (int i = 0; i < _marks.length(); ++i) {
      _marks.at(i)->destroy();
    }
  }
};

#ifndef PRODUCT
static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
  ResourceMark rm;
  str->print("%s%s", name->as_C_string(), signature->as_C_string());
}

static void print_method(outputStream* str, Method* mo, bool with_class=true) {
  ResourceMark rm;
  if (with_class) {
    str->print("%s.", mo->klass_name()->as_C_string());
  }
  print_slot(str, mo->name(), mo->signature());
}
#endif // ndef PRODUCT

/**
 * Perform a depth-first iteration over the class hierarchy, applying
 * algorithmic logic as it goes.
 *
 * This class is one half of the inheritance hierarchy analysis mechanism.
 * It is meant to be used in conjunction with another class, the algorithm,
 * which is indicated by the ALGO template parameter.  This class can be
 * paired with any algorithm class that provides the required methods.
 *
 * This class contains all the mechanics for iterating over the class hierarchy
 * starting at a particular root, without recursing (thus limiting stack growth
 * from this point).  It visits each superclass (if present) and superinterface
 * in a depth-first manner, with callbacks to the ALGO class as each class is
 * encountered (visit()), The algorithm can cut-off further exploration of a
 * particular branch by returning 'false' from a visit() call.
 *
 * The ALGO class, must provide a visit() method, which each of which will be
 * called once for each node in the inheritance tree during the iteration.  In
 * addition, it can provide a memory block via new_node_data(InstanceKlass*),
 * which it can use for node-specific storage (and access via the
 * current_data() and data_at_depth(int) methods).
 *
 * Bare minimum needed to be an ALGO class:
 * class Algo : public HierarchyVisitor<Algo> {
 *   void* new_node_data(InstanceKlass* cls) { return NULL; }
 *   void free_node_data(void* data) { return; }
 *   bool visit() { return true; }
 * };
 */
template <class ALGO>
class HierarchyVisitor : StackObj {
 private:

  class Node : public ResourceObj {
   public:
    InstanceKlass* _class;
    bool _super_was_visited;
    int _interface_index;
    void* _algorithm_data;

    Node(InstanceKlass* cls, void* data, bool visit_super)
        : _class(cls), _super_was_visited(!visit_super),
          _interface_index(0), _algorithm_data(data) {}

    int number_of_interfaces() { return _class->local_interfaces()->length(); }
    int interface_index() { return _interface_index; }
    void set_super_visited() { _super_was_visited = true; }
    void increment_visited_interface() { ++_interface_index; }
    void set_all_interfaces_visited() {
      _interface_index = number_of_interfaces();
    }
    bool has_visited_super() { return _super_was_visited; }
    bool has_visited_all_interfaces() {
      return interface_index() >= number_of_interfaces();
    }
    InstanceKlass* interface_at(int index) {
      return InstanceKlass::cast(_class->local_interfaces()->at(index));
    }
    InstanceKlass* next_super() { return _class->java_super(); }
    InstanceKlass* next_interface() {
      return interface_at(interface_index());
    }
  };

  bool _cancelled;
  GrowableArray<Node*> _path;

  Node* current_top() const { return _path.top(); }
  bool has_more_nodes() const { return !_path.is_empty(); }
  void push(InstanceKlass* cls, void* data) {
    assert(cls != NULL, "Requires a valid instance class");
    Node* node = new Node(cls, data, has_super(cls));
    _path.push(node);
  }
  void pop() { _path.pop(); }

  void reset_iteration() {
    _cancelled = false;
    _path.clear();
  }
  bool is_cancelled() const { return _cancelled; }

  // This code used to skip interface classes because their only
  // superclass was j.l.Object which would be also covered by class
  // superclass hierarchy walks. Now that the starting point can be
  // an interface, we must ensure we catch j.l.Object as the super.
  static bool has_super(InstanceKlass* cls) {
    return cls->super() != NULL;
  }

  Node* node_at_depth(int i) const {
    return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
  }

 protected:

  // Accessors available to the algorithm
  int current_depth() const { return _path.length() - 1; }

