alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (parallelScavengeHeap.cpp)

This example Java source code file (parallelScavengeHeap.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

heap_lock\-, heapword, jni_enomem, mutablespace, null, parallelscavengeheap\:\:mem_allocate, size_format, spacesummary, universe\:\:heap, useadaptivegcboundary, useparalleloldgc, virtualspacesummary

The parallelScavengeHeap.cpp Java example source code

/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
#include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
#include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcWhen.hpp"
#include "memory/gcLocker.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/vmThread.hpp"
#include "services/memTracker.hpp"
#include "utilities/vmError.hpp"

PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;

jint ParallelScavengeHeap::initialize() {
  CollectedHeap::pre_initialize();

  // Initialize collector policy
  _collector_policy = new GenerationSizer();
  _collector_policy->initialize_all();

  const size_t heap_size = _collector_policy->max_heap_byte_size();

  ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);

  os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(),
                       heap_size, generation_alignment(),
                       heap_rs.base(),
                       heap_rs.size());
  if (!heap_rs.is_reserved()) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  _reserved = MemRegion((HeapWord*)heap_rs.base(),
                        (HeapWord*)(heap_rs.base() + heap_rs.size()));

  CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
  _barrier_set = barrier_set;
  oopDesc::set_bs(_barrier_set);
  if (_barrier_set == NULL) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for barrier set");
    return JNI_ENOMEM;
  }

  // Make up the generations
  // Calculate the maximum size that a generation can grow.  This
  // includes growth into the other generation.  Note that the
  // parameter _max_gen_size is kept as the maximum
  // size of the generation as the boundaries currently stand.
  // _max_gen_size is still used as that value.
  double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;

  _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());

  _old_gen = _gens->old_gen();
  _young_gen = _gens->young_gen();

  const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  const size_t old_capacity = _old_gen->capacity_in_bytes();
  const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  _size_policy =
    new PSAdaptiveSizePolicy(eden_capacity,
                             initial_promo_size,
                             young_gen()->to_space()->capacity_in_bytes(),
                             _collector_policy->gen_alignment(),
                             max_gc_pause_sec,
                             max_gc_minor_pause_sec,
                             GCTimeRatio
                             );

  assert(!UseAdaptiveGCBoundary ||
    (old_gen()->virtual_space()->high_boundary() ==
     young_gen()->virtual_space()->low_boundary()),
    "Boundaries must meet");
  // initialize the policy counters - 2 collectors, 3 generations
  _gc_policy_counters =
    new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
  _psh = this;

  // Set up the GCTaskManager
  _gc_task_manager = GCTaskManager::create(ParallelGCThreads);

  if (UseParallelOldGC && !PSParallelCompact::initialize()) {
    return JNI_ENOMEM;
  }

  return JNI_OK;
}

void ParallelScavengeHeap::post_initialize() {
  // Need to init the tenuring threshold
  PSScavenge::initialize();
  if (UseParallelOldGC) {
    PSParallelCompact::post_initialize();
  } else {
    PSMarkSweep::initialize();
  }
  PSPromotionManager::initialize();
}

void ParallelScavengeHeap::update_counters() {
  young_gen()->update_counters();
  old_gen()->update_counters();
  MetaspaceCounters::update_performance_counters();
  CompressedClassSpaceCounters::update_performance_counters();
}

size_t ParallelScavengeHeap::capacity() const {
  size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
  return value;
}

size_t ParallelScavengeHeap::used() const {
  size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
  return value;
}

bool ParallelScavengeHeap::is_maximal_no_gc() const {
  return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
}


size_t ParallelScavengeHeap::max_capacity() const {
  size_t estimated = reserved_region().byte_size();
  if (UseAdaptiveSizePolicy) {
    estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
  } else {
    estimated -= young_gen()->to_space()->capacity_in_bytes();
  }
  return MAX2(estimated, capacity());
}

bool ParallelScavengeHeap::is_in(const void* p) const {
  if (young_gen()->is_in(p)) {
    return true;
  }

  if (old_gen()->is_in(p)) {
    return true;
  }

  return false;
}

bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
  if (young_gen()->is_in_reserved(p)) {
    return true;
  }

  if (old_gen()->is_in_reserved(p)) {
    return true;
  }

  return false;
}

bool ParallelScavengeHeap::is_scavengable(const void* addr) {
  return is_in_young((oop)addr);
}

