alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (type.cpp)

This example Java source code file (type.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bad, botptr, bottom, constant, meeting, notnull, null, top, type, typearyptr, typeint, typeoopptr, typeptr, typetuple

The type.cpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "ci/ciMethodData.hpp"
#include "ci/ciTypeFlow.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "compiler/compileLog.hpp"
#include "libadt/dict.hpp"
#include "memory/gcLocker.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/typeArrayKlass.hpp"
#include "opto/matcher.hpp"
#include "opto/node.hpp"
#include "opto/opcodes.hpp"
#include "opto/type.hpp"

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

// Dictionary of types shared among compilations.
Dict* Type::_shared_type_dict = NULL;

// Array which maps compiler types to Basic Types
Type::TypeInfo Type::_type_info[Type::lastype] = {
  { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array

#ifndef SPARC
  { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
#else
  { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
#endif // IA32 || AMD64
  { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
};

// Map ideal registers (machine types) to ideal types
const Type *Type::mreg2type[_last_machine_leaf];

// Map basic types to canonical Type* pointers.
const Type* Type::     _const_basic_type[T_CONFLICT+1];

// Map basic types to constant-zero Types.
const Type* Type::            _zero_type[T_CONFLICT+1];

// Map basic types to array-body alias types.
const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];

//=============================================================================
// Convenience common pre-built types.
const Type *Type::ABIO;         // State-of-machine only
const Type *Type::BOTTOM;       // All values
const Type *Type::CONTROL;      // Control only
const Type *Type::DOUBLE;       // All doubles
const Type *Type::FLOAT;        // All floats
const Type *Type::HALF;         // Placeholder half of doublewide type
const Type *Type::MEMORY;       // Abstract store only
const Type *Type::RETURN_ADDRESS;
const Type *Type::TOP;          // No values in set

//------------------------------get_const_type---------------------------
const Type* Type::get_const_type(ciType* type) {
  if (type == NULL) {
    return NULL;
  } else if (type->is_primitive_type()) {
    return get_const_basic_type(type->basic_type());
  } else {
    return TypeOopPtr::make_from_klass(type->as_klass());
  }
}

//---------------------------array_element_basic_type---------------------------------
// Mapping to the array element's basic type.
BasicType Type::array_element_basic_type() const {
  BasicType bt = basic_type();
  if (bt == T_INT) {
    if (this == TypeInt::INT)   return T_INT;
    if (this == TypeInt::CHAR)  return T_CHAR;
    if (this == TypeInt::BYTE)  return T_BYTE;
    if (this == TypeInt::BOOL)  return T_BOOLEAN;
    if (this == TypeInt::SHORT) return T_SHORT;
    return T_VOID;
  }
  return bt;
}

//---------------------------get_typeflow_type---------------------------------
// Import a type produced by ciTypeFlow.
const Type* Type::get_typeflow_type(ciType* type) {
  switch (type->basic_type()) {

  case ciTypeFlow::StateVector::T_BOTTOM:
    assert(type == ciTypeFlow::StateVector::bottom_type(), "");
    return Type::BOTTOM;

  case ciTypeFlow::StateVector::T_TOP:
    assert(type == ciTypeFlow::StateVector::top_type(), "");
    return Type::TOP;

  case ciTypeFlow::StateVector::T_NULL:
    assert(type == ciTypeFlow::StateVector::null_type(), "");
    return TypePtr::NULL_PTR;

  case ciTypeFlow::StateVector::T_LONG2:
    // The ciTypeFlow pass pushes a long, then the half.
    // We do the same.
    assert(type == ciTypeFlow::StateVector::long2_type(), "");
    return TypeInt::TOP;

  case ciTypeFlow::StateVector::T_DOUBLE2:
    // The ciTypeFlow pass pushes double, then the half.
    // Our convention is the same.
    assert(type == ciTypeFlow::StateVector::double2_type(), "");
    return Type::TOP;

  case T_ADDRESS:
    assert(type->is_return_address(), "");
    return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());

  default:
    // make sure we did not mix up the cases:
    assert(type != ciTypeFlow::StateVector::bottom_type(), "");
    assert(type != ciTypeFlow::StateVector::top_type(), "");
    assert(type != ciTypeFlow::StateVector::null_type(), "");
    assert(type != ciTypeFlow::StateVector::long2_type(), "");
    assert(type != ciTypeFlow::StateVector::double2_type(), "");
    assert(!type->is_return_address(), "");

    return Type::get_const_type(type);
  }
}


//-----------------------make_from_constant------------------------------------
const Type* Type::make_from_constant(ciConstant constant,
                                     bool require_constant, bool is_autobox_cache) {
  switch (constant.basic_type()) {
  case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
  case T_CHAR:     return TypeInt::make(constant.as_char());
  case T_BYTE:     return TypeInt::make(constant.as_byte());
  case T_SHORT:    return TypeInt::make(constant.as_short());
  case T_INT:      return TypeInt::make(constant.as_int());
  case T_LONG:     return TypeLong::make(constant.as_long());
  case T_FLOAT:    return TypeF::make(constant.as_float());
  case T_DOUBLE:   return TypeD::make(constant.as_double());
  case T_ARRAY:
  case T_OBJECT:
    {
      // cases:
      //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
      //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
      // An oop is not scavengable if it is in the perm gen.
      ciObject* oop_constant = constant.as_object();
      if (oop_constant->is_null_object()) {
        return Type::get_zero_type(T_OBJECT);
      } else if (require_constant || oop_constant->should_be_constant()) {
        return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
      }
    }
  }
  // Fall through to failure
  return NULL;
}


//------------------------------make-------------------------------------------
// Create a simple Type, with default empty symbol sets.  Then hashcons it
// and look for an existing copy in the type dictionary.
const Type *Type::make( enum TYPES t ) {
  return (new Type(t))->hashcons();
}

//------------------------------cmp--------------------------------------------
int Type::cmp( const Type *const t1, const Type *const t2 ) {
  if( t1->_base != t2->_base )
    return 1;                   // Missed badly
  assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
  return !t1->eq(t2);           // Return ZERO if equal
}

//------------------------------hash-------------------------------------------
int Type::uhash( const Type *const t ) {
  return t->hash();
}

#define SMALLINT ((juint)3)  // a value too insignificant to consider widening

//--------------------------Initialize_shared----------------------------------
void Type::Initialize_shared(Compile* current) {
  // This method does not need to be locked because the first system
  // compilations (stub compilations) occur serially.  If they are
  // changed to proceed in parallel, then this section will need
  // locking.

