alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (domgraph.cpp)

This example Java source code file (domgraph.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

block, c\-, dfs, eval, for, link, new_resource_array, node, ntarjan, null, parent, set, tarjan, used

The domgraph.cpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "libadt/vectset.hpp"
#include "memory/allocation.hpp"
#include "opto/block.hpp"
#include "opto/machnode.hpp"
#include "opto/phaseX.hpp"
#include "opto/rootnode.hpp"

// Portions of code courtesy of Clifford Click

// A data structure that holds all the information needed to find dominators.
struct Tarjan {
  Block *_block;                // Basic block for this info

  uint _semi;                   // Semi-dominators
  uint _size;                   // Used for faster LINK and EVAL
  Tarjan *_parent;              // Parent in DFS
  Tarjan *_label;               // Used for LINK and EVAL
  Tarjan *_ancestor;            // Used for LINK and EVAL
  Tarjan *_child;               // Used for faster LINK and EVAL
  Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
  Tarjan *_bucket;              // Set of vertices with given semidominator

  Tarjan *_dom_child;           // Child in dominator tree
  Tarjan *_dom_next;            // Next in dominator tree

  // Fast union-find work
  void COMPRESS();
  Tarjan *EVAL(void);
  void LINK( Tarjan *w, Tarjan *tarjan0 );

  void setdepth( uint size );

};

// Compute the dominator tree of the CFG.  The CFG must already have been
// constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
void PhaseCFG::build_dominator_tree() {
  // Pre-grow the blocks array, prior to the ResourceMark kicking in
  _blocks.map(number_of_blocks(), 0);

  ResourceMark rm;
  // Setup mappings from my Graph to Tarjan's stuff and back
  // Note: Tarjan uses 1-based arrays
  Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);

  // Tarjan's algorithm, almost verbatim:
  // Step 1:
  uint dfsnum = do_DFS(tarjan, number_of_blocks());
  if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
    // If the returned dfsnum does not match the number of blocks, then we
    // must have some unreachable loops.  These can be made at any time by
    // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
    // IterGVN can always make more that are not cleaned up.  Highly unlikely
    // except in ZKM.jar, where endless irreducible loops cause the loop opts
    // to not get run.
    //
    // Having found unreachable loops, we have made a bad RPO _block layout.
    // We can re-run the above DFS pass with the correct number of blocks,
    // and hack the Tarjan algorithm below to be robust in the presence of
    // such dead loops (as was done for the NTarjan code farther below).
    // Since this situation is so unlikely, instead I've decided to bail out.
    // CNC 7/24/2001
    C->record_method_not_compilable("unreachable loop");
    return;
  }
  _blocks._cnt = number_of_blocks();

  // Tarjan is using 1-based arrays, so these are some initialize flags
  tarjan[0]._size = tarjan[0]._semi = 0;
  tarjan[0]._label = &tarjan[0];

  for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
    Tarjan *w = &tarjan[i];     // Get vertex from DFS

    // Step 2:
    Node *whead = w->_block->head();
    for (uint j = 1; j < whead->req(); j++) {
      Block* b = get_block_for_node(whead->in(j));
      Tarjan *vx = &tarjan[b->_pre_order];
      Tarjan *u = vx->EVAL();
      if( u->_semi < w->_semi )
        w->_semi = u->_semi;
    }

    // w is added to a bucket here, and only here.
    // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
    // Thus bucket can be a linked list.
    // Thus we do not need a small integer name for each Block.
    w->_bucket = tarjan[w->_semi]._bucket;
    tarjan[w->_semi]._bucket = w;

    w->_parent->LINK( w, &tarjan[0] );

    // Step 3:
    for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
      Tarjan *u = vx->EVAL();
      vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
    }
  }

