alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (reg_split.cpp)

This example Java source code file (reg_split.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

assert, c\-, end, new_split_array, node, null, phi, reachblock, reaches, regmask, reset, upblock, use

The reg_split.cpp Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "libadt/vectset.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/c2compiler.hpp"
#include "opto/callnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/chaitin.hpp"
#include "opto/loopnode.hpp"
#include "opto/machnode.hpp"

//------------------------------Split--------------------------------------
// Walk the graph in RPO and for each lrg which spills, propagate reaching
// definitions.  During propagation, split the live range around regions of
// High Register Pressure (HRP).  If a Def is in a region of Low Register
// Pressure (LRP), it will not get spilled until we encounter a region of
// HRP between it and one of its uses.  We will spill at the transition
// point between LRP and HRP.  Uses in the HRP region will use the spilled
// Def.  The first Use outside the HRP region will generate a SpillCopy to
// hoist the live range back up into a register, and all subsequent uses
// will use that new Def until another HRP region is encountered.  Defs in
// HRP regions will get trailing SpillCopies to push the LRG down into the
// stack immediately.
//
// As a side effect, unlink from (hence make dead) coalesced copies.
//

static const char out_of_nodes[] = "out of nodes during split";

//------------------------------get_spillcopy_wide-----------------------------
// Get a SpillCopy node with wide-enough masks.  Use the 'wide-mask', the
// wide ideal-register spill-mask if possible.  If the 'wide-mask' does
// not cover the input (or output), use the input (or output) mask instead.
Node *PhaseChaitin::get_spillcopy_wide( Node *def, Node *use, uint uidx ) {
  // If ideal reg doesn't exist we've got a bad schedule happening
  // that is forcing us to spill something that isn't spillable.
  // Bail rather than abort
  int ireg = def->ideal_reg();
  if( ireg == 0 || ireg == Op_RegFlags ) {
    assert(false, "attempted to spill a non-spillable item");
    C->record_method_not_compilable("attempted to spill a non-spillable item");
    return NULL;
  }
  if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {
    return NULL;
  }
  const RegMask *i_mask = &def->out_RegMask();
  const RegMask *w_mask = C->matcher()->idealreg2spillmask[ireg];
  const RegMask *o_mask = use ? &use->in_RegMask(uidx) : w_mask;
  const RegMask *w_i_mask = w_mask->overlap( *i_mask ) ? w_mask : i_mask;
  const RegMask *w_o_mask;

  int num_regs = RegMask::num_registers(ireg);
  bool is_vect = RegMask::is_vector(ireg);
  if( w_mask->overlap( *o_mask ) && // Overlap AND
      ((num_regs == 1) // Single use or aligned
        ||  is_vect    // or vector
        || !is_vect && o_mask->is_aligned_pairs()) ) {
    assert(!is_vect || o_mask->is_aligned_sets(num_regs), "vectors are aligned");
    // Don't come here for mis-aligned doubles
    w_o_mask = w_mask;
  } else {                      // wide ideal mask does not overlap with o_mask
    // Mis-aligned doubles come here and XMM->FPR moves on x86.
    w_o_mask = o_mask;          // Must target desired registers
    // Does the ideal-reg-mask overlap with o_mask?  I.e., can I use
    // a reg-reg move or do I need a trip across register classes
    // (and thus through memory)?
    if( !C->matcher()->idealreg2regmask[ireg]->overlap( *o_mask) && o_mask->is_UP() )
      // Here we assume a trip through memory is required.
      w_i_mask = &C->FIRST_STACK_mask();
  }
  return new (C) MachSpillCopyNode( def, *w_i_mask, *w_o_mask );
}

//------------------------------insert_proj------------------------------------
// Insert the spill at chosen location.  Skip over any intervening Proj's or
// Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
// instead.  Update high-pressure indices.  Create a new live range.
void PhaseChaitin::insert_proj( Block *b, uint i, Node *spill, uint maxlrg ) {
  // Skip intervening ProjNodes.  Do not insert between a ProjNode and
  // its definer.
  while( i < b->number_of_nodes() &&
         (b->get_node(i)->is_Proj() ||
          b->get_node(i)->is_Phi() ) )
    i++;

  // Do not insert between a call and his Catch
  if( b->get_node(i)->is_Catch() ) {
    // Put the instruction at the top of the fall-thru block.
    // Find the fall-thru projection
    while( 1 ) {
      const CatchProjNode *cp = b->get_node(++i)->as_CatchProj();
      if( cp->_con == CatchProjNode::fall_through_index )
        break;
    }
    int sidx = i - b->end_idx()-1;
    b = b->_succs[sidx];        // Switch to successor block
    i = 1;                      // Right at start of block
  }

  b->insert_node(spill, i);    // Insert node in block
  _cfg.map_node_to_block(spill,  b); // Update node->block mapping to reflect
  // Adjust the point where we go hi-pressure
  if( i <= b->_ihrp_index ) b->_ihrp_index++;
  if( i <= b->_fhrp_index ) b->_fhrp_index++;

  // Assign a new Live Range Number to the SpillCopy and grow
  // the node->live range mapping.
  new_lrg(spill,maxlrg);
}

//------------------------------split_DEF--------------------------------------
// There are four categories of Split; UP/DOWN x DEF/USE
// Only three of these really occur as DOWN/USE will always color
// Any Split with a DEF cannot CISC-Spill now.  Thus we need
// two helper routines, one for Split DEFS (insert after instruction),
// one for Split USES (insert before instruction).  DEF insertion
// happens inside Split, where the Leaveblock array is updated.
uint PhaseChaitin::split_DEF( Node *def, Block *b, int loc, uint maxlrg, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx ) {
#ifdef ASSERT
  // Increment the counter for this lrg
  splits.at_put(slidx, splits.at(slidx)+1);
#endif
  // If we are spilling the memory op for an implicit null check, at the
  // null check location (ie - null check is in HRP block) we need to do
  // the null-check first, then spill-down in the following block.
  // (The implicit_null_check function ensures the use is also dominated
  // by the branch-not-taken block.)
  Node *be = b->end();
  if( be->is_MachNullCheck() && be->in(1) == def && def == b->get_node(loc)) {
    // Spill goes in the branch-not-taken block
    b = b->_succs[b->get_node(b->end_idx()+1)->Opcode() == Op_IfTrue];
    loc = 0;                    // Just past the Region
  }
  assert( loc >= 0, "must insert past block head" );

  // Get a def-side SpillCopy
  Node *spill = get_spillcopy_wide(def,NULL,0);
  // Did we fail to split?, then bail
  if (!spill) {
    return 0;
  }

  // Insert the spill at chosen location
  insert_proj( b, loc+1, spill, maxlrg++);

  // Insert new node into Reaches array
  Reachblock[slidx] = spill;
  // Update debug list of reaching down definitions by adding this one
  debug_defs[slidx] = spill;

  // return updated count of live ranges
  return maxlrg;
}

//------------------------------split_USE--------------------------------------
// Splits at uses can involve redeffing the LRG, so no CISC Spilling there.
// Debug uses want to know if def is already stack enabled.
uint PhaseChaitin::split_USE( Node *def, Block *b, Node *use, uint useidx, uint maxlrg, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx ) {
#ifdef ASSERT
  // Increment the counter for this lrg
  splits.at_put(slidx, splits.at(slidx)+1);
#endif