  InstanceKlass* class_at_depth(int i) {
    Node* n = node_at_depth(i);
    return n == NULL ? NULL : n->_class;
  }
  InstanceKlass* current_class() { return class_at_depth(0); }

  void* data_at_depth(int i) {
    Node* n = node_at_depth(i);
    return n == NULL ? NULL : n->_algorithm_data;
  }
  void* current_data() { return data_at_depth(0); }

  void cancel_iteration() { _cancelled = true; }

 public:

  void run(InstanceKlass* root) {
    ALGO* algo = static_cast<ALGO*>(this);

    reset_iteration();

    void* algo_data = algo->new_node_data(root);
    push(root, algo_data);
    bool top_needs_visit = true;

    do {
      Node* top = current_top();
      if (top_needs_visit) {
        if (algo->visit() == false) {
          // algorithm does not want to continue along this path.  Arrange
          // it so that this state is immediately popped off the stack
          top->set_super_visited();
          top->set_all_interfaces_visited();
        }
        top_needs_visit = false;
      }

      if (top->has_visited_super() && top->has_visited_all_interfaces()) {
        algo->free_node_data(top->_algorithm_data);
        pop();
      } else {
        InstanceKlass* next = NULL;
        if (top->has_visited_super() == false) {
          next = top->next_super();
          top->set_super_visited();
        } else {
          next = top->next_interface();
          top->increment_visited_interface();
        }
        assert(next != NULL, "Otherwise we shouldn't be here");
        algo_data = algo->new_node_data(next);
        push(next, algo_data);
        top_needs_visit = true;
      }
    } while (!is_cancelled() && has_more_nodes());
  }
};

#ifndef PRODUCT
class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
 public:

  bool visit() {
    InstanceKlass* cls = current_class();
    streamIndentor si(tty, current_depth() * 2);
    tty->indent().print_cr("%s", cls->name()->as_C_string());
    return true;
  }

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }
};
#endif // ndef PRODUCT

// Used to register InstanceKlass objects and all related metadata structures
// (Methods, ConstantPools) as "in-use" by the current thread so that they can't
// be deallocated by class redefinition while we're using them.  The classes are
// de-registered when this goes out of scope.
//
// Once a class is registered, we need not bother with methodHandles or
// constantPoolHandles for it's associated metadata.
class KeepAliveRegistrar : public StackObj {
 private:
  Thread* _thread;
  GrowableArray<ConstantPool*> _keep_alive;

 public:
  KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
    assert(thread == Thread::current(), "Must be current thread");
  }

  ~KeepAliveRegistrar() {
    for (int i = _keep_alive.length() - 1; i >= 0; --i) {
      ConstantPool* cp = _keep_alive.at(i);
      int idx = _thread->metadata_handles()->find_from_end(cp);
      assert(idx > 0, "Must be in the list");
      _thread->metadata_handles()->remove_at(idx);
    }
  }

  // Register a class as 'in-use' by the thread.  It's fine to register a class
  // multiple times (though perhaps inefficient)
  void register_class(InstanceKlass* ik) {
    ConstantPool* cp = ik->constants();
    _keep_alive.push(cp);
    _thread->metadata_handles()->push(cp);
  }
};

class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
 private:
  KeepAliveRegistrar* _registrar;

 public:
  KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}

  void* new_node_data(InstanceKlass* cls) { return NULL; }
  void free_node_data(void* data) { return; }

  bool visit() {
    _registrar->register_class(current_class());
    return true;
  }
};


// A method family contains a set of all methods that implement a single
// erased method. As members of the set are collected while walking over the
// hierarchy, they are tagged with a qualification state.  The qualification
// state for an erased method is set to disqualified if there exists a path
// from the root of hierarchy to the method that contains an interleaving
// erased method defined in an interface.

class MethodFamily : public ResourceObj {
 private:

  GrowableArray<Pair _members;
  ResourceHashtable<Method*, int> _member_index;

  Method* _selected_target;  // Filled in later, if a unique target exists
  Symbol* _exception_message; // If no unique target is found
  Symbol* _exception_name;    // If no unique target is found

  bool contains_method(Method* method) {
    int* lookup = _member_index.get(method);
    return lookup != NULL;
  }

  void add_method(Method* method, QualifiedState state) {
    Pair<Method*,QualifiedState> entry(method, state);
    _member_index.put(method, _members.length());
    _members.append(entry);
  }

  void disqualify_method(Method* method) {
    int* index = _member_index.get(method);
    guarantee(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
    _members.at(*index).second = DISQUALIFIED;
  }

