alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (allocation.hpp)

This example Java source code file (allocation.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

allocation_super_class_spec, allocfailstrategy::exit_oom, allocfailstrategy::return_null, allocfailtype, arena, chunk, debug_only, memflags, nmt_track_callsite, not_product, product_return, resource_area, resourceobj, size

The allocation.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
#define SHARE_VM_MEMORY_ALLOCATION_HPP

#include "runtime/globals.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_globals.hpp"
#endif
#ifdef COMPILER2
#include "opto/c2_globals.hpp"
#endif

#include <new>

#define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
#define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
#define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)


// noinline attribute
#ifdef _WINDOWS
  #define _NOINLINE_  __declspec(noinline)
#else
  #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
    #define _NOINLINE_
  #else
    #define _NOINLINE_ __attribute__ ((noinline))
  #endif
#endif

class AllocFailStrategy {
public:
  enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
};
typedef AllocFailStrategy::AllocFailEnum AllocFailType;

// All classes in the virtual machine must be subclassed
// by one of the following allocation classes:
//
// For objects allocated in the resource area (see resourceArea.hpp).
// - ResourceObj
//
// For objects allocated in the C-heap (managed by: free & malloc).
// - CHeapObj
//
// For objects allocated on the stack.
// - StackObj
//
// For embedded objects.
// - ValueObj
//
// For classes used as name spaces.
// - AllStatic
//
// For classes in Metaspace (class data)
// - MetaspaceObj
//
// The printable subclasses are used for debugging and define virtual
// member functions for printing. Classes that avoid allocating the
// vtbl entries in the objects should therefore not be the printable
// subclasses.
//
// The following macros and function should be used to allocate memory
// directly in the resource area or in the C-heap, The _OBJ variants
// of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
// objects which are not inherited from CHeapObj, note constructor and
// destructor are not called. The preferable way to allocate objects
// is using the new operator.
//
// WARNING: The array variant must only be used for a homogenous array
// where all objects are of the exact type specified. If subtypes are
// stored in the array then must pay attention to calling destructors
// at needed.
//
//   NEW_RESOURCE_ARRAY(type, size)
//   NEW_RESOURCE_OBJ(type)
//   NEW_C_HEAP_ARRAY(type, size)
//   NEW_C_HEAP_OBJ(type, memflags)
//   FREE_C_HEAP_ARRAY(type, old, memflags)
//   FREE_C_HEAP_OBJ(objname, type, memflags)
//   char* AllocateHeap(size_t size, const char* name);
//   void  FreeHeap(void* p);
//
// C-heap allocation can be traced using +PrintHeapAllocation.
// malloc and free should therefore never called directly.

// Base class for objects allocated in the C-heap.

// In non product mode we introduce a super class for all allocation classes
// that supports printing.
// We avoid the superclass in product mode since some C++ compilers add
// a word overhead for empty super classes.

#ifdef PRODUCT
#define ALLOCATION_SUPER_CLASS_SPEC
#else
#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
class AllocatedObj {
 public:
  // Printing support
  void print() const;
  void print_value() const;

  virtual void print_on(outputStream* st) const;
  virtual void print_value_on(outputStream* st) const;
};
#endif


/*
 * MemoryType bitmap layout:
 * | 16 15 14 13 12 11 10 09 | 08 07 06 05 | 04 03 02 01 |
 * |      memory type        |   object    | reserved    |
 * |                         |     type    |             |
 */
enum MemoryType {
  // Memory type by sub systems. It occupies lower byte.
  mtNone              = 0x0000,  // undefined
  mtClass             = 0x0100,  // memory class for Java classes
  mtThread            = 0x0200,  // memory for thread objects
  mtThreadStack       = 0x0300,
  mtCode              = 0x0400,  // memory for generated code
  mtGC                = 0x0500,  // memory for GC
  mtCompiler          = 0x0600,  // memory for compiler
  mtInternal          = 0x0700,  // memory used by VM, but does not belong to
                                 // any of above categories, and not used for
                                 // native memory tracking
  mtOther             = 0x0800,  // memory not used by VM
  mtSymbol            = 0x0900,  // symbol
  mtNMT               = 0x0A00,  // memory used by native memory tracking
  mtChunk             = 0x0B00,  // chunk that holds content of arenas
  mtJavaHeap          = 0x0C00,  // Java heap
  mtClassShared       = 0x0D00,  // class data sharing
  mtTest              = 0x0E00,  // Test type for verifying NMT
  mtTracing           = 0x0F00,  // memory used for Tracing
  mt_number_of_types  = 0x000F,  // number of memory types (mtDontTrack
                                 // is not included as validate type)
  mtDontTrack         = 0x0F00,  // memory we do not or cannot track
  mt_masks            = 0x7F00,