  // Some setup stuff for handling debug node uses
  JVMState* jvms = use->jvms();
  uint debug_start = jvms ? jvms->debug_start() : 999999;
  uint debug_end   = jvms ? jvms->debug_end()   : 999999;

  //-------------------------------------------
  // Check for use of debug info
  if (useidx >= debug_start && useidx < debug_end) {
    // Actually it's perfectly legal for constant debug info to appear
    // just unlikely.  In this case the optimizer left a ConI of a 4
    // as both inputs to a Phi with only a debug use.  It's a single-def
    // live range of a rematerializable value.  The live range spills,
    // rematerializes and now the ConI directly feeds into the debug info.
    // assert(!def->is_Con(), "constant debug info already constructed directly");

    // Special split handling for Debug Info
    // If DEF is DOWN, just hook the edge and return
    // If DEF is UP, Split it DOWN for this USE.
    if( def->is_Mach() ) {
      if( def_down ) {
        // DEF is DOWN, so connect USE directly to the DEF
        use->set_req(useidx, def);
      } else {
        // Block and index where the use occurs.
        Block *b = _cfg.get_block_for_node(use);
        // Put the clone just prior to use
        int bindex = b->find_node(use);
        // DEF is UP, so must copy it DOWN and hook in USE
        // Insert SpillCopy before the USE, which uses DEF as its input,
        // and defs a new live range, which is used by this node.
        Node *spill = get_spillcopy_wide(def,use,useidx);
        // did we fail to split?
        if (!spill) {
          // Bail
          return 0;
        }
        // insert into basic block
        insert_proj( b, bindex, spill, maxlrg++ );
        // Use the new split
        use->set_req(useidx,spill);
      }
      // No further split handling needed for this use
      return maxlrg;
    }  // End special splitting for debug info live range
  }  // If debug info

  // CISC-SPILLING
  // Finally, check to see if USE is CISC-Spillable, and if so,
  // gather_lrg_masks will add the flags bit to its mask, and
  // no use side copy is needed.  This frees up the live range
  // register choices without causing copy coalescing, etc.
  if( UseCISCSpill && cisc_sp ) {
    int inp = use->cisc_operand();
    if( inp != AdlcVMDeps::Not_cisc_spillable )
      // Convert operand number to edge index number
      inp = use->as_Mach()->operand_index(inp);
    if( inp == (int)useidx ) {
      use->set_req(useidx, def);
#ifndef PRODUCT
      if( TraceCISCSpill ) {
        tty->print("  set_split: ");
        use->dump();
      }
#endif
      return maxlrg;
    }
  }

  //-------------------------------------------
  // Insert a Copy before the use

  // Block and index where the use occurs.
  int bindex;
  // Phi input spill-copys belong at the end of the prior block
  if( use->is_Phi() ) {
    b = _cfg.get_block_for_node(b->pred(useidx));
    bindex = b->end_idx();
  } else {
    // Put the clone just prior to use
    bindex = b->find_node(use);
  }

  Node *spill = get_spillcopy_wide( def, use, useidx );
  if( !spill ) return 0;        // Bailed out
  // Insert SpillCopy before the USE, which uses the reaching DEF as
  // its input, and defs a new live range, which is used by this node.
  insert_proj( b, bindex, spill, maxlrg++ );
  // Use the spill/clone
  use->set_req(useidx,spill);

  // return updated live range count
  return maxlrg;
}

//------------------------------clone_node----------------------------
// Clone node with anti dependence check.
Node* clone_node(Node* def, Block *b, Compile* C) {
  if (def->needs_anti_dependence_check()) {
#ifdef ASSERT
    if (Verbose) {
      tty->print_cr("RA attempts to clone node with anti_dependence:");
      def->dump(-1); tty->cr();
      tty->print_cr("into block:");
      b->dump();
    }
#endif
    if (C->subsume_loads() == true && !C->failing()) {
      // Retry with subsume_loads == false
      // If this is the first failure, the sentinel string will "stick"
      // to the Compile object, and the C2Compiler will see it and retry.
      C->record_failure(C2Compiler::retry_no_subsuming_loads());
    } else {
      // Bailout without retry
      C->record_method_not_compilable("RA Split failed: attempt to clone node with anti_dependence");
    }
    return 0;
  }
  return def->clone();
}

//------------------------------split_Rematerialize----------------------------
// Clone a local copy of the def.
Node *PhaseChaitin::split_Rematerialize( Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits, int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru ) {
  // The input live ranges will be stretched to the site of the new
  // instruction.  They might be stretched past a def and will thus
  // have the old and new values of the same live range alive at the
  // same time - a definite no-no.  Split out private copies of
  // the inputs.
  if( def->req() > 1 ) {
    for( uint i = 1; i < def->req(); i++ ) {
      Node *in = def->in(i);
      uint lidx = _lrg_map.live_range_id(in);
      // We do not need this for live ranges that are only defined once.
      // However, this is not true for spill copies that are added in this
      // Split() pass, since they might get coalesced later on in this pass.
      if (lidx < _lrg_map.max_lrg_id() && lrgs(lidx).is_singledef()) {
        continue;
      }

      Block *b_def = _cfg.get_block_for_node(def);
      int idx_def = b_def->find_node(def);
      Node *in_spill = get_spillcopy_wide( in, def, i );
      if( !in_spill ) return 0; // Bailed out
      insert_proj(b_def,idx_def,in_spill,maxlrg++);
      if( b_def == b )
        insidx++;
      def->set_req(i,in_spill);
    }
  }

  Node *spill = clone_node(def, b, C);
  if (spill == NULL || C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {
    // Check when generating nodes
    return 0;
  }

  // See if any inputs are currently being spilled, and take the
  // latest copy of spilled inputs.
  if( spill->req() > 1 ) {
    for( uint i = 1; i < spill->req(); i++ ) {
      Node *in = spill->in(i);
      uint lidx = _lrg_map.find_id(in);

      // Walk backwards thru spill copy node intermediates
      if (walkThru) {
        while (in->is_SpillCopy() && lidx >= _lrg_map.max_lrg_id()) {
          in = in->in(1);
          lidx = _lrg_map.find_id(in);
        }

        if (lidx < _lrg_map.max_lrg_id() && lrgs(lidx).is_multidef()) {
          // walkThru found a multidef LRG, which is unsafe to use, so
          // just keep the original def used in the clone.
          in = spill->in(i);
          lidx = _lrg_map.find_id(in);
        }
      }

      if (lidx < _lrg_map.max_lrg_id() && lrgs(lidx).reg() >= LRG::SPILL_REG) {
        Node *rdef = Reachblock[lrg2reach[lidx]];
        if (rdef) {
          spill->set_req(i, rdef);
        }
      }
    }
  }


  assert( spill->out_RegMask().is_UP(), "rematerialize to a reg" );
  // Rematerialized op is def->spilled+1
  set_was_spilled(spill);
  if( _spilled_once.test(def->_idx) )
    set_was_spilled(spill);

  insert_proj( b, insidx, spill, maxlrg++ );
#ifdef ASSERT
  // Increment the counter for this lrg
  splits.at_put(slidx, splits.at(slidx)+1);
#endif
  // See if the cloned def kills any flags, and copy those kills as well
  uint i = insidx+1;
  int found_projs = clone_projs( b, i, def, spill, maxlrg);
  if (found_projs > 0) {
    // Adjust the point where we go hi-pressure
    if (i <= b->_ihrp_index) {
      b->_ihrp_index += found_projs;
    }
    if (i <= b->_fhrp_index) {
      b->_fhrp_index += found_projs;
    }
  }

  return spill;
}

//------------------------------is_high_pressure-------------------------------
// Function to compute whether or not this live range is "high pressure"
// in this block - whether it spills eagerly or not.
bool PhaseChaitin::is_high_pressure( Block *b, LRG *lrg, uint insidx ) {
  if( lrg->_was_spilled1 ) return true;
  // Forced spilling due to conflict?  Then split only at binding uses
  // or defs, not for supposed capacity problems.
  // CNC - Turned off 7/8/99, causes too much spilling
  // if( lrg->_is_bound ) return false;