  Symbol* generate_no_defaults_message(TRAPS) const;
  Symbol* generate_method_message(Symbol *klass_name, Method* method, TRAPS) const;
  Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;

 public:

  MethodFamily()
      : _selected_target(NULL), _exception_message(NULL), _exception_name(NULL) {}

  void set_target_if_empty(Method* m) {
    if (_selected_target == NULL && !m->is_overpass()) {
      _selected_target = m;
    }
  }

  void record_qualified_method(Method* m) {
    // If the method already exists in the set as qualified, this operation is
    // redundant.  If it already exists as disqualified, then we leave it as
    // disqualfied.  Thus we only add to the set if it's not already in the
    // set.
    if (!contains_method(m)) {
      add_method(m, QUALIFIED);
    }
  }

  void record_disqualified_method(Method* m) {
    // If not in the set, add it as disqualified.  If it's already in the set,
    // then set the state to disqualified no matter what the previous state was.
    if (!contains_method(m)) {
      add_method(m, DISQUALIFIED);
    } else {
      disqualify_method(m);
    }
  }

  bool has_target() const { return _selected_target != NULL; }
  bool throws_exception() { return _exception_message != NULL; }

  Method* get_selected_target() { return _selected_target; }
  Symbol* get_exception_message() { return _exception_message; }
  Symbol* get_exception_name() { return _exception_name; }

  // Return true if the specified klass has a static method that matches
  // the name and signature of the target method.
  bool has_matching_static(InstanceKlass* root) {
    if (_members.length() > 0) {
      Pair<Method*,QualifiedState> entry = _members.at(0);
      Method* impl = root->find_method(entry.first->name(),
                                       entry.first->signature());
      if ((impl != NULL) && impl->is_static()) {
        return true;
      }
    }
    return false;
  }

  // Either sets the target or the exception error message
  void determine_target(InstanceKlass* root, TRAPS) {
    if (has_target() || throws_exception()) {
      return;
    }

    // Qualified methods are maximally-specific methods
    // These include public, instance concrete (=default) and abstract methods
    GrowableArray<Method*> qualified_methods;
    int num_defaults = 0;
    int default_index = -1;
    int qualified_index = -1;
    for (int i = 0; i < _members.length(); ++i) {
      Pair<Method*,QualifiedState> entry = _members.at(i);
      if (entry.second == QUALIFIED) {
        qualified_methods.append(entry.first);
        qualified_index++;
        if (entry.first->is_default_method()) {
          num_defaults++;
          default_index = qualified_index;

        }
      }
    }

    if (num_defaults == 0) {
      // If the root klass has a static method with matching name and signature
      // then do not generate an overpass method because it will hide the
      // static method during resolution.
      if (!has_matching_static(root)) {
        if (qualified_methods.length() == 0) {
          _exception_message = generate_no_defaults_message(CHECK);
        } else {
          assert(root != NULL, "Null root class");
          _exception_message = generate_method_message(root->name(), qualified_methods.at(0), CHECK);
        }
        _exception_name = vmSymbols::java_lang_AbstractMethodError();
      }

    // If only one qualified method is default, select that
    } else if (num_defaults == 1) {
        _selected_target = qualified_methods.at(default_index);

    } else if (num_defaults > 1 && !has_matching_static(root)) {
      _exception_message = generate_conflicts_message(&qualified_methods,CHECK);
      _exception_name = vmSymbols::java_lang_IncompatibleClassChangeError();
      if (TraceDefaultMethods) {
        _exception_message->print_value_on(tty);
        tty->print_cr("");
      }
    }
  }

  bool contains_signature(Symbol* query) {
    for (int i = 0; i < _members.length(); ++i) {
      if (query == _members.at(i).first->signature()) {
        return true;
      }
    }
    return false;
  }