  // object type mask
  otArena             = 0x0010, // an arena object
  otNMTRecorder       = 0x0020, // memory recorder object
  ot_masks            = 0x00F0
};

#define IS_MEMORY_TYPE(flags, type) ((flags & mt_masks) == type)
#define HAS_VALID_MEMORY_TYPE(flags)((flags & mt_masks) != mtNone)
#define FLAGS_TO_MEMORY_TYPE(flags) (flags & mt_masks)

#define IS_ARENA_OBJ(flags)         ((flags & ot_masks) == otArena)
#define IS_NMT_RECORDER(flags)      ((flags & ot_masks) == otNMTRecorder)
#define NMT_CAN_TRACK(flags)        (!IS_NMT_RECORDER(flags) && !(IS_MEMORY_TYPE(flags, mtDontTrack)))

typedef unsigned short MEMFLAGS;

#if INCLUDE_NMT

extern bool NMT_track_callsite;

#else

const bool NMT_track_callsite = false;

#endif // INCLUDE_NMT

// debug build does not inline
#if defined(_NMT_NOINLINE_)
  #define CURRENT_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
  #define CALLER_PC        (NMT_track_callsite ? os::get_caller_pc(2) : 0)
  #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(3) : 0)
#else
  #define CURRENT_PC      (NMT_track_callsite? os::get_caller_pc(0) : 0)
  #define CALLER_PC       (NMT_track_callsite ? os::get_caller_pc(1) : 0)
  #define CALLER_CALLER_PC (NMT_track_callsite ? os::get_caller_pc(2) : 0)
#endif



template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 public:
  _NOINLINE_ void* operator new(size_t size, address caller_pc = 0) throw();
  _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
                               address caller_pc = 0) throw();
  _NOINLINE_ void* operator new [](size_t size, address caller_pc = 0) throw();
  _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
                               address caller_pc = 0) throw();
  void  operator delete(void* p);
  void  operator delete [] (void* p);
};

// Base class for objects allocated on the stack only.
// Calling new or delete will result in fatal error.

class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 private:
  void* operator new(size_t size) throw();
  void  operator delete(void* p);
  void* operator new [](size_t size) throw();
  void  operator delete [](void* p);
};

// Base class for objects used as value objects.
// Calling new or delete will result in fatal error.
//
// Portability note: Certain compilers (e.g. gcc) will
// always make classes bigger if it has a superclass, even
// if the superclass does not have any virtual methods or
// instance fields. The HotSpot implementation relies on this
// not to happen. So never make a ValueObj class a direct subclass
// of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
// like this:
//
//   class A VALUE_OBJ_CLASS_SPEC {
//     ...
//   }
//
// With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
// be defined as a an empty string "".
//
class _ValueObj {
 private:
  void* operator new(size_t size) throw();
  void  operator delete(void* p);
  void* operator new [](size_t size) throw();
  void  operator delete [](void* p);
};


// Base class for objects stored in Metaspace.
// Calling delete will result in fatal error.
//
// Do not inherit from something with a vptr because this class does
// not introduce one.  This class is used to allocate both shared read-only
// and shared read-write classes.
//

class ClassLoaderData;

class MetaspaceObj {
 public:
  bool is_metaspace_object() const;  // more specific test but slower
  bool is_shared() const;
  void print_address_on(outputStream* st) const;  // nonvirtual address printing

#define METASPACE_OBJ_TYPES_DO(f) \
  f(Unknown) \
  f(Class) \
  f(Symbol) \
  f(TypeArrayU1) \
  f(TypeArrayU2) \
  f(TypeArrayU4) \
  f(TypeArrayU8) \
  f(TypeArrayOther) \
  f(Method) \
  f(ConstMethod) \
  f(MethodData) \
  f(ConstantPool) \
  f(ConstantPoolCache) \
  f(Annotation) \
  f(MethodCounters)