  // Use float pressure numbers for vectors.
  bool is_float_or_vector = lrg->_is_float || lrg->_is_vector;
  // Not yet reached the high-pressure cutoff point, so low pressure
  uint hrp_idx = is_float_or_vector ? b->_fhrp_index : b->_ihrp_index;
  if( insidx < hrp_idx ) return false;
  // Register pressure for the block as a whole depends on reg class
  int block_pres = is_float_or_vector ? b->_freg_pressure : b->_reg_pressure;
  // Bound live ranges will split at the binding points first;
  // Intermediate splits should assume the live range's register set
  // got "freed up" and that num_regs will become INT_PRESSURE.
  int bound_pres = is_float_or_vector ? FLOATPRESSURE : INTPRESSURE;
  // Effective register pressure limit.
  int lrg_pres = (lrg->get_invalid_mask_size() > lrg->num_regs())
    ? (lrg->get_invalid_mask_size() >> (lrg->num_regs()-1)) : bound_pres;
  // High pressure if block pressure requires more register freedom
  // than live range has.
  return block_pres >= lrg_pres;
}


//------------------------------prompt_use---------------------------------
// True if lidx is used before any real register is def'd in the block
bool PhaseChaitin::prompt_use( Block *b, uint lidx ) {
  if (lrgs(lidx)._was_spilled2) {
    return false;
  }

  // Scan block for 1st use.
  for( uint i = 1; i <= b->end_idx(); i++ ) {
    Node *n = b->get_node(i);
    // Ignore PHI use, these can be up or down
    if (n->is_Phi()) {
      continue;
    }
    for (uint j = 1; j < n->req(); j++) {
      if (_lrg_map.find_id(n->in(j)) == lidx) {
        return true;          // Found 1st use!
      }
    }
    if (n->out_RegMask().is_NotEmpty()) {
      return false;
    }
  }
  return false;
}

//------------------------------Split--------------------------------------
//----------Split Routine----------
// ***** NEW SPLITTING HEURISTIC *****
// DEFS: If the DEF is in a High Register Pressure(HRP) Block, split there.
//        Else, no split unless there is a HRP block between a DEF and
//        one of its uses, and then split at the HRP block.
//
// USES: If USE is in HRP, split at use to leave main LRG on stack.
//       Else, hoist LRG back up to register only (ie - split is also DEF)
// We will compute a new maxlrg as we go
uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
  NOT_PRODUCT( Compile::TracePhase t3("regAllocSplit", &_t_regAllocSplit, TimeCompiler); )

  // Free thread local resources used by this method on exit.
  ResourceMark rm(split_arena);

  uint                 bidx, pidx, slidx, insidx, inpidx, twoidx;
  uint                 non_phi = 1, spill_cnt = 0;
  Node                *n1, *n2, *n3;
  Node_List           *defs,*phis;
  bool                *UPblock;
  bool                 u1, u2, u3;
  Block               *b, *pred;
  PhiNode             *phi;
  GrowableArray<uint>  lidxs(split_arena, maxlrg, 0, 0);

  // Array of counters to count splits per live range
  GrowableArray<uint>  splits(split_arena, maxlrg, 0, 0);

#define NEW_SPLIT_ARRAY(type, size)\
  (type*) split_arena->allocate_bytes((size) * sizeof(type))

  //----------Setup Code----------
  // Create a convenient mapping from lrg numbers to reaches/leaves indices
  uint *lrg2reach = NEW_SPLIT_ARRAY(uint, maxlrg);
  // Keep track of DEFS & Phis for later passes
  defs = new Node_List();
  phis = new Node_List();
  // Gather info on which LRG's are spilling, and build maps
  for (bidx = 1; bidx < maxlrg; bidx++) {
    if (lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG) {
      assert(!lrgs(bidx).mask().is_AllStack(),"AllStack should color");
      lrg2reach[bidx] = spill_cnt;
      spill_cnt++;
      lidxs.append(bidx);
#ifdef ASSERT
      // Initialize the split counts to zero
      splits.append(0);
#endif
#ifndef PRODUCT
      if( PrintOpto && WizardMode && lrgs(bidx)._was_spilled1 )
        tty->print_cr("Warning, 2nd spill of L%d",bidx);
#endif
    }
  }

  // Create side arrays for propagating reaching defs info.
  // Each block needs a node pointer for each spilling live range for the
  // Def which is live into the block.  Phi nodes handle multiple input
  // Defs by querying the output of their predecessor blocks and resolving
  // them to a single Def at the phi.  The pointer is updated for each
  // Def in the block, and then becomes the output for the block when
  // processing of the block is complete.  We also need to track whether
  // a Def is UP or DOWN.  UP means that it should get a register (ie -
  // it is always in LRP regions), and DOWN means that it is probably
  // on the stack (ie - it crosses HRP regions).
  Node ***Reaches     = NEW_SPLIT_ARRAY( Node**, _cfg.number_of_blocks() + 1);
  bool  **UP          = NEW_SPLIT_ARRAY( bool*, _cfg.number_of_blocks() + 1);
  Node  **debug_defs  = NEW_SPLIT_ARRAY( Node*, spill_cnt );
  VectorSet **UP_entry= NEW_SPLIT_ARRAY( VectorSet*, spill_cnt );

  // Initialize Reaches & UP
  for (bidx = 0; bidx < _cfg.number_of_blocks() + 1; bidx++) {
    Reaches[bidx]     = NEW_SPLIT_ARRAY( Node*, spill_cnt );
    UP[bidx]          = NEW_SPLIT_ARRAY( bool, spill_cnt );
    Node **Reachblock = Reaches[bidx];
    bool *UPblock     = UP[bidx];
    for( slidx = 0; slidx < spill_cnt; slidx++ ) {
      UPblock[slidx] = true;     // Assume they start in registers
      Reachblock[slidx] = NULL;  // Assume that no def is present
    }
  }

#undef NEW_SPLIT_ARRAY

  // Initialize to array of empty vectorsets
  for( slidx = 0; slidx < spill_cnt; slidx++ )
    UP_entry[slidx] = new VectorSet(split_arena);

