alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (collectedHeap.hpp)

This example Java source code file (collectedHeap.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assert, barrierset, collectedheap, gccause::cause, gccausesetter, gcheaplog, heapword, memregion, not_product, null, share_vm_gc_interface_collectedheap_hpp, thread, traps, universe\:\:heap

The collectedHeap.hpp Java example source code

/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
#define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

#include "gc_interface/gcCause.hpp"
#include "gc_implementation/shared/gcWhen.hpp"
#include "memory/allocation.hpp"
#include "memory/barrierSet.hpp"
#include "runtime/handles.hpp"
#include "runtime/perfData.hpp"
#include "runtime/safepoint.hpp"
#include "utilities/events.hpp"

// A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
// is an abstract class: there may be many different kinds of heaps.  This
// class defines the functions that a heap must implement, and contains
// infrastructure common to all heaps.

class AdaptiveSizePolicy;
class BarrierSet;
class CollectorPolicy;
class GCHeapSummary;
class GCTimer;
class GCTracer;
class MetaspaceSummary;
class Thread;
class ThreadClosure;
class VirtualSpaceSummary;
class nmethod;

class GCMessage : public FormatBuffer<1024> {
 public:
  bool is_before;

 public:
  GCMessage() {}
};

class GCHeapLog : public EventLogBase<GCMessage> {
 private:
  void log_heap(bool before);

 public:
  GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}

  void log_heap_before() {
    log_heap(true);
  }
  void log_heap_after() {
    log_heap(false);
  }
};

//
// CollectedHeap
//   SharedHeap
//     GenCollectedHeap
//     G1CollectedHeap
//   ParallelScavengeHeap
//
class CollectedHeap : public CHeapObj<mtInternal> {
  friend class VMStructs;
  friend class IsGCActiveMark; // Block structured external access to _is_gc_active

#ifdef ASSERT
  static int       _fire_out_of_memory_count;
#endif

  // Used for filler objects (static, but initialized in ctor).
  static size_t _filler_array_max_size;

  GCHeapLog* _gc_heap_log;

  // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  bool _defer_initial_card_mark;

 protected:
  MemRegion _reserved;
  BarrierSet* _barrier_set;
  bool _is_gc_active;
  uint _n_par_threads;

  unsigned int _total_collections;          // ... started
  unsigned int _total_full_collections;     // ... started
  NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
  NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)

  // Reason for current garbage collection.  Should be set to
  // a value reflecting no collection between collections.
  GCCause::Cause _gc_cause;
  GCCause::Cause _gc_lastcause;
  PerfStringVariable* _perf_gc_cause;
  PerfStringVariable* _perf_gc_lastcause;

  // Constructor
  CollectedHeap();

  // Do common initializations that must follow instance construction,
  // for example, those needing virtual calls.
  // This code could perhaps be moved into initialize() but would
  // be slightly more awkward because we want the latter to be a
  // pure virtual.
  void pre_initialize();

  // Create a new tlab. All TLAB allocations must go through this.
  virtual HeapWord* allocate_new_tlab(size_t size);

  // Accumulate statistics on all tlabs.
  virtual void accumulate_statistics_all_tlabs();

  // Reinitialize tlabs before resuming mutators.
  virtual void resize_all_tlabs();

  // Allocate from the current thread's TLAB, with broken-out slow path.
  inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
  static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);

  // Allocate an uninitialized block of the given size, or returns NULL if
  // this is impossible.
  inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);

  // Like allocate_init, but the block returned by a successful allocation
  // is guaranteed initialized to zeros.
  inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);

  // Helper functions for (VM) allocation.
  inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
  inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
                                                            HeapWord* objPtr);

  inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj);

  inline static void post_allocation_setup_array(KlassHandle klass,
                                                 HeapWord* obj, int length);

  // Clears an allocated object.
  inline static void init_obj(HeapWord* obj, size_t size);

  // Filler object utilities.
  static inline size_t filler_array_hdr_size();
  static inline size_t filler_array_min_size();

  DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
  DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)

  // Fill with a single array; caller must ensure filler_array_min_size() <=
  // words <= filler_array_max_size().
  static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);

  // Fill with a single object (either an int array or a java.lang.Object).
  static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);

  virtual void trace_heap(GCWhen::Type when, GCTracer* tracer);