#define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
#define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;

  enum Type {
    // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
    METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
    _number_of_types
  };

  static const char * type_name(Type type) {
    switch(type) {
    METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
    default:
      ShouldNotReachHere();
      return NULL;
    }
  }

  static MetaspaceObj::Type array_type(size_t elem_size) {
    switch (elem_size) {
    case 1: return TypeArrayU1Type;
    case 2: return TypeArrayU2Type;
    case 4: return TypeArrayU4Type;
    case 8: return TypeArrayU8Type;
    default:
      return TypeArrayOtherType;
    }
  }

  void* operator new(size_t size, ClassLoaderData* loader_data,
                     size_t word_size, bool read_only,
                     Type type, Thread* thread) throw();
                     // can't use TRAPS from this header file.
  void operator delete(void* p) { ShouldNotCallThis(); }
};

// Base class for classes that constitute name spaces.

class AllStatic {
 public:
  AllStatic()  { ShouldNotCallThis(); }
  ~AllStatic() { ShouldNotCallThis(); }
};


//------------------------------Chunk------------------------------------------
// Linked list of raw memory chunks
class Chunk: CHeapObj<mtChunk> {
  friend class VMStructs;

 protected:
  Chunk*       _next;     // Next Chunk in list
  const size_t _len;      // Size of this Chunk
 public:
  void* operator new(size_t size, AllocFailType alloc_failmode, size_t length) throw();
  void  operator delete(void* p);
  Chunk(size_t length);

  enum {
    // default sizes; make them slightly smaller than 2**k to guard against
    // buddy-system style malloc implementations
#ifdef _LP64
    slack      = 40,            // [RGV] Not sure if this is right, but make it
                                //       a multiple of 8.
#else
    slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
#endif

    tiny_size  =  256  - slack, // Size of first chunk (tiny)
    init_size  =  1*K  - slack, // Size of first chunk (normal aka small)
    medium_size= 10*K  - slack, // Size of medium-sized chunk
    size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
    non_pool_size = init_size + 32 // An initial size which is not one of above
  };

  void chop();                  // Chop this chunk
  void next_chop();             // Chop next chunk
  static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
  static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }

  size_t length() const         { return _len;  }
  Chunk* next() const           { return _next;  }
  void set_next(Chunk* n)       { _next = n;  }
  // Boundaries of data area (possibly unused)
  char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
  char* top()    const          { return bottom() + _len; }
  bool contains(char* p) const  { return bottom() <= p && p <= top(); }

  // Start the chunk_pool cleaner task
  static void start_chunk_pool_cleaner_task();

  static void clean_chunk_pool();
};

//------------------------------Arena------------------------------------------
// Fast allocation of memory
class Arena : public CHeapObj<mtNone|otArena> {
protected:
  friend class ResourceMark;
  friend class HandleMark;
  friend class NoHandleMark;
  friend class VMStructs;

  Chunk *_first;                // First chunk
  Chunk *_chunk;                // current chunk
  char *_hwm, *_max;            // High water mark and max in current chunk
  // Get a new Chunk of at least size x
  void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
  size_t _size_in_bytes;        // Size of arena (used for native memory tracking)

  NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
  friend class AllocStats;
  debug_only(void* malloc(size_t size);)
  debug_only(void* internal_malloc_4(size_t x);)
  NOT_PRODUCT(void inc_bytes_allocated(size_t x);)

  void signal_out_of_memory(size_t request, const char* whence) const;

  bool check_for_overflow(size_t request, const char* whence,
      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
    if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
      if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
        return false;
      }
      signal_out_of_memory(request, whence);
    }
    return true;
 }

 public:
  Arena();
  Arena(size_t init_size);
  ~Arena();
  void  destruct_contents();
  char* hwm() const             { return _hwm; }

  // new operators
  void* operator new (size_t size) throw();
  void* operator new (size_t size, const std::nothrow_t& nothrow_constant) throw();

  // dynamic memory type tagging
  void* operator new(size_t size, MEMFLAGS flags) throw();
  void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw();
  void  operator delete(void* p);