  //----------PASS 1----------
  //----------Propagation & Node Insertion Code----------
  // Walk the Blocks in RPO for DEF & USE info
  for( bidx = 0; bidx < _cfg.number_of_blocks(); bidx++ ) {

    if (C->check_node_count(spill_cnt, out_of_nodes)) {
      return 0;
    }

    b  = _cfg.get_block(bidx);
    // Reaches & UP arrays for this block
    Node** Reachblock = Reaches[b->_pre_order];
    UPblock    = UP[b->_pre_order];
    // Reset counter of start of non-Phi nodes in block
    non_phi = 1;
    //----------Block Entry Handling----------
    // Check for need to insert a new phi
    // Cycle through this block's predecessors, collecting Reaches
    // info for each spilled LRG.  If they are identical, no phi is
    // needed.  If they differ, check for a phi, and insert if missing,
    // or update edges if present.  Set current block's Reaches set to
    // be either the phi's or the reaching def, as appropriate.
    // If no Phi is needed, check if the LRG needs to spill on entry
    // to the block due to HRP.
    for( slidx = 0; slidx < spill_cnt; slidx++ ) {
      // Grab the live range number
      uint lidx = lidxs.at(slidx);
      // Do not bother splitting or putting in Phis for single-def
      // rematerialized live ranges.  This happens alot to constants
      // with long live ranges.
      if( lrgs(lidx).is_singledef() &&
          lrgs(lidx)._def->rematerialize() ) {
        // reset the Reaches & UP entries
        Reachblock[slidx] = lrgs(lidx)._def;
        UPblock[slidx] = true;
        // Record following instruction in case 'n' rematerializes and
        // kills flags
        Block *pred1 = _cfg.get_block_for_node(b->pred(1));
        continue;
      }

      // Initialize needs_phi and needs_split
      bool needs_phi = false;
      bool needs_split = false;
      bool has_phi = false;
      // Walk the predecessor blocks to check inputs for that live range
      // Grab predecessor block header
      n1 = b->pred(1);
      // Grab the appropriate reaching def info for inpidx
      pred = _cfg.get_block_for_node(n1);
      pidx = pred->_pre_order;
      Node **Ltmp = Reaches[pidx];
      bool  *Utmp = UP[pidx];
      n1 = Ltmp[slidx];
      u1 = Utmp[slidx];
      // Initialize node for saving type info
      n3 = n1;
      u3 = u1;

      // Compare inputs to see if a Phi is needed
      for( inpidx = 2; inpidx < b->num_preds(); inpidx++ ) {
        // Grab predecessor block headers
        n2 = b->pred(inpidx);
        // Grab the appropriate reaching def info for inpidx
        pred = _cfg.get_block_for_node(n2);
        pidx = pred->_pre_order;
        Ltmp = Reaches[pidx];
        Utmp = UP[pidx];
        n2 = Ltmp[slidx];
        u2 = Utmp[slidx];
        // For each LRG, decide if a phi is necessary
        if( n1 != n2 ) {
          needs_phi = true;
        }
        // See if the phi has mismatched inputs, UP vs. DOWN
        if( n1 && n2 && (u1 != u2) ) {
          needs_split = true;
        }
        // Move n2/u2 to n1/u1 for next iteration
        n1 = n2;
        u1 = u2;
        // Preserve a non-NULL predecessor for later type referencing
        if( (n3 == NULL) && (n2 != NULL) ){
          n3 = n2;
          u3 = u2;
        }
      }  // End for all potential Phi inputs

      // check block for appropriate phinode & update edges
      for( insidx = 1; insidx <= b->end_idx(); insidx++ ) {
        n1 = b->get_node(insidx);
        // bail if this is not a phi
        phi = n1->is_Phi() ? n1->as_Phi() : NULL;
        if( phi == NULL ) {
          // Keep track of index of first non-PhiNode instruction in block
          non_phi = insidx;
          // break out of the for loop as we have handled all phi nodes
          break;
        }
        // must be looking at a phi
        if (_lrg_map.find_id(n1) == lidxs.at(slidx)) {
          // found the necessary phi
          needs_phi = false;
          has_phi = true;
          // initialize the Reaches entry for this LRG
          Reachblock[slidx] = phi;
          break;
        }  // end if found correct phi
      }  // end for all phi's

      // If a phi is needed or exist, check for it
      if( needs_phi || has_phi ) {
        // add new phinode if one not already found
        if( needs_phi ) {
          // create a new phi node and insert it into the block
          // type is taken from left over pointer to a predecessor
          assert(n3,"No non-NULL reaching DEF for a Phi");
          phi = new (C) PhiNode(b->head(), n3->bottom_type());
          // initialize the Reaches entry for this LRG
          Reachblock[slidx] = phi;

          // add node to block & node_to_block mapping
          insert_proj(b, insidx++, phi, maxlrg++);
          non_phi++;
          // Reset new phi's mapping to be the spilling live range
          _lrg_map.map(phi->_idx, lidx);
          assert(_lrg_map.find_id(phi) == lidx, "Bad update on Union-Find mapping");
        }  // end if not found correct phi
        // Here you have either found or created the Phi, so record it
        assert(phi != NULL,"Must have a Phi Node here");
        phis->push(phi);
        // PhiNodes should either force the LRG UP or DOWN depending
        // on its inputs and the register pressure in the Phi's block.
        UPblock[slidx] = true;  // Assume new DEF is UP
        // If entering a high-pressure area with no immediate use,
        // assume Phi is DOWN
        if( is_high_pressure( b, &lrgs(lidx), b->end_idx()) && !prompt_use(b,lidx) )
          UPblock[slidx] = false;
        // If we are not split up/down and all inputs are down, then we
        // are down
        if( !needs_split && !u3 )
          UPblock[slidx] = false;
      }  // end if phi is needed

      // Do not need a phi, so grab the reaching DEF
      else {
        // Grab predecessor block header
        n1 = b->pred(1);
        // Grab the appropriate reaching def info for k
        pred = _cfg.get_block_for_node(n1);
        pidx = pred->_pre_order;
        Node **Ltmp = Reaches[pidx];
        bool  *Utmp = UP[pidx];
        // reset the Reaches & UP entries
        Reachblock[slidx] = Ltmp[slidx];
        UPblock[slidx] = Utmp[slidx];
      }  // end else no Phi is needed
    }  // end for all spilling live ranges
    // DEBUG
#ifndef PRODUCT
    if(trace_spilling()) {
      tty->print("/`\nBlock %d: ", b->_pre_order);
      tty->print("Reaching Definitions after Phi handling\n");
      for( uint x = 0; x < spill_cnt; x++ ) {
        tty->print("Spill Idx %d: UP %d: Node\n",x,UPblock[x]);
        if( Reachblock[x] )
          Reachblock[x]->dump();
        else
          tty->print("Undefined\n");
      }
    }
#endif

    //----------Non-Phi Node Splitting----------
    // Since phi-nodes have now been handled, the Reachblock array for this
    // block is initialized with the correct starting value for the defs which
    // reach non-phi instructions in this block.  Thus, process non-phi
    // instructions normally, inserting SpillCopy nodes for all spill
    // locations.