  // Verification functions
  virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
    PRODUCT_RETURN;
  virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
    PRODUCT_RETURN;
  debug_only(static void check_for_valid_allocation_state();)

 public:
  enum Name {
    Abstract,
    SharedHeap,
    GenCollectedHeap,
    ParallelScavengeHeap,
    G1CollectedHeap
  };

  static inline size_t filler_array_max_size() {
    return _filler_array_max_size;
  }

  virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }

  /**
   * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   * and JNI_OK on success.
   */
  virtual jint initialize() = 0;

  // In many heaps, there will be a need to perform some initialization activities
  // after the Universe is fully formed, but before general heap allocation is allowed.
  // This is the correct place to place such initialization methods.
  virtual void post_initialize() = 0;

  MemRegion reserved_region() const { return _reserved; }
  address base() const { return (address)reserved_region().start(); }

  virtual size_t capacity() const = 0;
  virtual size_t used() const = 0;

  // Return "true" if the part of the heap that allocates Java
  // objects has reached the maximal committed limit that it can
  // reach, without a garbage collection.
  virtual bool is_maximal_no_gc() const = 0;

  // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
  // memory that the vm could make available for storing 'normal' java objects.
  // This is based on the reserved address space, but should not include space
  // that the vm uses internally for bookkeeping or temporary storage
  // (e.g., in the case of the young gen, one of the survivor
  // spaces).
  virtual size_t max_capacity() const = 0;

  // Returns "TRUE" if "p" points into the reserved area of the heap.
  bool is_in_reserved(const void* p) const {
    return _reserved.contains(p);
  }

  bool is_in_reserved_or_null(const void* p) const {
    return p == NULL || is_in_reserved(p);
  }

  // Returns "TRUE" iff "p" points into the committed areas of the heap.
  // Since this method can be expensive in general, we restrict its
  // use to assertion checking only.
  virtual bool is_in(const void* p) const = 0;

  bool is_in_or_null(const void* p) const {
    return p == NULL || is_in(p);
  }

  bool is_in_place(Metadata** p) {
    return !Universe::heap()->is_in(p);
  }
  bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
  bool is_in_place(narrowOop* p) {
    oop o = oopDesc::load_decode_heap_oop_not_null(p);
    return Universe::heap()->is_in((const void*)o);
  }

  // Let's define some terms: a "closed" subset of a heap is one that
  //
  // 1) contains all currently-allocated objects, and
  //
  // 2) is closed under reference: no object in the closed subset
  //    references one outside the closed subset.
  //
  // Membership in a heap's closed subset is useful for assertions.
  // Clearly, the entire heap is a closed subset, so the default
  // implementation is to use "is_in_reserved".  But this may not be too
  // liberal to perform useful checking.  Also, the "is_in" predicate
  // defines a closed subset, but may be too expensive, since "is_in"
  // verifies that its argument points to an object head.  The
  // "closed_subset" method allows a heap to define an intermediate
  // predicate, allowing more precise checking than "is_in_reserved" at
  // lower cost than "is_in."

  // One important case is a heap composed of disjoint contiguous spaces,
  // such as the Garbage-First collector.  Such heaps have a convenient
  // closed subset consisting of the allocated portions of those
  // contiguous spaces.

  // Return "TRUE" iff the given pointer points into the heap's defined
  // closed subset (which defaults to the entire heap).
  virtual bool is_in_closed_subset(const void* p) const {
    return is_in_reserved(p);
  }

  bool is_in_closed_subset_or_null(const void* p) const {
    return p == NULL || is_in_closed_subset(p);
  }

#ifdef ASSERT
  // Returns true if "p" is in the part of the
  // heap being collected.
  virtual bool is_in_partial_collection(const void *p) = 0;
#endif

  // An object is scavengable if its location may move during a scavenge.
  // (A scavenge is a GC which is not a full GC.)
  virtual bool is_scavengable(const void *p) = 0;

  void set_gc_cause(GCCause::Cause v) {
     if (UsePerfData) {
       _gc_lastcause = _gc_cause;
       _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
       _perf_gc_cause->set_value(GCCause::to_string(v));
     }
    _gc_cause = v;
  }
  GCCause::Cause gc_cause() { return _gc_cause; }