#ifndef PRODUCT
  void print_sig_on(outputStream* str, Symbol* signature, int indent) const {
    streamIndentor si(str, indent * 2);

    str->indent().print_cr("Logical Method %s:", signature->as_C_string());

    streamIndentor si2(str);
    for (int i = 0; i < _members.length(); ++i) {
      str->indent();
      print_method(str, _members.at(i).first);
      if (_members.at(i).second == DISQUALIFIED) {
        str->print(" (disqualified)");
      }
      str->print_cr("");
    }

    if (_selected_target != NULL) {
      print_selected(str, 1);
    }
  }

  void print_selected(outputStream* str, int indent) const {
    assert(has_target(), "Should be called otherwise");
    streamIndentor si(str, indent * 2);
    str->indent().print("Selected method: ");
    print_method(str, _selected_target);
    Klass* method_holder = _selected_target->method_holder();
    if (!method_holder->is_interface()) {
      tty->print(" : in superclass");
    }
    str->print_cr("");
  }

  void print_exception(outputStream* str, int indent) {
    assert(throws_exception(), "Should be called otherwise");
    assert(_exception_name != NULL, "exception_name should be set");
    streamIndentor si(str, indent * 2);
    str->indent().print_cr("%s: %s", _exception_name->as_C_string(), _exception_message->as_C_string());
  }
#endif // ndef PRODUCT
};

Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
  return SymbolTable::new_symbol("No qualifying defaults found", CHECK_NULL);
}

Symbol* MethodFamily::generate_method_message(Symbol *klass_name, Method* method, TRAPS) const {
  stringStream ss;
  ss.print("Method ");
  Symbol* name = method->name();
  Symbol* signature = method->signature();
  ss.write((const char*)klass_name->bytes(), klass_name->utf8_length());
  ss.print(".");
  ss.write((const char*)name->bytes(), name->utf8_length());
  ss.write((const char*)signature->bytes(), signature->utf8_length());
  ss.print(" is abstract");
  return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}

Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
  stringStream ss;
  ss.print("Conflicting default methods:");
  for (int i = 0; i < methods->length(); ++i) {
    Method* method = methods->at(i);
    Symbol* klass = method->klass_name();
    Symbol* name = method->name();
    ss.print(" ");
    ss.write((const char*)klass->bytes(), klass->utf8_length());
    ss.print(".");
    ss.write((const char*)name->bytes(), name->utf8_length());
  }
  return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
}


class StateRestorer;

// StatefulMethodFamily is a wrapper around a MethodFamily that maintains the
// qualification state during hierarchy visitation, and applies that state
// when adding members to the MethodFamily
class StatefulMethodFamily : public ResourceObj {
  friend class StateRestorer;
 private:
  QualifiedState _qualification_state;

  void set_qualification_state(QualifiedState state) {
    _qualification_state = state;
  }

 protected:
  MethodFamily* _method_family;

 public:
  StatefulMethodFamily() {
   _method_family = new MethodFamily();
   _qualification_state = QUALIFIED;
  }

  StatefulMethodFamily(MethodFamily* mf) {
   _method_family = mf;
   _qualification_state = QUALIFIED;
  }

  void set_target_if_empty(Method* m) { _method_family->set_target_if_empty(m); }

  MethodFamily* get_method_family() { return _method_family; }

  StateRestorer* record_method_and_dq_further(Method* mo);
};

class StateRestorer : public PseudoScopeMark {
 private:
  StatefulMethodFamily* _method;
  QualifiedState _state_to_restore;
 public:
  StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
      : _method(dm), _state_to_restore(state) {}
  ~StateRestorer() { destroy(); }
  void restore_state() { _method->set_qualification_state(_state_to_restore); }
  virtual void destroy() { restore_state(); }
};

StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
  StateRestorer* mark = new StateRestorer(this, _qualification_state);
  if (_qualification_state == QUALIFIED) {
    _method_family->record_qualified_method(mo);
  } else {
    _method_family->record_disqualified_method(mo);
  }
  // Everything found "above"??? this method in the hierarchy walk is set to
  // disqualified
  set_qualification_state(DISQUALIFIED);
  return mark;
}

// Represents a location corresponding to a vtable slot for methods that
// neither the class nor any of it's ancestors provide an implementaion.
// Default methods may be present to fill this slot.
class EmptyVtableSlot : public ResourceObj {
 private:
  Symbol* _name;
  Symbol* _signature;
  int _size_of_parameters;
  MethodFamily* _binding;

 public:
  EmptyVtableSlot(Method* method)
      : _name(method->name()), _signature(method->signature()),
        _size_of_parameters(method->size_of_parameters()), _binding(NULL) {}