    // Memoize any DOWN reaching definitions for use as DEBUG info
    for( insidx = 0; insidx < spill_cnt; insidx++ ) {
      debug_defs[insidx] = (UPblock[insidx]) ? NULL : Reachblock[insidx];
      if( UPblock[insidx] )     // Memoize UP decision at block start
        UP_entry[insidx]->set( b->_pre_order );
    }

    //----------Walk Instructions in the Block and Split----------
    // For all non-phi instructions in the block
    for( insidx = 1; insidx <= b->end_idx(); insidx++ ) {
      Node *n = b->get_node(insidx);
      // Find the defining Node's live range index
      uint defidx = _lrg_map.find_id(n);
      uint cnt = n->req();

      if (n->is_Phi()) {
        // Skip phi nodes after removing dead copies.
        if (defidx < _lrg_map.max_lrg_id()) {
          // Check for useless Phis.  These appear if we spill, then
          // coalesce away copies.  Dont touch Phis in spilling live
          // ranges; they are busy getting modifed in this pass.
          if( lrgs(defidx).reg() < LRG::SPILL_REG ) {
            uint i;
            Node *u = NULL;
            // Look for the Phi merging 2 unique inputs
            for( i = 1; i < cnt; i++ ) {
              // Ignore repeats and self
              if( n->in(i) != u && n->in(i) != n ) {
                // Found a unique input
                if( u != NULL ) // If it's the 2nd, bail out
                  break;
                u = n->in(i);   // Else record it
              }
            }
            assert( u, "at least 1 valid input expected" );
            if (i >= cnt) {    // Found one unique input
              assert(_lrg_map.find_id(n) == _lrg_map.find_id(u), "should be the same lrg");
              n->replace_by(u); // Then replace with unique input
              n->disconnect_inputs(NULL, C);
              b->remove_node(insidx);
              insidx--;
              b->_ihrp_index--;
              b->_fhrp_index--;
            }
          }
        }
        continue;
      }
      assert( insidx > b->_ihrp_index ||
              (b->_reg_pressure < (uint)INTPRESSURE) ||
              b->_ihrp_index > 4000000 ||
              b->_ihrp_index >= b->end_idx() ||
              !b->get_node(b->_ihrp_index)->is_Proj(), "" );
      assert( insidx > b->_fhrp_index ||
              (b->_freg_pressure < (uint)FLOATPRESSURE) ||
              b->_fhrp_index > 4000000 ||
              b->_fhrp_index >= b->end_idx() ||
              !b->get_node(b->_fhrp_index)->is_Proj(), "" );

      // ********** Handle Crossing HRP Boundry **********
      if( (insidx == b->_ihrp_index) || (insidx == b->_fhrp_index) ) {
        for( slidx = 0; slidx < spill_cnt; slidx++ ) {
          // Check for need to split at HRP boundary - split if UP
          n1 = Reachblock[slidx];
          // bail out if no reaching DEF
          if( n1 == NULL ) continue;
          // bail out if live range is 'isolated' around inner loop
          uint lidx = lidxs.at(slidx);
          // If live range is currently UP
          if( UPblock[slidx] ) {
            // set location to insert spills at
            // SPLIT DOWN HERE - NO CISC SPILL
            if( is_high_pressure( b, &lrgs(lidx), insidx ) &&
                !n1->rematerialize() ) {
              // If there is already a valid stack definition available, use it
              if( debug_defs[slidx] != NULL ) {
                Reachblock[slidx] = debug_defs[slidx];
              }
              else {
                // Insert point is just past last use or def in the block
                int insert_point = insidx-1;
                while( insert_point > 0 ) {
                  Node *n = b->get_node(insert_point);
                  // Hit top of block?  Quit going backwards
                  if (n->is_Phi()) {
                    break;
                  }
                  // Found a def?  Better split after it.
                  if (_lrg_map.live_range_id(n) == lidx) {
                    break;
                  }
                  // Look for a use
                  uint i;
                  for( i = 1; i < n->req(); i++ ) {
                    if (_lrg_map.live_range_id(n->in(i)) == lidx) {
                      break;
                    }
                  }
                  // Found a use?  Better split after it.
                  if (i < n->req()) {
                    break;
                  }
                  insert_point--;
                }
                uint orig_eidx = b->end_idx();
                maxlrg = split_DEF( n1, b, insert_point, maxlrg, Reachblock, debug_defs, splits, slidx);
                // If it wasn't split bail
                if (!maxlrg) {
                  return 0;
                }
                // Spill of NULL check mem op goes into the following block.
                if (b->end_idx() > orig_eidx) {
                  insidx++;
                }
              }
              // This is a new DEF, so update UP
              UPblock[slidx] = false;
#ifndef PRODUCT
              // DEBUG
              if( trace_spilling() ) {
                tty->print("\nNew Split DOWN DEF of Spill Idx ");
                tty->print("%d, UP %d:\n",slidx,false);
                n1->dump();
              }
#endif
            }
          }  // end if LRG is UP
        }  // end for all spilling live ranges
        assert( b->get_node(insidx) == n, "got insidx set incorrectly" );
      }  // end if crossing HRP Boundry

      // If the LRG index is oob, then this is a new spillcopy, skip it.
      if (defidx >= _lrg_map.max_lrg_id()) {
        continue;
      }
      LRG &deflrg = lrgs(defidx);
      uint copyidx = n->is_Copy();
      // Remove coalesced copy from CFG
      if (copyidx && defidx == _lrg_map.live_range_id(n->in(copyidx))) {
        n->replace_by( n->in(copyidx) );
        n->set_req( copyidx, NULL );
        b->remove_node(insidx--);
        b->_ihrp_index--; // Adjust the point where we go hi-pressure
        b->_fhrp_index--;
        continue;
      }

#define DERIVED 0

      // ********** Handle USES **********
      bool nullcheck = false;
      // Implicit null checks never use the spilled value
      if( n->is_MachNullCheck() )
        nullcheck = true;
      if( !nullcheck ) {
        // Search all inputs for a Spill-USE
        JVMState* jvms = n->jvms();
        uint oopoff = jvms ? jvms->oopoff() : cnt;
        uint old_last = cnt - 1;
        for( inpidx = 1; inpidx < cnt; inpidx++ ) {
          // Derived/base pairs may be added to our inputs during this loop.
          // If inpidx > old_last, then one of these new inputs is being
          // handled. Skip the derived part of the pair, but process
          // the base like any other input.
          if (inpidx > old_last && ((inpidx - oopoff) & 1) == DERIVED) {
            continue;  // skip derived_debug added below
          }
          // Get lidx of input
          uint useidx = _lrg_map.find_id(n->in(inpidx));
          // Not a brand-new split, and it is a spill use
          if (useidx < _lrg_map.max_lrg_id() && lrgs(useidx).reg() >= LRG::SPILL_REG) {
            // Check for valid reaching DEF
            slidx = lrg2reach[useidx];
            Node *def = Reachblock[slidx];
            assert( def != NULL, "Using Undefined Value in Split()\n");