  // Step 4:
  for (uint i = 2; i <= number_of_blocks(); i++) {
    Tarjan *w = &tarjan[i];
    if( w->_dom != &tarjan[w->_semi] )
      w->_dom = w->_dom->_dom;
    w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
  }
  // No immediate dominator for the root
  Tarjan *w = &tarjan[get_root_block()->_pre_order];
  w->_dom = NULL;
  w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later

  // Convert the dominator tree array into my kind of graph
  for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
    Tarjan *t = &tarjan[i];     // Handy access
    Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
    if( tdom )  {               // Root has no immediate dominator
      t->_block->_idom = tdom->_block; // Set immediate dominator
      t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
      tdom->_dom_child = t;     // Make me a child of my parent
    } else
      t->_block->_idom = NULL;  // Root
  }
  w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree

}

class Block_Stack {
  private:
    struct Block_Descr {
      Block  *block;     // Block
      int    index;      // Index of block's successor pushed on stack
      int    freq_idx;   // Index of block's most frequent successor
    };
    Block_Descr *_stack_top;
    Block_Descr *_stack_max;
    Block_Descr *_stack;
    Tarjan *_tarjan;
    uint most_frequent_successor( Block *b );
  public:
    Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
      _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
      _stack_max = _stack + size;
      _stack_top = _stack - 1; // stack is empty
    }
    void push(uint pre_order, Block *b) {
      Tarjan *t = &_tarjan[pre_order]; // Fast local access
      b->_pre_order = pre_order;    // Flag as visited
      t->_block = b;                // Save actual block
      t->_semi = pre_order;         // Block to DFS map
      t->_label = t;                // DFS to vertex map
      t->_ancestor = NULL;          // Fast LINK & EVAL setup
      t->_child = &_tarjan[0];      // Sentenial
      t->_size = 1;
      t->_bucket = NULL;
      if (pre_order == 1)
        t->_parent = NULL;          // first block doesn't have parent
      else {
        // Save parent (current top block on stack) in DFS
        t->_parent = &_tarjan[_stack_top->block->_pre_order];
      }
      // Now put this block on stack
      ++_stack_top;
      assert(_stack_top < _stack_max, ""); // assert if stack have to grow
      _stack_top->block  = b;
      _stack_top->index  = -1;
      // Find the index into b->succs[] array of the most frequent successor.
      _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
    }
    Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
    bool is_nonempty() { return (_stack_top >= _stack); }
    bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
    Block* next_successor()  {
      int i = _stack_top->index;
      i++;
      if (i == _stack_top->freq_idx) i++;
      if (i >= (int)(_stack_top->block->_num_succs)) {
        i = _stack_top->freq_idx;   // process most frequent successor last
      }
      _stack_top->index = i;
      return _stack_top->block->_succs[ i ];
    }
};

// Find the index into the b->succs[] array of the most frequent successor.
uint Block_Stack::most_frequent_successor( Block *b ) {
  uint freq_idx = 0;
  int eidx = b->end_idx();
  Node *n = b->get_node(eidx);
  int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
  switch( op ) {
  case Op_CountedLoopEnd:
  case Op_If: {               // Split frequency amongst children
    float prob = n->as_MachIf()->_prob;
    // Is succ[0] the TRUE branch or the FALSE branch?
    if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
      prob = 1.0f - prob;
    freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
    break;
  }
  case Op_Catch:                // Split frequency amongst children
    for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
      if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
        break;
    // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
    if( freq_idx == b->_num_succs ) freq_idx = 0;
    break;
    // Currently there is no support for finding out the most
    // frequent successor for jumps, so lets just make it the first one
  case Op_Jump:
  case Op_Root:
  case Op_Goto:
  case Op_NeverBranch:
    freq_idx = 0;               // fall thru
    break;
  case Op_TailCall:
  case Op_TailJump:
  case Op_Return:
  case Op_Halt:
  case Op_Rethrow:
    break;
  default:
    ShouldNotReachHere();
  }
  return freq_idx;
}

// Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
// 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
  Block* root_block = get_root_block();
  uint pre_order = 1;
  // Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
  Block_Stack bstack(tarjan, number_of_blocks() + 1);

  // Push on stack the state for the first block
  bstack.push(pre_order, root_block);
  ++pre_order;

  while (bstack.is_nonempty()) {
    if (!bstack.last_successor()) {
      // Walk over all successors in pre-order (DFS).
      Block* next_block = bstack.next_successor();
      if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
        // Push on stack the state of successor
        bstack.push(pre_order, next_block);
        ++pre_order;
      }
    }
    else {
      // Build a reverse post-order in the CFG _blocks array
      Block *stack_top = bstack.pop();
      stack_top->_rpo = --rpo_counter;
      _blocks.map(stack_top->_rpo, stack_top);
    }
  }
  return pre_order;
}

void Tarjan::COMPRESS()
{
  assert( _ancestor != 0, "" );
  if( _ancestor->_ancestor != 0 ) {
    _ancestor->COMPRESS( );
    if( _ancestor->_label->_semi < _label->_semi )
      _label = _ancestor->_label;
    _ancestor = _ancestor->_ancestor;
  }
}

Tarjan *Tarjan::EVAL() {
  if( !_ancestor ) return _label;
  COMPRESS();
  return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
}

void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
  Tarjan *s = w;
  while( w->_label->_semi < s->_child->_label->_semi ) {
    if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
      s->_child->_ancestor = s;
      s->_child = s->_child->_child;
    } else {
      s->_child->_size = s->_size;
      s = s->_ancestor = s->_child;
    }
  }
  s->_label = w->_label;
  _size += w->_size;
  if( _size < (w->_size << 1) ) {
    Tarjan *tmp = s; s = _child; _child = tmp;
  }
  while( s != tarjan0 ) {
    s->_ancestor = this;
    s = s->_child;
  }
}

void Tarjan::setdepth( uint stack_size ) {
  Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
  Tarjan **next = top;
  Tarjan **last;
  uint depth = 0;
  *top = this;
  ++top;
  do {
    // next level
    ++depth;
    last = top;
    do {
      // Set current depth for all tarjans on this level
      Tarjan *t = *next;     // next tarjan from stack
      ++next;
      do {
        t->_block->_dom_depth = depth; // Set depth in dominator tree
        Tarjan *dom_child = t->_dom_child;
        t = t->_dom_next;    // next tarjan
        if (dom_child != NULL) {
          *top = dom_child;  // save child on stack
          ++top;
        }
      } while (t != NULL);
    } while (next < last);
  } while (last < top);
}

// Compute dominators on the Sea of Nodes form
// A data structure that holds all the information needed to find dominators.
struct NTarjan {
  Node *_control;               // Control node associated with this info

  uint _semi;                   // Semi-dominators
  uint _size;                   // Used for faster LINK and EVAL
  NTarjan *_parent;             // Parent in DFS
  NTarjan *_label;              // Used for LINK and EVAL
  NTarjan *_ancestor;           // Used for LINK and EVAL
  NTarjan *_child;              // Used for faster LINK and EVAL
  NTarjan *_dom;                // Parent in dominator tree (immediate dom)
  NTarjan *_bucket;             // Set of vertices with given semidominator

  NTarjan *_dom_child;          // Child in dominator tree
  NTarjan *_dom_next;           // Next in dominator tree

  // Perform DFS search.
  // Setup 'vertex' as DFS to vertex mapping.
  // Setup 'semi' as vertex to DFS mapping.
  // Set 'parent' to DFS parent.
  static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
  void setdepth( uint size, uint *dom_depth );

  // Fast union-find work
  void COMPRESS();
  NTarjan *EVAL(void);
  void LINK( NTarjan *w, NTarjan *ntarjan0 );
#ifndef PRODUCT
  void dump(int offset) const;
#endif
};