  // Number of threads currently working on GC tasks.
  uint n_par_threads() { return _n_par_threads; }

  // May be overridden to set additional parallelism.
  virtual void set_par_threads(uint t) { _n_par_threads = t; };

  // Allocate and initialize instances of Class
  static oop Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS);

  // General obj/array allocation facilities.
  inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
  inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
  inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);

  inline static void post_allocation_install_obj_klass(KlassHandle klass,
                                                       oop obj);

  // Raw memory allocation facilities
  // The obj and array allocate methods are covers for these methods.
  // mem_allocate() should never be
  // called to allocate TLABs, only individual objects.
  virtual HeapWord* mem_allocate(size_t size,
                                 bool* gc_overhead_limit_was_exceeded) = 0;

  // Utilities for turning raw memory into filler objects.
  //
  // min_fill_size() is the smallest region that can be filled.
  // fill_with_objects() can fill arbitrary-sized regions of the heap using
  // multiple objects.  fill_with_object() is for regions known to be smaller
  // than the largest array of integers; it uses a single object to fill the
  // region and has slightly less overhead.
  static size_t min_fill_size() {
    return size_t(align_object_size(oopDesc::header_size()));
  }

  static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);

  static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
  static void fill_with_object(MemRegion region, bool zap = true) {
    fill_with_object(region.start(), region.word_size(), zap);
  }
  static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
    fill_with_object(start, pointer_delta(end, start), zap);
  }

  // Some heaps may offer a contiguous region for shared non-blocking
  // allocation, via inlined code (by exporting the address of the top and
  // end fields defining the extent of the contiguous allocation region.)

  // This function returns "true" iff the heap supports this kind of
  // allocation.  (Default is "no".)
  virtual bool supports_inline_contig_alloc() const {
    return false;
  }
  // These functions return the addresses of the fields that define the
  // boundaries of the contiguous allocation area.  (These fields should be
  // physically near to one another.)
  virtual HeapWord** top_addr() const {
    guarantee(false, "inline contiguous allocation not supported");
    return NULL;
  }
  virtual HeapWord** end_addr() const {
    guarantee(false, "inline contiguous allocation not supported");
    return NULL;
  }

  // Some heaps may be in an unparseable state at certain times between
  // collections. This may be necessary for efficient implementation of
  // certain allocation-related activities. Calling this function before
  // attempting to parse a heap ensures that the heap is in a parsable
  // state (provided other concurrent activity does not introduce
  // unparsability). It is normally expected, therefore, that this
  // method is invoked with the world stopped.
  // NOTE: if you override this method, make sure you call
  // super::ensure_parsability so that the non-generational
  // part of the work gets done. See implementation of
  // CollectedHeap::ensure_parsability and, for instance,
  // that of GenCollectedHeap::ensure_parsability().
  // The argument "retire_tlabs" controls whether existing TLABs
  // are merely filled or also retired, thus preventing further
  // allocation from them and necessitating allocation of new TLABs.
  virtual void ensure_parsability(bool retire_tlabs);

  // Return an estimate of the maximum allocation that could be performed
  // without triggering any collection or expansion activity.  In a
  // generational collector, for example, this is probably the largest
  // allocation that could be supported (without expansion) in the youngest
  // generation.  It is "unsafe" because no locks are taken; the result
  // should be treated as an approximation, not a guarantee, for use in
  // heuristic resizing decisions.
  virtual size_t unsafe_max_alloc() = 0;

  // Section on thread-local allocation buffers (TLABs)
  // If the heap supports thread-local allocation buffers, it should override
  // the following methods:
  // Returns "true" iff the heap supports thread-local allocation buffers.
  // The default is "no".
  virtual bool supports_tlab_allocation() const {
    return false;
  }
  // The amount of space available for thread-local allocation buffers.
  virtual size_t tlab_capacity(Thread *thr) const {
    guarantee(false, "thread-local allocation buffers not supported");
    return 0;
  }
  // An estimate of the maximum allocation that could be performed
  // for thread-local allocation buffers without triggering any
  // collection or expansion activity.
  virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
    guarantee(false, "thread-local allocation buffers not supported");
    return 0;
  }