  Symbol* name() const { return _name; }
  Symbol* signature() const { return _signature; }
  int size_of_parameters() const { return _size_of_parameters; }

  void bind_family(MethodFamily* lm) { _binding = lm; }
  bool is_bound() { return _binding != NULL; }
  MethodFamily* get_binding() { return _binding; }

#ifndef PRODUCT
  void print_on(outputStream* str) const {
    print_slot(str, name(), signature());
  }
#endif // ndef PRODUCT
};

static bool already_in_vtable_slots(GrowableArray<EmptyVtableSlot*>* slots, Method* m) {
  bool found = false;
  for (int j = 0; j < slots->length(); ++j) {
    if (slots->at(j)->name() == m->name() &&
        slots->at(j)->signature() == m->signature() ) {
      found = true;
      break;
    }
  }
  return found;
}

static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
    InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {

  assert(klass != NULL, "Must be valid class");

  GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray();

  // All miranda methods are obvious candidates
  for (int i = 0; i < mirandas->length(); ++i) {
    Method* m = mirandas->at(i);
    if (!already_in_vtable_slots(slots, m)) {
      slots->append(new EmptyVtableSlot(m));
    }
  }

  // Also any overpasses in our superclasses, that we haven't implemented.
  // (can't use the vtable because it is not guaranteed to be initialized yet)
  InstanceKlass* super = klass->java_super();
  while (super != NULL) {
    for (int i = 0; i < super->methods()->length(); ++i) {
      Method* m = super->methods()->at(i);
      if (m->is_overpass() || m->is_static()) {
        // m is a method that would have been a miranda if not for the
        // default method processing that occurred on behalf of our superclass,
        // so it's a method we want to re-examine in this new context.  That is,
        // unless we have a real implementation of it in the current class.
        Method* impl = klass->lookup_method(m->name(), m->signature());
        if (impl == NULL || impl->is_overpass() || impl->is_static()) {
          if (!already_in_vtable_slots(slots, m)) {
            slots->append(new EmptyVtableSlot(m));
          }
        }
      }
    }

    // also any default methods in our superclasses
    if (super->default_methods() != NULL) {
      for (int i = 0; i < super->default_methods()->length(); ++i) {
        Method* m = super->default_methods()->at(i);
        // m is a method that would have been a miranda if not for the
        // default method processing that occurred on behalf of our superclass,
        // so it's a method we want to re-examine in this new context.  That is,
        // unless we have a real implementation of it in the current class.
        Method* impl = klass->lookup_method(m->name(), m->signature());
        if (impl == NULL || impl->is_overpass() || impl->is_static()) {
          if (!already_in_vtable_slots(slots, m)) {
            slots->append(new EmptyVtableSlot(m));
          }
        }
      }
    }
    super = super->java_super();
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Slots that need filling:");
    streamIndentor si(tty);
    for (int i = 0; i < slots->length(); ++i) {
      tty->indent();
      slots->at(i)->print_on(tty);
      tty->print_cr("");
    }
  }
#endif // ndef PRODUCT
  return slots;
}

// Iterates over the superinterface type hierarchy looking for all methods
// with a specific erased signature.
class FindMethodsByErasedSig : public HierarchyVisitor<FindMethodsByErasedSig> {
 private:
  // Context data
  Symbol* _method_name;
  Symbol* _method_signature;
  StatefulMethodFamily*  _family;

 public:
  FindMethodsByErasedSig(Symbol* name, Symbol* signature) :
      _method_name(name), _method_signature(signature),
      _family(NULL) {}

  void get_discovered_family(MethodFamily** family) {
      if (_family != NULL) {
        *family = _family->get_method_family();
      } else {
        *family = NULL;
      }
  }

  void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
  void free_node_data(void* node_data) {
    PseudoScope::cast(node_data)->destroy();
  }

  // Find all methods on this hierarchy that match this
  // method's erased (name, signature)
  bool visit() {
    PseudoScope* scope = PseudoScope::cast(current_data());
    InstanceKlass* iklass = current_class();