#ifdef ASSERT
// Don't implement this by using is_in_young().  This method is used
// in some cases to check that is_in_young() is correct.
bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
  assert(is_in_reserved(p) || p == NULL,
    "Does not work if address is non-null and outside of the heap");
  // The order of the generations is old (low addr), young (high addr)
  return p >= old_gen()->reserved().end();
}
#endif

// There are two levels of allocation policy here.
//
// When an allocation request fails, the requesting thread must invoke a VM
// operation, transfer control to the VM thread, and await the results of a
// garbage collection. That is quite expensive, and we should avoid doing it
// multiple times if possible.
//
// To accomplish this, we have a basic allocation policy, and also a
// failed allocation policy.
//
// The basic allocation policy controls how you allocate memory without
// attempting garbage collection. It is okay to grab locks and
// expand the heap, if that can be done without coming to a safepoint.
// It is likely that the basic allocation policy will not be very
// aggressive.
//
// The failed allocation policy is invoked from the VM thread after
// the basic allocation policy is unable to satisfy a mem_allocate
// request. This policy needs to cover the entire range of collection,
// heap expansion, and out-of-memory conditions. It should make every
// attempt to allocate the requested memory.

// Basic allocation policy. Should never be called at a safepoint, or
// from the VM thread.
//
// This method must handle cases where many mem_allocate requests fail
// simultaneously. When that happens, only one VM operation will succeed,
// and the rest will not be executed. For that reason, this method loops
// during failed allocation attempts. If the java heap becomes exhausted,
// we rely on the size_policy object to force a bail out.
HeapWord* ParallelScavengeHeap::mem_allocate(
                                     size_t size,
                                     bool* gc_overhead_limit_was_exceeded) {
  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");

  // In general gc_overhead_limit_was_exceeded should be false so
  // set it so here and reset it to true only if the gc time
  // limit is being exceeded as checked below.
  *gc_overhead_limit_was_exceeded = false;

  HeapWord* result = young_gen()->allocate(size);

  uint loop_count = 0;
  uint gc_count = 0;
  int gclocker_stalled_count = 0;

  while (result == NULL) {
    // We don't want to have multiple collections for a single filled generation.
    // To prevent this, each thread tracks the total_collections() value, and if
    // the count has changed, does not do a new collection.
    //
    // The collection count must be read only while holding the heap lock. VM
    // operations also hold the heap lock during collections. There is a lock
    // contention case where thread A blocks waiting on the Heap_lock, while
    // thread B is holding it doing a collection. When thread A gets the lock,
    // the collection count has already changed. To prevent duplicate collections,
    // The policy MUST attempt allocations during the same period it reads the
    // total_collections() value!
    {
      MutexLocker ml(Heap_lock);
      gc_count = Universe::heap()->total_collections();

      result = young_gen()->allocate(size);
      if (result != NULL) {
        return result;
      }

      // If certain conditions hold, try allocating from the old gen.
      result = mem_allocate_old_gen(size);
      if (result != NULL) {
        return result;
      }

      if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
        return NULL;
      }