  // Can a compiler initialize a new object without store barriers?
  // This permission only extends from the creation of a new object
  // via a TLAB up to the first subsequent safepoint. If such permission
  // is granted for this heap type, the compiler promises to call
  // defer_store_barrier() below on any slow path allocation of
  // a new object for which such initializing store barriers will
  // have been elided.
  virtual bool can_elide_tlab_store_barriers() const = 0;

  // If a compiler is eliding store barriers for TLAB-allocated objects,
  // there is probably a corresponding slow path which can produce
  // an object allocated anywhere.  The compiler's runtime support
  // promises to call this function on such a slow-path-allocated
  // object before performing initializations that have elided
  // store barriers. Returns new_obj, or maybe a safer copy thereof.
  virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);

  // Answers whether an initializing store to a new object currently
  // allocated at the given address doesn't need a store
  // barrier. Returns "true" if it doesn't need an initializing
  // store barrier; answers "false" if it does.
  virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;

  // If a compiler is eliding store barriers for TLAB-allocated objects,
  // we will be informed of a slow-path allocation by a call
  // to new_store_pre_barrier() above. Such a call precedes the
  // initialization of the object itself, and no post-store-barriers will
  // be issued. Some heap types require that the barrier strictly follows
  // the initializing stores. (This is currently implemented by deferring the
  // barrier until the next slow-path allocation or gc-related safepoint.)
  // This interface answers whether a particular heap type needs the card
  // mark to be thus strictly sequenced after the stores.
  virtual bool card_mark_must_follow_store() const = 0;

  // If the CollectedHeap was asked to defer a store barrier above,
  // this informs it to flush such a deferred store barrier to the
  // remembered set.
  virtual void flush_deferred_store_barrier(JavaThread* thread);

  // Does this heap support heap inspection (+PrintClassHistogram?)
  virtual bool supports_heap_inspection() const = 0;

  // Perform a collection of the heap; intended for use in implementing
  // "System.gc".  This probably implies as full a collection as the
  // "CollectedHeap" supports.
  virtual void collect(GCCause::Cause cause) = 0;

  // Perform a full collection
  virtual void do_full_collection(bool clear_all_soft_refs) = 0;

  // This interface assumes that it's being called by the
  // vm thread. It collects the heap assuming that the
  // heap lock is already held and that we are executing in
  // the context of the vm thread.
  virtual void collect_as_vm_thread(GCCause::Cause cause);

  // Returns the barrier set for this heap
  BarrierSet* barrier_set() { return _barrier_set; }

  // Returns "true" iff there is a stop-world GC in progress.  (I assume
  // that it should answer "false" for the concurrent part of a concurrent
  // collector -- dld).
  bool is_gc_active() const { return _is_gc_active; }

  // Total number of GC collections (started)
  unsigned int total_collections() const { return _total_collections; }
  unsigned int total_full_collections() const { return _total_full_collections;}

  // Increment total number of GC collections (started)
  // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
  void increment_total_collections(bool full = false) {
    _total_collections++;
    if (full) {
      increment_total_full_collections();
    }
  }

  void increment_total_full_collections() { _total_full_collections++; }

  // Return the AdaptiveSizePolicy for the heap.
  virtual AdaptiveSizePolicy* size_policy() = 0;

  // Return the CollectorPolicy for the heap
  virtual CollectorPolicy* collector_policy() const = 0;

  void oop_iterate_no_header(OopClosure* cl);

  // Iterate over all the ref-containing fields of all objects, calling
  // "cl.do_oop" on each.
  virtual void oop_iterate(ExtendedOopClosure* cl) = 0;

  // Iterate over all objects, calling "cl.do_object" on each.
  virtual void object_iterate(ObjectClosure* cl) = 0;

  // Similar to object_iterate() except iterates only
  // over live objects.
  virtual void safe_object_iterate(ObjectClosure* cl) = 0;

  // NOTE! There is no requirement that a collector implement these
  // functions.
  //
  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  // each address in the (reserved) heap is a member of exactly
  // one block.  The defining characteristic of a block is that it is
  // possible to find its size, and thus to progress forward to the next
  // block.  (Blocks may be of different sizes.)  Thus, blocks may
  // represent Java objects, or they might be free blocks in a
  // free-list-based heap (or subheap), as long as the two kinds are
  // distinguishable and the size of each is determinable.