    Method* m = iklass->find_method(_method_name, _method_signature);
    // private interface methods are not candidates for default methods
    // invokespecial to private interface methods doesn't use default method logic
    // The overpasses are your supertypes' errors, we do not include them
    // future: take access controls into account for superclass methods
    if (m != NULL && !m->is_static() && !m->is_overpass() &&
         (!iklass->is_interface() || m->is_public())) {
      if (_family == NULL) {
        _family = new StatefulMethodFamily();
      }

      if (iklass->is_interface()) {
        StateRestorer* restorer = _family->record_method_and_dq_further(m);
        scope->add_mark(restorer);
      } else {
        // This is the rule that methods in classes "win" (bad word) over
        // methods in interfaces. This works because of single inheritance
        _family->set_target_if_empty(m);
      }
    }
    return true;
  }

};



static void create_defaults_and_exceptions(
    GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);

static void generate_erased_defaults(
     InstanceKlass* klass, GrowableArray<EmptyVtableSlot*>* empty_slots,
     EmptyVtableSlot* slot, TRAPS) {

  // sets up a set of methods with the same exact erased signature
  FindMethodsByErasedSig visitor(slot->name(), slot->signature());
  visitor.run(klass);

  MethodFamily* family;
  visitor.get_discovered_family(&family);
  if (family != NULL) {
    family->determine_target(klass, CHECK);
    slot->bind_family(family);
  }
}

static void merge_in_new_methods(InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS);
static void create_default_methods( InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS);

// This is the guts of the default methods implementation.  This is called just
// after the classfile has been parsed if some ancestor has default methods.
//
// First if finds any name/signature slots that need any implementation (either
// because they are miranda or a superclass's implementation is an overpass
// itself).  For each slot, iterate over the hierarchy, to see if they contain a
// signature that matches the slot we are looking at.
//
// For each slot filled, we generate an overpass method that either calls the
// unique default method candidate using invokespecial, or throws an exception
// (in the case of no default method candidates, or more than one valid
// candidate).  These methods are then added to the class's method list.
// The JVM does not create bridges nor handle generic signatures here.
void DefaultMethods::generate_default_methods(
    InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {

  // This resource mark is the bound for all memory allocation that takes
  // place during default method processing.  After this goes out of scope,
  // all (Resource) objects' memory will be reclaimed.  Be careful if adding an
  // embedded resource mark under here as that memory can't be used outside
  // whatever scope it's in.
  ResourceMark rm(THREAD);

  // Keep entire hierarchy alive for the duration of the computation
  KeepAliveRegistrar keepAlive(THREAD);
  KeepAliveVisitor loadKeepAlive(&keepAlive);
  loadKeepAlive.run(klass);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    ResourceMark rm;  // be careful with these!
    tty->print_cr("%s %s requires default method processing",
        klass->is_interface() ? "Interface" : "Class",
        klass->name()->as_klass_external_name());
    PrintHierarchy printer;
    printer.run(klass);
  }
#endif // ndef PRODUCT

  GrowableArray<EmptyVtableSlot*>* empty_slots =
      find_empty_vtable_slots(klass, mirandas, CHECK);

  for (int i = 0; i < empty_slots->length(); ++i) {
    EmptyVtableSlot* slot = empty_slots->at(i);
#ifndef PRODUCT
    if (TraceDefaultMethods) {
      streamIndentor si(tty, 2);
      tty->indent().print("Looking for default methods for slot ");
      slot->print_on(tty);
      tty->print_cr("");
    }
#endif // ndef PRODUCT

    generate_erased_defaults(klass, empty_slots, slot, CHECK);
 }
#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Creating defaults and overpasses...");
  }
#endif // ndef PRODUCT

  create_defaults_and_exceptions(empty_slots, klass, CHECK);

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Default method processing complete");
  }
#endif // ndef PRODUCT
}

static int assemble_method_error(
    BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* errorName, Symbol* message, TRAPS) {

  Symbol* init = vmSymbols::object_initializer_name();
  Symbol* sig = vmSymbols::string_void_signature();