  // Fast allocate in the arena.  Common case is: pointer test + increment.
  void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
    assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
    x = ARENA_ALIGN(x);
    debug_only(if (UseMallocOnly) return malloc(x);)
    if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
      return NULL;
    NOT_PRODUCT(inc_bytes_allocated(x);)
    if (_hwm + x > _max) {
      return grow(x, alloc_failmode);
    } else {
      char *old = _hwm;
      _hwm += x;
      return old;
    }
  }
  // Further assume size is padded out to words
  void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
    assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
    debug_only(if (UseMallocOnly) return malloc(x);)
    if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
      return NULL;
    NOT_PRODUCT(inc_bytes_allocated(x);)
    if (_hwm + x > _max) {
      return grow(x, alloc_failmode);
    } else {
      char *old = _hwm;
      _hwm += x;
      return old;
    }
  }

  // Allocate with 'double' alignment. It is 8 bytes on sparc.
  // In other cases Amalloc_D() should be the same as Amalloc_4().
  void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
    assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
    debug_only(if (UseMallocOnly) return malloc(x);)
#if defined(SPARC) && !defined(_LP64)
#define DALIGN_M1 7
    size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
    x += delta;
#endif
    if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
      return NULL;
    NOT_PRODUCT(inc_bytes_allocated(x);)
    if (_hwm + x > _max) {
      return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
    } else {
      char *old = _hwm;
      _hwm += x;
#if defined(SPARC) && !defined(_LP64)
      old += delta; // align to 8-bytes
#endif
      return old;
    }
  }

  // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
  void Afree(void *ptr, size_t size) {
#ifdef ASSERT
    if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
    if (UseMallocOnly) return;
#endif
    if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
  }

  void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
      AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);

  // Move contents of this arena into an empty arena
  Arena *move_contents(Arena *empty_arena);

  // Determine if pointer belongs to this Arena or not.
  bool contains( const void *ptr ) const;

  // Total of all chunks in use (not thread-safe)
  size_t used() const;

  // Total # of bytes used
  size_t size_in_bytes() const         {  return _size_in_bytes; };
  void set_size_in_bytes(size_t size);

  static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
  static void free_all(char** start, char** end)                                     PRODUCT_RETURN;

  // how many arena instances
  NOT_PRODUCT(static volatile jint _instance_count;)
private:
  // Reset this Arena to empty, access will trigger grow if necessary
  void   reset(void) {
    _first = _chunk = NULL;
    _hwm = _max = NULL;
    set_size_in_bytes(0);
  }
};

// One of the following macros must be used when allocating
// an array or object from an arena
#define NEW_ARENA_ARRAY(arena, type, size) \
  (type*) (arena)->Amalloc((size) * sizeof(type))

#define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
  (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
                            (new_size) * sizeof(type) )

#define FREE_ARENA_ARRAY(arena, type, old, size) \
  (arena)->Afree((char*)(old), (size) * sizeof(type))

#define NEW_ARENA_OBJ(arena, type) \
  NEW_ARENA_ARRAY(arena, type, 1)


//%note allocation_1
extern char* resource_allocate_bytes(size_t size,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
extern char* resource_allocate_bytes(Thread* thread, size_t size,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
    AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
extern void resource_free_bytes( char *old, size_t size );

//----------------------------------------------------------------------
// Base class for objects allocated in the resource area per default.
// Optionally, objects may be allocated on the C heap with
// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
// ResourceObj's can be allocated within other objects, but don't use
// new or delete (allocation_type is unknown).  If new is used to allocate,
// use delete to deallocate.
class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 public:
  enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
  static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
#ifdef ASSERT
 private:
  // When this object is allocated on stack the new() operator is not
  // called but garbage on stack may look like a valid allocation_type.
  // Store negated 'this' pointer when new() is called to distinguish cases.
  // Use second array's element for verification value to distinguish garbage.
  uintptr_t _allocation_t[2];
  bool is_type_set() const;
 public:
  allocation_type get_allocation_type() const;
  bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
  bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
  bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
  bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
  ResourceObj(); // default construtor
  ResourceObj(const ResourceObj& r); // default copy construtor
  ResourceObj& operator=(const ResourceObj& r); // default copy assignment
  ~ResourceObj();
#endif // ASSERT