// Compute the dominator tree of the sea of nodes.  This version walks all CFG
// nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
// it needs a count of the CFG nodes for the mapping table. This is the
// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
void PhaseIdealLoop::Dominators() {
  ResourceMark rm;
  // Setup mappings from my Graph to Tarjan's stuff and back
  // Note: Tarjan uses 1-based arrays
  NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
  // Initialize _control field for fast reference
  int i;
  for( i= C->unique()-1; i>=0; i-- )
    ntarjan[i]._control = NULL;

  // Store the DFS order for the main loop
  uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
  memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));

  // Tarjan's algorithm, almost verbatim:
  // Step 1:
  VectorSet visited(Thread::current()->resource_area());
  int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);

  // Tarjan is using 1-based arrays, so these are some initialize flags
  ntarjan[0]._size = ntarjan[0]._semi = 0;
  ntarjan[0]._label = &ntarjan[0];

  for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
    NTarjan *w = &ntarjan[i];            // Get Node from DFS
    assert(w->_control != NULL,"bad DFS walk");

    // Step 2:
    Node *whead = w->_control;
    for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
      if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
        continue;                            // Only process control nodes
      uint b = dfsorder[whead->in(j)->_idx];
      if(b == max_uint) continue;
      NTarjan *vx = &ntarjan[b];
      NTarjan *u = vx->EVAL();
      if( u->_semi < w->_semi )
        w->_semi = u->_semi;
    }

    // w is added to a bucket here, and only here.
    // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
    // Thus bucket can be a linked list.
    w->_bucket = ntarjan[w->_semi]._bucket;
    ntarjan[w->_semi]._bucket = w;

    w->_parent->LINK( w, &ntarjan[0] );

    // Step 3:
    for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
      NTarjan *u = vx->EVAL();
      vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
    }

    // Cleanup any unreachable loops now.  Unreachable loops are loops that
    // flow into the main graph (and hence into ROOT) but are not reachable
    // from above.  Such code is dead, but requires a global pass to detect
    // it; this global pass was the 'build_loop_tree' pass run just prior.
    if( !_verify_only && whead->is_Region() ) {
      for( uint i = 1; i < whead->req(); i++ ) {
        if (!has_node(whead->in(i))) {
          // Kill dead input path
          assert( !visited.test(whead->in(i)->_idx),
                  "input with no loop must be dead" );
          _igvn.delete_input_of(whead, i);
          for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
            Node* p = whead->fast_out(j);
            if( p->is_Phi() ) {
              _igvn.delete_input_of(p, i);
            }
          }
          i--;                  // Rerun same iteration
        } // End of if dead input path
      } // End of for all input paths
    } // End if if whead is a Region
  } // End of for all Nodes in reverse DFS order

  // Step 4:
  for( i=2; i < dfsnum; i++ ) { // DFS order
    NTarjan *w = &ntarjan[i];
    assert(w->_control != NULL,"Bad DFS walk");
    if( w->_dom != &ntarjan[w->_semi] )
      w->_dom = w->_dom->_dom;
    w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
  }
  // No immediate dominator for the root
  NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
  w->_dom = NULL;
  w->_parent = NULL;
  w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later

  // Convert the dominator tree array into my kind of graph
  for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
    NTarjan *t = &ntarjan[i];          // Handy access
    assert(t->_control != NULL,"Bad DFS walk");
    NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
    if( tdom )  {                      // Root has no immediate dominator
      _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
      t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
      tdom->_dom_child = t;            // Make me a child of my parent
    } else
      _idom[C->root()->_idx] = NULL; // Root
  }
  w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
  // Pick up the 'top' node as well
  _idom     [C->top()->_idx] = C->root();
  _dom_depth[C->top()->_idx] = 1;

  // Debug Print of Dominator tree
  if( PrintDominators ) {
#ifndef PRODUCT
    w->dump(0);
#endif
  }
}

// Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
// 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
  // Allocate stack of size C->unique()/8 to avoid frequent realloc
  GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
  Node *b = pil->C->root();
  int dfsnum = 1;
  dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
  dfstack.push(b);

  while (dfstack.is_nonempty()) {
    b = dfstack.pop();
    if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
      NTarjan *w = &ntarjan[dfsnum];
      // Only fully process control nodes
      w->_control = b;                 // Save actual node
      // Use parent's cached dfsnum to identify "Parent in DFS"
      w->_parent = &ntarjan[dfsorder[b->_idx]];
      dfsorder[b->_idx] = dfsnum;      // Save DFS order info
      w->_semi = dfsnum;               // Node to DFS map
      w->_label = w;                   // DFS to vertex map
      w->_ancestor = NULL;             // Fast LINK & EVAL setup
      w->_child = &ntarjan[0];         // Sentinal
      w->_size = 1;
      w->_bucket = NULL;

      // Need DEF-USE info for this pass
      for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
        Node* s = b->raw_out(i);       // Get a use
        // CFG nodes only and not dead stuff
        if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
          dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
          dfstack.push(s);
        }
      }
      dfsnum++;  // update after parent's dfsnum has been cached.
    }
  }

  return dfsnum;
}

void NTarjan::COMPRESS()
{
  assert( _ancestor != 0, "" );
  if( _ancestor->_ancestor != 0 ) {
    _ancestor->COMPRESS( );
    if( _ancestor->_label->_semi < _label->_semi )
      _label = _ancestor->_label;
    _ancestor = _ancestor->_ancestor;
  }
}

NTarjan *NTarjan::EVAL() {
  if( !_ancestor ) return _label;
  COMPRESS();
  return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
}

void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
  NTarjan *s = w;
  while( w->_label->_semi < s->_child->_label->_semi ) {
    if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
      s->_child->_ancestor = s;
      s->_child = s->_child->_child;
    } else {
      s->_child->_size = s->_size;
      s = s->_ancestor = s->_child;
    }
  }
  s->_label = w->_label;
  _size += w->_size;
  if( _size < (w->_size << 1) ) {
    NTarjan *tmp = s; s = _child; _child = tmp;
  }
  while( s != ntarjan0 ) {
    s->_ancestor = this;
    s = s->_child;
  }
}

void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
  NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
  NTarjan **next = top;
  NTarjan **last;
  uint depth = 0;
  *top = this;
  ++top;
  do {
    // next level
    ++depth;
    last = top;
    do {
      // Set current depth for all tarjans on this level
      NTarjan *t = *next;    // next tarjan from stack
      ++next;
      do {
        dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
        NTarjan *dom_child = t->_dom_child;
        t = t->_dom_next;    // next tarjan
        if (dom_child != NULL) {
          *top = dom_child;  // save child on stack
          ++top;
        }
      } while (t != NULL);
    } while (next < last);
  } while (last < top);
}

#ifndef PRODUCT
void NTarjan::dump(int offset) const {
  // Dump the data from this node
  int i;
  for(i = offset; i >0; i--)  // Use indenting for tree structure
    tty->print("  ");
  tty->print("Dominator Node: ");
  _control->dump();               // Control node for this dom node
  tty->print("\n");
  for(i = offset; i >0; i--)      // Use indenting for tree structure
    tty->print("  ");
  tty->print("semi:%d, size:%d\n",_semi, _size);
  for(i = offset; i >0; i--)      // Use indenting for tree structure
    tty->print("  ");
  tty->print("DFS Parent: ");
  if(_parent != NULL)
    _parent->_control->dump();    // Parent in DFS
  tty->print("\n");
  for(i = offset; i >0; i--)      // Use indenting for tree structure
    tty->print("  ");
  tty->print("Dom Parent: ");
  if(_dom != NULL)
    _dom->_control->dump();       // Parent in Dominator Tree
  tty->print("\n");

  // Recurse over remaining tree
  if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
  if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree

}
#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java domgraph.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.