  // Returns the address of the start of the "block" that contains the
  // address "addr".  We say "blocks" instead of "object" since some heaps
  // may not pack objects densely; a chunk may either be an object or a
  // non-object.
  virtual HeapWord* block_start(const void* addr) const = 0;

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const = 0;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const = 0;

  // Returns the longest time (in ms) that has elapsed since the last
  // time that any part of the heap was examined by a garbage collection.
  virtual jlong millis_since_last_gc() = 0;

  // Perform any cleanup actions necessary before allowing a verification.
  virtual void prepare_for_verify() = 0;

  // Generate any dumps preceding or following a full gc
  void pre_full_gc_dump(GCTimer* timer);
  void post_full_gc_dump(GCTimer* timer);

  VirtualSpaceSummary create_heap_space_summary();
  GCHeapSummary create_heap_summary();

  MetaspaceSummary create_metaspace_summary();

  // Print heap information on the given outputStream.
  virtual void print_on(outputStream* st) const = 0;
  // The default behavior is to call print_on() on tty.
  virtual void print() const {
    print_on(tty);
  }
  // Print more detailed heap information on the given
  // outputStream. The default behavior is to call print_on(). It is
  // up to each subclass to override it and add any additional output
  // it needs.
  virtual void print_extended_on(outputStream* st) const {
    print_on(st);
  }

  virtual void print_on_error(outputStream* st) const {
    st->print_cr("Heap:");
    print_extended_on(st);
    st->cr();

    _barrier_set->print_on(st);
  }

  // Print all GC threads (other than the VM thread)
  // used by this heap.
  virtual void print_gc_threads_on(outputStream* st) const = 0;
  // The default behavior is to call print_gc_threads_on() on tty.
  void print_gc_threads() {
    print_gc_threads_on(tty);
  }
  // Iterator for all GC threads (other than VM thread)
  virtual void gc_threads_do(ThreadClosure* tc) const = 0;

  // Print any relevant tracing info that flags imply.
  // Default implementation does nothing.
  virtual void print_tracing_info() const = 0;

  void print_heap_before_gc();
  void print_heap_after_gc();

  // Registering and unregistering an nmethod (compiled code) with the heap.
  // Override with specific mechanism for each specialized heap type.
  virtual void register_nmethod(nmethod* nm);
  virtual void unregister_nmethod(nmethod* nm);

  void trace_heap_before_gc(GCTracer* gc_tracer);
  void trace_heap_after_gc(GCTracer* gc_tracer);

  // Heap verification
  virtual void verify(bool silent, VerifyOption option) = 0;

  // Non product verification and debugging.
#ifndef PRODUCT
  // Support for PromotionFailureALot.  Return true if it's time to cause a
  // promotion failure.  The no-argument version uses
  // this->_promotion_failure_alot_count as the counter.
  inline bool promotion_should_fail(volatile size_t* count);
  inline bool promotion_should_fail();

  // Reset the PromotionFailureALot counters.  Should be called at the end of a
  // GC in which promotion failure occurred.
  inline void reset_promotion_should_fail(volatile size_t* count);
  inline void reset_promotion_should_fail();
#endif  // #ifndef PRODUCT

#ifdef ASSERT
  static int fired_fake_oom() {
    return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
  }
#endif

 public:
  // This is a convenience method that is used in cases where
  // the actual number of GC worker threads is not pertinent but
  // only whether there more than 0.  Use of this method helps
  // reduce the occurrence of ParallelGCThreads to uses where the
  // actual number may be germane.
  static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }

  /////////////// Unit tests ///////////////

  NOT_PRODUCT(static void test_is_in();)
};

// Class to set and reset the GC cause for a CollectedHeap.

class GCCauseSetter : StackObj {
  CollectedHeap* _heap;
  GCCause::Cause _previous_cause;
 public:
  GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
    assert(SafepointSynchronize::is_at_safepoint(),
           "This method manipulates heap state without locking");
    _heap = heap;
    _previous_cause = _heap->gc_cause();
    _heap->set_gc_cause(cause);
  }

  ~GCCauseSetter() {
    assert(SafepointSynchronize::is_at_safepoint(),
          "This method manipulates heap state without locking");
    _heap->set_gc_cause(_previous_cause);
  }
};

#endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java collectedHeap.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.