  BytecodeAssembler assem(buffer, cp);

  assem._new(errorName);
  assem.dup();
  assem.load_string(message);
  assem.invokespecial(errorName, init, sig);
  assem.athrow();

  return 3; // max stack size: [ exception, exception, string ]
}

static Method* new_method(
    BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
    Symbol* sig, AccessFlags flags, int max_stack, int params,
    ConstMethod::MethodType mt, TRAPS) {

  address code_start = 0;
  int code_length = 0;
  InlineTableSizes sizes;

  if (bytecodes != NULL && bytecodes->length() > 0) {
    code_start = static_cast<address>(bytecodes->adr_at(0));
    code_length = bytecodes->length();
  }

  Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
                               code_length, flags, &sizes,
                               mt, CHECK_NULL);

  m->set_constants(NULL); // This will get filled in later
  m->set_name_index(cp->utf8(name));
  m->set_signature_index(cp->utf8(sig));
#ifdef CC_INTERP
  ResultTypeFinder rtf(sig);
  m->set_result_index(rtf.type());
#endif
  m->set_size_of_parameters(params);
  m->set_max_stack(max_stack);
  m->set_max_locals(params);
  m->constMethod()->set_stackmap_data(NULL);
  m->set_code(code_start);

  return m;
}

static void switchover_constant_pool(BytecodeConstantPool* bpool,
    InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {

  if (new_methods->length() > 0) {
    ConstantPool* cp = bpool->create_constant_pool(CHECK);
    if (cp != klass->constants()) {
      klass->class_loader_data()->add_to_deallocate_list(klass->constants());
      klass->set_constants(cp);
      cp->set_pool_holder(klass);

      for (int i = 0; i < new_methods->length(); ++i) {
        new_methods->at(i)->set_constants(cp);
      }
      for (int i = 0; i < klass->methods()->length(); ++i) {
        Method* mo = klass->methods()->at(i);
        mo->set_constants(cp);
      }
    }
  }
}

// Create default_methods list for the current class.
// With the VM only processing erased signatures, the VM only
// creates an overpass in a conflict case or a case with no candidates.
// This allows virtual methods to override the overpass, but ensures
// that a local method search will find the exception rather than an abstract
// or default method that is not a valid candidate.
static void create_defaults_and_exceptions(
    GrowableArray<EmptyVtableSlot*>* slots,
    InstanceKlass* klass, TRAPS) {

  GrowableArray<Method*> overpasses;
  GrowableArray<Method*> defaults;
  BytecodeConstantPool bpool(klass->constants());

  for (int i = 0; i < slots->length(); ++i) {
    EmptyVtableSlot* slot = slots->at(i);

    if (slot->is_bound()) {
      MethodFamily* method = slot->get_binding();
      BytecodeBuffer buffer;

#ifndef PRODUCT
      if (TraceDefaultMethods) {
        tty->print("for slot: ");
        slot->print_on(tty);
        tty->print_cr("");
        if (method->has_target()) {
          method->print_selected(tty, 1);
        } else if (method->throws_exception()) {
          method->print_exception(tty, 1);
        }
      }
#endif // ndef PRODUCT

      if (method->has_target()) {
        Method* selected = method->get_selected_target();
        if (selected->method_holder()->is_interface()) {
          defaults.push(selected);
        }
      } else if (method->throws_exception()) {
        int max_stack = assemble_method_error(&bpool, &buffer,
           method->get_exception_name(), method->get_exception_message(), CHECK);
        AccessFlags flags = accessFlags_from(
          JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
         Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
          flags, max_stack, slot->size_of_parameters(),
          ConstMethod::OVERPASS, CHECK);
        // We push to the methods list:
        // overpass methods which are exception throwing methods
        if (m != NULL) {
          overpasses.push(m);
        }
      }
    }
  }