      // Failed to allocate without a gc.
      if (GC_locker::is_active_and_needs_gc()) {
        // If this thread is not in a jni critical section, we stall
        // the requestor until the critical section has cleared and
        // GC allowed. When the critical section clears, a GC is
        // initiated by the last thread exiting the critical section; so
        // we retry the allocation sequence from the beginning of the loop,
        // rather than causing more, now probably unnecessary, GC attempts.
        JavaThread* jthr = JavaThread::current();
        if (!jthr->in_critical()) {
          MutexUnlocker mul(Heap_lock);
          GC_locker::stall_until_clear();
          gclocker_stalled_count += 1;
          continue;
        } else {
          if (CheckJNICalls) {
            fatal("Possible deadlock due to allocating while"
                  " in jni critical section");
          }
          return NULL;
        }
      }
    }

    if (result == NULL) {
      // Generate a VM operation
      VM_ParallelGCFailedAllocation op(size, gc_count);
      VMThread::execute(&op);

      // Did the VM operation execute? If so, return the result directly.
      // This prevents us from looping until time out on requests that can
      // not be satisfied.
      if (op.prologue_succeeded()) {
        assert(Universe::heap()->is_in_or_null(op.result()),
          "result not in heap");

        // If GC was locked out during VM operation then retry allocation
        // and/or stall as necessary.
        if (op.gc_locked()) {
          assert(op.result() == NULL, "must be NULL if gc_locked() is true");
          continue;  // retry and/or stall as necessary
        }

        // Exit the loop if the gc time limit has been exceeded.
        // The allocation must have failed above ("result" guarding
        // this path is NULL) and the most recent collection has exceeded the
        // gc overhead limit (although enough may have been collected to
        // satisfy the allocation).  Exit the loop so that an out-of-memory
        // will be thrown (return a NULL ignoring the contents of
        // op.result()),
        // but clear gc_overhead_limit_exceeded so that the next collection
        // starts with a clean slate (i.e., forgets about previous overhead
        // excesses).  Fill op.result() with a filler object so that the
        // heap remains parsable.
        const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
        const bool softrefs_clear = collector_policy()->all_soft_refs_clear();

        if (limit_exceeded && softrefs_clear) {
          *gc_overhead_limit_was_exceeded = true;
          size_policy()->set_gc_overhead_limit_exceeded(false);
          if (PrintGCDetails && Verbose) {
            gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
              "return NULL because gc_overhead_limit_exceeded is set");
          }
          if (op.result() != NULL) {
            CollectedHeap::fill_with_object(op.result(), size);
          }
          return NULL;
        }

        return op.result();
      }
    }

    // The policy object will prevent us from looping forever. If the
    // time spent in gc crosses a threshold, we will bail out.
    loop_count++;
    if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
        (loop_count % QueuedAllocationWarningCount == 0)) {
      warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
              " size=%d", loop_count, size);
    }
  }

  return result;
}

// A "death march" is a series of ultra-slow allocations in which a full gc is
// done before each allocation, and after the full gc the allocation still
// cannot be satisfied from the young gen.  This routine detects that condition;
// it should be called after a full gc has been done and the allocation
// attempted from the young gen. The parameter 'addr' should be the result of
// that young gen allocation attempt.
void
ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
  if (addr != NULL) {
    _death_march_count = 0;  // death march has ended
  } else if (_death_march_count == 0) {
    if (should_alloc_in_eden(size)) {
      _death_march_count = 1;    // death march has started
    }
  }
}

HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
  if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
    // Size is too big for eden, or gc is locked out.
    return old_gen()->allocate(size);
  }

  // If a "death march" is in progress, allocate from the old gen a limited
  // number of times before doing a GC.
  if (_death_march_count > 0) {
    if (_death_march_count < 64) {
      ++_death_march_count;
      return old_gen()->allocate(size);
    } else {
      _death_march_count = 0;
    }
  }
  return NULL;
}

void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
  if (UseParallelOldGC) {
    // The do_full_collection() parameter clear_all_soft_refs
    // is interpreted here as maximum_compaction which will
    // cause SoftRefs to be cleared.
    bool maximum_compaction = clear_all_soft_refs;
    PSParallelCompact::invoke(maximum_compaction);
  } else {
    PSMarkSweep::invoke(clear_all_soft_refs);
  }
}

// Failed allocation policy. Must be called from the VM thread, and
// only at a safepoint! Note that this method has policy for allocation
// flow, and NOT collection policy. So we do not check for gc collection
// time over limit here, that is the responsibility of the heap specific
// collection methods. This method decides where to attempt allocations,
// and when to attempt collections, but no collection specific policy.
HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  assert(!Universe::heap()->is_gc_active(), "not reentrant");
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");

  // We assume that allocation in eden will fail unless we collect.