 public:
  void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
  void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
  void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
      allocation_type type, MEMFLAGS flags) throw();
  void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
      allocation_type type, MEMFLAGS flags) throw();

  void* operator new(size_t size, Arena *arena) throw() {
      address res = (address)arena->Amalloc(size);
      DEBUG_ONLY(set_allocation_type(res, ARENA);)
      return res;
  }

  void* operator new [](size_t size, Arena *arena) throw() {
      address res = (address)arena->Amalloc(size);
      DEBUG_ONLY(set_allocation_type(res, ARENA);)
      return res;
  }

  void* operator new(size_t size) throw() {
      address res = (address)resource_allocate_bytes(size);
      DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
      return res;
  }

  void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
      address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
      DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
      return res;
  }

  void* operator new [](size_t size) throw() {
      address res = (address)resource_allocate_bytes(size);
      DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
      return res;
  }

  void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
      address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
      DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
      return res;
  }

  void  operator delete(void* p);
  void  operator delete [](void* p);
};

// One of the following macros must be used when allocating an array
// or object to determine whether it should reside in the C heap on in
// the resource area.

#define NEW_RESOURCE_ARRAY(type, size)\
  (type*) resource_allocate_bytes((size) * sizeof(type))

#define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
  (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)

#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
  (type*) resource_allocate_bytes(thread, (size) * sizeof(type))

#define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
  (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)

#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
  (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))

#define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
  (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
                                    (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)

#define FREE_RESOURCE_ARRAY(type, old, size)\
  resource_free_bytes((char*)(old), (size) * sizeof(type))

#define FREE_FAST(old)\
    /* nop */

#define NEW_RESOURCE_OBJ(type)\
  NEW_RESOURCE_ARRAY(type, 1)

#define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
  NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)

#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
  (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)

#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
  (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))

#define NEW_C_HEAP_ARRAY(type, size, memflags)\
  (type*) (AllocateHeap((size) * sizeof(type), memflags))

#define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
  NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)

#define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
  NEW_C_HEAP_ARRAY3(type, (size), memflags, (address)0, AllocFailStrategy::RETURN_NULL)

#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
  (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))

#define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
  (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))

#define FREE_C_HEAP_ARRAY(type, old, memflags) \
  FreeHeap((char*)(old), memflags)

// allocate type in heap without calling ctor
#define NEW_C_HEAP_OBJ(type, memflags)\
  NEW_C_HEAP_ARRAY(type, 1, memflags)

#define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
  NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)

// deallocate obj of type in heap without calling dtor
#define FREE_C_HEAP_OBJ(objname, memflags)\
  FreeHeap((char*)objname, memflags);

// for statistics
#ifndef PRODUCT
class AllocStats : StackObj {
  julong start_mallocs, start_frees;
  julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 public:
  AllocStats();

  julong num_mallocs();    // since creation of receiver
  julong alloc_bytes();
  julong num_frees();
  julong free_bytes();
  julong resource_bytes();
  void   print();
};
#endif


//------------------------------ReallocMark---------------------------------
// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
// ReallocMark, which is declared in the same scope as the reallocated
// pointer.  Any operation that could __potentially__ cause a reallocation
// should check the ReallocMark.
class ReallocMark: public StackObj {
protected:
  NOT_PRODUCT(int _nesting;)

public:
  ReallocMark()   PRODUCT_RETURN;
  void check()    PRODUCT_RETURN;
};

// Helper class to allocate arrays that may become large.
// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
// and uses mapped memory for larger allocations.
// Most OS mallocs do something similar but Solaris malloc does not revert
// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
// is set so that we always use malloc except for Solaris where we set the
// limit to get mapped memory.
template <class E, MEMFLAGS F>
class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
  char* _addr;
  bool _use_malloc;
  size_t _size;
  bool _free_in_destructor;
 public:
  ArrayAllocator(bool free_in_destructor = true) :
    _addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }

  ~ArrayAllocator() {
    if (_free_in_destructor) {
      free();
    }
  }

  E* allocate(size_t length);
  void free();
};

#endif // SHARE_VM_MEMORY_ALLOCATION_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java allocation.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.