#ifndef PRODUCT
  if (TraceDefaultMethods) {
    tty->print_cr("Created %d overpass methods", overpasses.length());
    tty->print_cr("Created %d default  methods", defaults.length());
  }
#endif // ndef PRODUCT

  if (overpasses.length() > 0) {
    switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
    merge_in_new_methods(klass, &overpasses, CHECK);
  }
  if (defaults.length() > 0) {
    create_default_methods(klass, &defaults, CHECK);
  }
}

static void create_default_methods( InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS) {

  int new_size = new_methods->length();
  Array<Method*>* total_default_methods = MetadataFactory::new_array(
      klass->class_loader_data(), new_size, NULL, CHECK);
  for (int index = 0; index < new_size; index++ ) {
    total_default_methods->at_put(index, new_methods->at(index));
  }
  Method::sort_methods(total_default_methods, false, false);

  klass->set_default_methods(total_default_methods);
}

static void sort_methods(GrowableArray<Method*>* methods) {
  // Note that this must sort using the same key as is used for sorting
  // methods in InstanceKlass.
  bool sorted = true;
  for (int i = methods->length() - 1; i > 0; --i) {
    for (int j = 0; j < i; ++j) {
      Method* m1 = methods->at(j);
      Method* m2 = methods->at(j + 1);
      if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
        methods->at_put(j, m2);
        methods->at_put(j + 1, m1);
        sorted = false;
      }
    }
    if (sorted) break;
    sorted = true;
  }
#ifdef ASSERT
  uintptr_t prev = 0;
  for (int i = 0; i < methods->length(); ++i) {
    Method* mh = methods->at(i);
    uintptr_t nv = (uintptr_t)mh->name();
    assert(nv >= prev, "Incorrect overpass method ordering");
    prev = nv;
  }
#endif
}

static void merge_in_new_methods(InstanceKlass* klass,
    GrowableArray<Method*>* new_methods, TRAPS) {

  enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };

  Array<Method*>* original_methods = klass->methods();
  Array<int>* original_ordering = klass->method_ordering();
  Array<int>* merged_ordering = Universe::the_empty_int_array();

  int new_size = klass->methods()->length() + new_methods->length();

  Array<Method*>* merged_methods = MetadataFactory::new_array(
      klass->class_loader_data(), new_size, NULL, CHECK);

  // original_ordering might be empty if this class has no methods of its own
  if (JvmtiExport::can_maintain_original_method_order() || DumpSharedSpaces) {
    merged_ordering = MetadataFactory::new_array<int>(
        klass->class_loader_data(), new_size, CHECK);
  }
  int method_order_index = klass->methods()->length();

  sort_methods(new_methods);

  // Perform grand merge of existing methods and new methods
  int orig_idx = 0;
  int new_idx = 0;

  for (int i = 0; i < new_size; ++i) {
    Method* orig_method = NULL;
    Method* new_method = NULL;
    if (orig_idx < original_methods->length()) {
      orig_method = original_methods->at(orig_idx);
    }
    if (new_idx < new_methods->length()) {
      new_method = new_methods->at(new_idx);
    }

    if (orig_method != NULL &&
        (new_method == NULL || orig_method->name() < new_method->name())) {
      merged_methods->at_put(i, orig_method);
      original_methods->at_put(orig_idx, NULL);
      if (merged_ordering->length() > 0) {
        assert(original_ordering != NULL && original_ordering->length() > 0,
               "should have original order information for this method");
        merged_ordering->at_put(i, original_ordering->at(orig_idx));
      }
      ++orig_idx;
    } else {
      merged_methods->at_put(i, new_method);
      if (merged_ordering->length() > 0) {
        merged_ordering->at_put(i, method_order_index++);
      }
      ++new_idx;
    }
    // update idnum for new location
    merged_methods->at(i)->set_method_idnum(i);
  }

  // Verify correct order
#ifdef ASSERT
  uintptr_t prev = 0;
  for (int i = 0; i < merged_methods->length(); ++i) {
    Method* mo = merged_methods->at(i);
    uintptr_t nv = (uintptr_t)mo->name();
    assert(nv >= prev, "Incorrect method ordering");
    prev = nv;
  }
#endif

  // Replace klass methods with new merged lists
  klass->set_methods(merged_methods);
  klass->set_initial_method_idnum(new_size);
  klass->set_method_ordering(merged_ordering);

  // Free metadata
  ClassLoaderData* cld = klass->class_loader_data();
  if (original_methods->length() > 0) {
    MetadataFactory::free_array(cld, original_methods);
  }
  if (original_ordering != NULL && original_ordering->length() > 0) {
    MetadataFactory::free_array(cld, original_ordering);
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java defaultMethods.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.