            // (+++) %%%% remove this in favor of pre-pass in matcher.cpp
            // monitor references do not care where they live, so just hook
            if ( jvms && jvms->is_monitor_use(inpidx) ) {
              // The effect of this clone is to drop the node out of the block,
              // so that the allocator does not see it anymore, and therefore
              // does not attempt to assign it a register.
              def = clone_node(def, b, C);
              if (def == NULL || C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {
                return 0;
              }
              _lrg_map.extend(def->_idx, 0);
              _cfg.map_node_to_block(def, b);
              n->set_req(inpidx, def);
              continue;
            }

            // Rematerializable?  Then clone def at use site instead
            // of store/load
            if( def->rematerialize() ) {
              int old_size = b->number_of_nodes();
              def = split_Rematerialize( def, b, insidx, maxlrg, splits, slidx, lrg2reach, Reachblock, true );
              if( !def ) return 0; // Bail out
              insidx += b->number_of_nodes()-old_size;
            }

            MachNode *mach = n->is_Mach() ? n->as_Mach() : NULL;
            // Base pointers and oopmap references do not care where they live.
            if ((inpidx >= oopoff) ||
                (mach && mach->ideal_Opcode() == Op_AddP && inpidx == AddPNode::Base)) {
              if (def->rematerialize() && lrgs(useidx)._was_spilled2) {
                // This def has been rematerialized a couple of times without
                // progress. It doesn't care if it lives UP or DOWN, so
                // spill it down now.
                maxlrg = split_USE(def,b,n,inpidx,maxlrg,false,false,splits,slidx);
                // If it wasn't split bail
                if (!maxlrg) {
                  return 0;
                }
                insidx++;  // Reset iterator to skip USE side split
              } else {
                // Just hook the def edge
                n->set_req(inpidx, def);
              }

              if (inpidx >= oopoff) {
                // After oopoff, we have derived/base pairs.  We must mention all
                // derived pointers here as derived/base pairs for GC.  If the
                // derived value is spilling and we have a copy both in Reachblock
                // (called here 'def') and debug_defs[slidx] we need to mention
                // both in derived/base pairs or kill one.
                Node *derived_debug = debug_defs[slidx];
                if( ((inpidx - oopoff) & 1) == DERIVED && // derived vs base?
                    mach && mach->ideal_Opcode() != Op_Halt &&
                    derived_debug != NULL &&
                    derived_debug != def ) { // Actual 2nd value appears
                  // We have already set 'def' as a derived value.
                  // Also set debug_defs[slidx] as a derived value.
                  uint k;
                  for( k = oopoff; k < cnt; k += 2 )
                    if( n->in(k) == derived_debug )
                      break;      // Found an instance of debug derived
                  if( k == cnt ) {// No instance of debug_defs[slidx]
                    // Add a derived/base pair to cover the debug info.
                    // We have to process the added base later since it is not
                    // handled yet at this point but skip derived part.
                    assert(((n->req() - oopoff) & 1) == DERIVED,
                           "must match skip condition above");
                    n->add_req( derived_debug );   // this will be skipped above
                    n->add_req( n->in(inpidx+1) ); // this will be processed
                    // Increment cnt to handle added input edges on
                    // subsequent iterations.
                    cnt += 2;
                  }
                }
              }
              continue;
            }
            // Special logic for DEBUG info
            if( jvms && b->_freq > BLOCK_FREQUENCY(0.5) ) {
              uint debug_start = jvms->debug_start();
              // If this is debug info use & there is a reaching DOWN def
              if ((debug_start <= inpidx) && (debug_defs[slidx] != NULL)) {
                assert(inpidx < oopoff, "handle only debug info here");
                // Just hook it in & move on
                n->set_req(inpidx, debug_defs[slidx]);
                // (Note that this can make two sides of a split live at the
                // same time: The debug def on stack, and another def in a
                // register.  The GC needs to know about both of them, but any
                // derived pointers after oopoff will refer to only one of the
                // two defs and the GC would therefore miss the other.  Thus
                // this hack is only allowed for debug info which is Java state
                // and therefore never a derived pointer.)
                continue;
              }
            }
            // Grab register mask info
            const RegMask &dmask = def->out_RegMask();
            const RegMask &umask = n->in_RegMask(inpidx);
            bool is_vect = RegMask::is_vector(def->ideal_reg());
            assert(inpidx < oopoff, "cannot use-split oop map info");

            bool dup = UPblock[slidx];
            bool uup = umask.is_UP();

            // Need special logic to handle bound USES. Insert a split at this
            // bound use if we can't rematerialize the def, or if we need the
            // split to form a misaligned pair.
            if( !umask.is_AllStack() &&
                (int)umask.Size() <= lrgs(useidx).num_regs() &&
                (!def->rematerialize() ||
                 !is_vect && umask.is_misaligned_pair())) {
              // These need a Split regardless of overlap or pressure
              // SPLIT - NO DEF - NO CISC SPILL
              maxlrg = split_USE(def,b,n,inpidx,maxlrg,dup,false, splits,slidx);
              // If it wasn't split bail
              if (!maxlrg) {
                return 0;
              }
              insidx++;  // Reset iterator to skip USE side split
              continue;
            }

            if (UseFPUForSpilling && n->is_MachCall() && !uup && !dup ) {
              // The use at the call can force the def down so insert
              // a split before the use to allow the def more freedom.
              maxlrg = split_USE(def,b,n,inpidx,maxlrg,dup,false, splits,slidx);
              // If it wasn't split bail
              if (!maxlrg) {
                return 0;
              }
              insidx++;  // Reset iterator to skip USE side split
              continue;
            }

            // Here is the logic chart which describes USE Splitting:
            // 0 = false or DOWN, 1 = true or UP
            //
            // Overlap | DEF | USE | Action
            //-------------------------------------------------------
            //    0    |  0  |  0  | Copy - mem -> mem
            //    0    |  0  |  1  | Split-UP - Check HRP
            //    0    |  1  |  0  | Split-DOWN - Debug Info?
            //    0    |  1  |  1  | Copy - reg -> reg
            //    1    |  0  |  0  | Reset Input Edge (no Split)
            //    1    |  0  |  1  | Split-UP - Check HRP
            //    1    |  1  |  0  | Split-DOWN - Debug Info?
            //    1    |  1  |  1  | Reset Input Edge (no Split)
            //
            // So, if (dup == uup), then overlap test determines action,
            // with true being no split, and false being copy. Else,
            // if DEF is DOWN, Split-UP, and check HRP to decide on
            // resetting DEF. Finally if DEF is UP, Split-DOWN, with
            // special handling for Debug Info.
            if( dup == uup ) {
              if( dmask.overlap(umask) ) {
                // Both are either up or down, and there is overlap, No Split
                n->set_req(inpidx, def);
              }
              else {  // Both are either up or down, and there is no overlap
                if( dup ) {  // If UP, reg->reg copy
                  // COPY ACROSS HERE - NO DEF - NO CISC SPILL
                  maxlrg = split_USE(def,b,n,inpidx,maxlrg,false,false, splits,slidx);
                  // If it wasn't split bail
                  if (!maxlrg) {
                    return 0;
                  }
                  insidx++;  // Reset iterator to skip USE side split
                }
                else {       // DOWN, mem->mem copy
                  // COPY UP & DOWN HERE - NO DEF - NO CISC SPILL
                  // First Split-UP to move value into Register
                  uint def_ideal = def->ideal_reg();
                  const RegMask* tmp_rm = Matcher::idealreg2regmask[def_ideal];
                  Node *spill = new (C) MachSpillCopyNode(def, dmask, *tmp_rm);
                  insert_proj( b, insidx, spill, maxlrg );
                  // Then Split-DOWN as if previous Split was DEF
                  maxlrg = split_USE(spill,b,n,inpidx,maxlrg,false,false, splits,slidx);
                  // If it wasn't split bail
                  if (!maxlrg) {
                    return 0;
                  }
                  insidx += 2;  // Reset iterator to skip USE side splits
                }
              }  // End else no overlap
            }  // End if dup == uup
            // dup != uup, so check dup for direction of Split
            else {
              if( dup ) {  // If UP, Split-DOWN and check Debug Info
                // If this node is already a SpillCopy, just patch the edge
                // except the case of spilling to stack.
                if( n->is_SpillCopy() ) {
                  RegMask tmp_rm(umask);
                  tmp_rm.SUBTRACT(Matcher::STACK_ONLY_mask);
                  if( dmask.overlap(tmp_rm) ) {
                    if( def != n->in(inpidx) ) {
                      n->set_req(inpidx, def);
                    }
                    continue;
                  }
                }
                // COPY DOWN HERE - NO DEF - NO CISC SPILL
                maxlrg = split_USE(def,b,n,inpidx,maxlrg,false,false, splits,slidx);
                // If it wasn't split bail
                if (!maxlrg) {
                  return 0;
                }
                insidx++;  // Reset iterator to skip USE side split
                // Check for debug-info split.  Capture it for later
                // debug splits of the same value
                if (jvms && jvms->debug_start() <= inpidx && inpidx < oopoff)
                  debug_defs[slidx] = n->in(inpidx);