  // First level allocation failure, scavenge and allocate in young gen.
  GCCauseSetter gccs(this, GCCause::_allocation_failure);
  const bool invoked_full_gc = PSScavenge::invoke();
  HeapWord* result = young_gen()->allocate(size);

  // Second level allocation failure.
  //   Mark sweep and allocate in young generation.
  if (result == NULL && !invoked_full_gc) {
    do_full_collection(false);
    result = young_gen()->allocate(size);
  }

  death_march_check(result, size);

  // Third level allocation failure.
  //   After mark sweep and young generation allocation failure,
  //   allocate in old generation.
  if (result == NULL) {
    result = old_gen()->allocate(size);
  }

  // Fourth level allocation failure. We're running out of memory.
  //   More complete mark sweep and allocate in young generation.
  if (result == NULL) {
    do_full_collection(true);
    result = young_gen()->allocate(size);
  }

  // Fifth level allocation failure.
  //   After more complete mark sweep, allocate in old generation.
  if (result == NULL) {
    result = old_gen()->allocate(size);
  }

  return result;
}

void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
  CollectedHeap::ensure_parsability(retire_tlabs);
  young_gen()->eden_space()->ensure_parsability();
}

size_t ParallelScavengeHeap::unsafe_max_alloc() {
  return young_gen()->eden_space()->free_in_bytes();
}

size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
  return young_gen()->eden_space()->tlab_capacity(thr);
}

size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
}

HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
  return young_gen()->allocate(size);
}

void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
  CollectedHeap::accumulate_statistics_all_tlabs();
}

void ParallelScavengeHeap::resize_all_tlabs() {
  CollectedHeap::resize_all_tlabs();
}

bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
  // We don't need barriers for stores to objects in the
  // young gen and, a fortiori, for initializing stores to
  // objects therein.
  return is_in_young(new_obj);
}

// This method is used by System.gc() and JVMTI.
void ParallelScavengeHeap::collect(GCCause::Cause cause) {
  assert(!Heap_lock->owned_by_self(),
    "this thread should not own the Heap_lock");

  unsigned int gc_count      = 0;
  unsigned int full_gc_count = 0;
  {
    MutexLocker ml(Heap_lock);
    // This value is guarded by the Heap_lock
    gc_count      = Universe::heap()->total_collections();
    full_gc_count = Universe::heap()->total_full_collections();
  }

  VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
  VMThread::execute(&op);
}

void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
  Unimplemented();
}

void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
  young_gen()->object_iterate(cl);
  old_gen()->object_iterate(cl);
}


HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
  if (young_gen()->is_in_reserved(addr)) {
    assert(young_gen()->is_in(addr),
           "addr should be in allocated part of young gen");
    // called from os::print_location by find or VMError
    if (Debugging || VMError::fatal_error_in_progress())  return NULL;
    Unimplemented();
  } else if (old_gen()->is_in_reserved(addr)) {
    assert(old_gen()->is_in(addr),
           "addr should be in allocated part of old gen");
    return old_gen()->start_array()->object_start((HeapWord*)addr);
  }
  return 0;
}

size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
  return oop(addr)->size();
}

bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
  return block_start(addr) == addr;
}

jlong ParallelScavengeHeap::millis_since_last_gc() {
  return UseParallelOldGC ?
    PSParallelCompact::millis_since_last_gc() :
    PSMarkSweep::millis_since_last_gc();
}

void ParallelScavengeHeap::prepare_for_verify() {
  ensure_parsability(false);  // no need to retire TLABs for verification
}

PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
  PSOldGen* old = old_gen();
  HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
  VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
  SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());

  PSYoungGen* young = young_gen();
  VirtualSpaceSummary young_summary(young->reserved().start(),
    (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());

  MutableSpace* eden = young_gen()->eden_space();
  SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());

  MutableSpace* from = young_gen()->from_space();
  SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());

  MutableSpace* to = young_gen()->to_space();
  SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());

  VirtualSpaceSummary heap_summary = create_heap_space_summary();
  return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
}

void ParallelScavengeHeap::print_on(outputStream* st) const {
  young_gen()->print_on(st);
  old_gen()->print_on(st);
  MetaspaceAux::print_on(st);
}

void ParallelScavengeHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

  if (UseParallelOldGC) {
    st->cr();
    PSParallelCompact::print_on_error(st);
  }
}

void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
  PSScavenge::gc_task_manager()->threads_do(tc);
}

void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
  PSScavenge::gc_task_manager()->print_threads_on(st);
}

void ParallelScavengeHeap::print_tracing_info() const {
  if (TraceGen0Time) {
    double time = PSScavenge::accumulated_time()->seconds();
    tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
  }
  if (TraceGen1Time) {
    double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
    tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
  }
}


void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
  // Why do we need the total_collections()-filter below?
  if (total_collections() > 0) {
    if (!silent) {
      gclog_or_tty->print("tenured ");
    }
    old_gen()->verify();

    if (!silent) {
      gclog_or_tty->print("eden ");
    }
    young_gen()->verify();
  }
}

void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
                        "("  SIZE_FORMAT ")",
                        prev_used, used(), capacity());
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
                        "("  SIZE_FORMAT "K)",
                        prev_used / K, used() / K, capacity() / K);
  }
}

void ParallelScavengeHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
  const PSHeapSummary& heap_summary = create_ps_heap_summary();
  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
  gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
}

ParallelScavengeHeap* ParallelScavengeHeap::heap() {
  assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
  assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
  return _psh;
}

// Before delegating the resize to the young generation,
// the reserved space for the young and old generations
// may be changed to accomodate the desired resize.
void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
    size_t survivor_size) {
  if (UseAdaptiveGCBoundary) {
    if (size_policy()->bytes_absorbed_from_eden() != 0) {
      size_policy()->reset_bytes_absorbed_from_eden();
      return;  // The generation changed size already.
    }
    gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
  }

  // Delegate the resize to the generation.
  _young_gen->resize(eden_size, survivor_size);
}

// Before delegating the resize to the old generation,
// the reserved space for the young and old generations
// may be changed to accomodate the desired resize.
void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
  if (UseAdaptiveGCBoundary) {
    if (size_policy()->bytes_absorbed_from_eden() != 0) {
      size_policy()->reset_bytes_absorbed_from_eden();
      return;  // The generation changed size already.
    }
    gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
  }

  // Delegate the resize to the generation.
  _old_gen->resize(desired_free_space);
}

ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
  // nothing particular
}

ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
  // nothing particular
}

#ifndef PRODUCT
void ParallelScavengeHeap::record_gen_tops_before_GC() {
  if (ZapUnusedHeapArea) {
    young_gen()->record_spaces_top();
    old_gen()->record_spaces_top();
  }
}

void ParallelScavengeHeap::gen_mangle_unused_area() {
  if (ZapUnusedHeapArea) {
    young_gen()->eden_space()->mangle_unused_area();
    young_gen()->to_space()->mangle_unused_area();
    young_gen()->from_space()->mangle_unused_area();
    old_gen()->object_space()->mangle_unused_area();
  }
}
#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java parallelScavengeHeap.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.