              }
              else {       // DOWN, Split-UP and check register pressure
                if( is_high_pressure( b, &lrgs(useidx), insidx ) ) {
                  // COPY UP HERE - NO DEF - CISC SPILL
                  maxlrg = split_USE(def,b,n,inpidx,maxlrg,true,true, splits,slidx);
                  // If it wasn't split bail
                  if (!maxlrg) {
                    return 0;
                  }
                  insidx++;  // Reset iterator to skip USE side split
                } else {                          // LRP
                  // COPY UP HERE - WITH DEF - NO CISC SPILL
                  maxlrg = split_USE(def,b,n,inpidx,maxlrg,true,false, splits,slidx);
                  // If it wasn't split bail
                  if (!maxlrg) {
                    return 0;
                  }
                  // Flag this lift-up in a low-pressure block as
                  // already-spilled, so if it spills again it will
                  // spill hard (instead of not spilling hard and
                  // coalescing away).
                  set_was_spilled(n->in(inpidx));
                  // Since this is a new DEF, update Reachblock & UP
                  Reachblock[slidx] = n->in(inpidx);
                  UPblock[slidx] = true;
                  insidx++;  // Reset iterator to skip USE side split
                }
              }  // End else DOWN
            }  // End dup != uup
          }  // End if Spill USE
        }  // End For All Inputs
      }  // End If not nullcheck

      // ********** Handle DEFS **********
      // DEFS either Split DOWN in HRP regions or when the LRG is bound, or
      // just reset the Reaches info in LRP regions.  DEFS must always update
      // UP info.
      if( deflrg.reg() >= LRG::SPILL_REG ) {    // Spilled?
        uint slidx = lrg2reach[defidx];
        // Add to defs list for later assignment of new live range number
        defs->push(n);
        // Set a flag on the Node indicating it has already spilled.
        // Only do it for capacity spills not conflict spills.
        if( !deflrg._direct_conflict )
          set_was_spilled(n);
        assert(!n->is_Phi(),"Cannot insert Phi into DEFS list");
        // Grab UP info for DEF
        const RegMask &dmask = n->out_RegMask();
        bool defup = dmask.is_UP();
        int ireg = n->ideal_reg();
        bool is_vect = RegMask::is_vector(ireg);
        // Only split at Def if this is a HRP block or bound (and spilled once)
        if( !n->rematerialize() &&
            (((dmask.is_bound(ireg) || !is_vect && dmask.is_misaligned_pair()) &&
              (deflrg._direct_conflict || deflrg._must_spill)) ||
             // Check for LRG being up in a register and we are inside a high
             // pressure area.  Spill it down immediately.
             (defup && is_high_pressure(b,&deflrg,insidx))) ) {
          assert( !n->rematerialize(), "" );
          assert( !n->is_SpillCopy(), "" );
          // Do a split at the def site.
          maxlrg = split_DEF( n, b, insidx, maxlrg, Reachblock, debug_defs, splits, slidx );
          // If it wasn't split bail
          if (!maxlrg) {
            return 0;
          }
          // Split DEF's Down
          UPblock[slidx] = 0;
#ifndef PRODUCT
          // DEBUG
          if( trace_spilling() ) {
            tty->print("\nNew Split DOWN DEF of Spill Idx ");
            tty->print("%d, UP %d:\n",slidx,false);
            n->dump();
          }
#endif
        }
        else {                  // Neither bound nor HRP, must be LRP
          // otherwise, just record the def
          Reachblock[slidx] = n;
          // UP should come from the outRegmask() of the DEF
          UPblock[slidx] = defup;
          // Update debug list of reaching down definitions, kill if DEF is UP
          debug_defs[slidx] = defup ? NULL : n;
#ifndef PRODUCT
          // DEBUG
          if( trace_spilling() ) {
            tty->print("\nNew DEF of Spill Idx ");
            tty->print("%d, UP %d:\n",slidx,defup);
            n->dump();
          }
#endif
        }  // End else LRP
      }  // End if spill def

      // ********** Split Left Over Mem-Mem Moves **********
      // Check for mem-mem copies and split them now.  Do not do this
      // to copies about to be spilled; they will be Split shortly.
      if (copyidx) {
        Node *use = n->in(copyidx);
        uint useidx = _lrg_map.find_id(use);
        if (useidx < _lrg_map.max_lrg_id() &&       // This is not a new split
            OptoReg::is_stack(deflrg.reg()) &&
            deflrg.reg() < LRG::SPILL_REG ) { // And DEF is from stack
          LRG &uselrg = lrgs(useidx);
          if( OptoReg::is_stack(uselrg.reg()) &&
              uselrg.reg() < LRG::SPILL_REG && // USE is from stack
              deflrg.reg() != uselrg.reg() ) { // Not trivially removed
            uint def_ideal_reg = n->bottom_type()->ideal_reg();
            const RegMask &def_rm = *Matcher::idealreg2regmask[def_ideal_reg];
            const RegMask &use_rm = n->in_RegMask(copyidx);
            if( def_rm.overlap(use_rm) && n->is_SpillCopy() ) {  // Bug 4707800, 'n' may be a storeSSL
              if (C->check_node_count(NodeLimitFudgeFactor, out_of_nodes)) {  // Check when generating nodes
                return 0;
              }
              Node *spill = new (C) MachSpillCopyNode(use,use_rm,def_rm);
              n->set_req(copyidx,spill);
              n->as_MachSpillCopy()->set_in_RegMask(def_rm);
              // Put the spill just before the copy
              insert_proj( b, insidx++, spill, maxlrg++ );
            }
          }
        }
      }
    }  // End For All Instructions in Block - Non-PHI Pass

    // Check if each LRG is live out of this block so as not to propagate
    // beyond the last use of a LRG.
    for( slidx = 0; slidx < spill_cnt; slidx++ ) {
      uint defidx = lidxs.at(slidx);
      IndexSet *liveout = _live->live(b);
      if( !liveout->member(defidx) ) {
#ifdef ASSERT
        // The index defidx is not live.  Check the liveout array to ensure that
        // it contains no members which compress to defidx.  Finding such an
        // instance may be a case to add liveout adjustment in compress_uf_map().
        // See 5063219.
        uint member;
        IndexSetIterator isi(liveout);
        while ((member = isi.next()) != 0) {
          assert(defidx != _lrg_map.find_const(member), "Live out member has not been compressed");
        }
#endif
        Reachblock[slidx] = NULL;
      } else {
        assert(Reachblock[slidx] != NULL,"No reaching definition for liveout value");
      }
    }
#ifndef PRODUCT
    if( trace_spilling() )
      b->dump();
#endif
  }  // End For All Blocks

  //----------PASS 2----------
  // Reset all DEF live range numbers here
  for( insidx = 0; insidx < defs->size(); insidx++ ) {
    // Grab the def
    n1 = defs->at(insidx);
    // Set new lidx for DEF
    new_lrg(n1, maxlrg++);
  }
  //----------Phi Node Splitting----------
  // Clean up a phi here, and assign a new live range number
  // Cycle through this block's predecessors, collecting Reaches
  // info for each spilled LRG and update edges.
  // Walk the phis list to patch inputs, split phis, and name phis
  uint lrgs_before_phi_split = maxlrg;
  for( insidx = 0; insidx < phis->size(); insidx++ ) {
    Node *phi = phis->at(insidx);
    assert(phi->is_Phi(),"This list must only contain Phi Nodes");
    Block *b = _cfg.get_block_for_node(phi);
    // Grab the live range number
    uint lidx = _lrg_map.find_id(phi);
    uint slidx = lrg2reach[lidx];
    // Update node to lidx map
    new_lrg(phi, maxlrg++);
    // Get PASS1's up/down decision for the block.
    int phi_up = !!UP_entry[slidx]->test(b->_pre_order);

    // Force down if double-spilling live range
    if( lrgs(lidx)._was_spilled1 )
      phi_up = false;

    // When splitting a Phi we an split it normal or "inverted".
    // An inverted split makes the splits target the Phi's UP/DOWN
    // sense inverted; then the Phi is followed by a final def-side
    // split to invert back.  It changes which blocks the spill code
    // goes in.

    // Walk the predecessor blocks and assign the reaching def to the Phi.
    // Split Phi nodes by placing USE side splits wherever the reaching
    // DEF has the wrong UP/DOWN value.
    for( uint i = 1; i < b->num_preds(); i++ ) {
      // Get predecessor block pre-order number
      Block *pred = _cfg.get_block_for_node(b->pred(i));
      pidx = pred->_pre_order;
      // Grab reaching def
      Node *def = Reaches[pidx][slidx];
      Node** Reachblock = Reaches[pidx];
      assert( def, "must have reaching def" );
      // If input up/down sense and reg-pressure DISagree
      if (def->rematerialize()) {
        // Place the rematerialized node above any MSCs created during
        // phi node splitting.  end_idx points at the insertion point
        // so look at the node before it.
        int insert = pred->end_idx();
        while (insert >= 1 &&
               pred->get_node(insert - 1)->is_SpillCopy() &&
               _lrg_map.find(pred->get_node(insert - 1)) >= lrgs_before_phi_split) {
          insert--;
        }
        def = split_Rematerialize(def, pred, insert, maxlrg, splits, slidx, lrg2reach, Reachblock, false);
        if (!def) {
          return 0;    // Bail out
        }
      }
      // Update the Phi's input edge array
      phi->set_req(i,def);
      // Grab the UP/DOWN sense for the input
      u1 = UP[pidx][slidx];
      if( u1 != (phi_up != 0)) {
        maxlrg = split_USE(def, b, phi, i, maxlrg, !u1, false, splits,slidx);
        // If it wasn't split bail
        if (!maxlrg) {
          return 0;
        }
      }
    }  // End for all inputs to the Phi
  }  // End for all Phi Nodes
  // Update _maxlrg to save Union asserts
  _lrg_map.set_max_lrg_id(maxlrg);


  //----------PASS 3----------
  // Pass over all Phi's to union the live ranges
  for( insidx = 0; insidx < phis->size(); insidx++ ) {
    Node *phi = phis->at(insidx);
    assert(phi->is_Phi(),"This list must only contain Phi Nodes");
    // Walk all inputs to Phi and Union input live range with Phi live range
    for( uint i = 1; i < phi->req(); i++ ) {
      // Grab the input node
      Node *n = phi->in(i);
      assert(n, "node should exist");
      uint lidx = _lrg_map.find(n);
      uint pidx = _lrg_map.find(phi);
      if (lidx < pidx) {
        Union(n, phi);
      }
      else if(lidx > pidx) {
        Union(phi, n);
      }
    }  // End for all inputs to the Phi Node
  }  // End for all Phi Nodes
  // Now union all two address instructions
  for (insidx = 0; insidx < defs->size(); insidx++) {
    // Grab the def
    n1 = defs->at(insidx);
    // Set new lidx for DEF & handle 2-addr instructions
    if (n1->is_Mach() && ((twoidx = n1->as_Mach()->two_adr()) != 0)) {
      assert(_lrg_map.find(n1->in(twoidx)) < maxlrg,"Assigning bad live range index");
      // Union the input and output live ranges
      uint lr1 = _lrg_map.find(n1);
      uint lr2 = _lrg_map.find(n1->in(twoidx));
      if (lr1 < lr2) {
        Union(n1, n1->in(twoidx));
      }
      else if (lr1 > lr2) {
        Union(n1->in(twoidx), n1);
      }
    }  // End if two address
  }  // End for all defs
  // DEBUG
#ifdef ASSERT
  // Validate all live range index assignments
  for (bidx = 0; bidx < _cfg.number_of_blocks(); bidx++) {
    b  = _cfg.get_block(bidx);
    for (insidx = 0; insidx <= b->end_idx(); insidx++) {
      Node *n = b->get_node(insidx);
      uint defidx = _lrg_map.find(n);
      assert(defidx < _lrg_map.max_lrg_id(), "Bad live range index in Split");
      assert(defidx < maxlrg,"Bad live range index in Split");
    }
  }
  // Issue a warning if splitting made no progress
  int noprogress = 0;
  for (slidx = 0; slidx < spill_cnt; slidx++) {
    if (PrintOpto && WizardMode && splits.at(slidx) == 0) {
      tty->print_cr("Failed to split live range %d", lidxs.at(slidx));
      //BREAKPOINT;
    }
    else {
      noprogress++;
    }
  }
  if(!noprogress) {
    tty->print_cr("Failed to make progress in Split");
    //BREAKPOINT;
  }
#endif
  // Return updated count of live ranges
  return maxlrg;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java reg_split.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.