  Arena* save = current->type_arena();
  Arena* shared_type_arena = new (mtCompiler)Arena();

  current->set_type_arena(shared_type_arena);
  _shared_type_dict =
    new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
                                  shared_type_arena, 128 );
  current->set_type_dict(_shared_type_dict);

  // Make shared pre-built types.
  CONTROL = make(Control);      // Control only
  TOP     = make(Top);          // No values in set
  MEMORY  = make(Memory);       // Abstract store only
  ABIO    = make(Abio);         // State-of-machine only
  RETURN_ADDRESS=make(Return_Address);
  FLOAT   = make(FloatBot);     // All floats
  DOUBLE  = make(DoubleBot);    // All doubles
  BOTTOM  = make(Bottom);       // Everything
  HALF    = make(Half);         // Placeholder half of doublewide type

  TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
  TypeF::ONE  = TypeF::make(1.0); // Float 1

  TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
  TypeD::ONE  = TypeD::make(1.0); // Double 1

  TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
  TypeInt::ZERO    = TypeInt::make( 0);  //  0
  TypeInt::ONE     = TypeInt::make( 1);  //  1
  TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
  TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
  TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
  TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
  TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
  TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
  TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
  TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
  TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
  TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
  TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
  TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
  TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
  TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
  TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
  // CmpL is overloaded both as the bytecode computation returning
  // a trinary (-1,0,+1) integer result AND as an efficient long
  // compare returning optimizer ideal-type flags.
  assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
  assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
  assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
  assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
  assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");

  TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
  TypeLong::ZERO    = TypeLong::make( 0);        //  0
  TypeLong::ONE     = TypeLong::make( 1);        //  1
  TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
  TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
  TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
  TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);

  const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
  fboth[0] = Type::CONTROL;
  fboth[1] = Type::CONTROL;
  TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );

  const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
  ffalse[0] = Type::CONTROL;
  ffalse[1] = Type::TOP;
  TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );

  const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
  fneither[0] = Type::TOP;
  fneither[1] = Type::TOP;
  TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );

  const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
  ftrue[0] = Type::TOP;
  ftrue[1] = Type::CONTROL;
  TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );

  const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
  floop[0] = Type::CONTROL;
  floop[1] = TypeInt::INT;
  TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );

  TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
  TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
  TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );

  TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
  TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );

  const Type **fmembar = TypeTuple::fields(0);
  TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);

  const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
  fsc[0] = TypeInt::CC;
  fsc[1] = Type::MEMORY;
  TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);

  TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
  TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
  TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
  TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
                                           false, 0, oopDesc::mark_offset_in_bytes());
  TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
                                           false, 0, oopDesc::klass_offset_in_bytes());
  TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot, NULL);

  TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);

  TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
  TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );

  TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );

  mreg2type[Op_Node] = Type::BOTTOM;
  mreg2type[Op_Set ] = 0;
  mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
  mreg2type[Op_RegI] = TypeInt::INT;
  mreg2type[Op_RegP] = TypePtr::BOTTOM;
  mreg2type[Op_RegF] = Type::FLOAT;
  mreg2type[Op_RegD] = Type::DOUBLE;
  mreg2type[Op_RegL] = TypeLong::LONG;
  mreg2type[Op_RegFlags] = TypeInt::CC;

  TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());

  TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);

#ifdef _LP64
  if (UseCompressedOops) {
    assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
    TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
  } else
#endif
  {
    // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
    TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
  }
  TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
  TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
  TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
  TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
  TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
  TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
  TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);

  // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
  TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
  TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
  TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
  TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
  TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
  TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
  TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
  TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
  TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
  TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
  TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;

  TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
  TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );

  const Type **fi2c = TypeTuple::fields(2);
  fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
  fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
  TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);

  const Type **intpair = TypeTuple::fields(2);
  intpair[0] = TypeInt::INT;
  intpair[1] = TypeInt::INT;
  TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);

  const Type **longpair = TypeTuple::fields(2);
  longpair[0] = TypeLong::LONG;
  longpair[1] = TypeLong::LONG;
  TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);

  const Type **intccpair = TypeTuple::fields(2);
  intccpair[0] = TypeInt::INT;
  intccpair[1] = TypeInt::CC;
  TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);

  const Type **longccpair = TypeTuple::fields(2);
  longccpair[0] = TypeLong::LONG;
  longccpair[1] = TypeInt::CC;
  TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);

  _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
  _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
  _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
  _const_basic_type[T_CHAR]        = TypeInt::CHAR;
  _const_basic_type[T_BYTE]        = TypeInt::BYTE;
  _const_basic_type[T_SHORT]       = TypeInt::SHORT;
  _const_basic_type[T_INT]         = TypeInt::INT;
  _const_basic_type[T_LONG]        = TypeLong::LONG;
  _const_basic_type[T_FLOAT]       = Type::FLOAT;
  _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
  _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
  _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
  _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
  _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
  _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?

  _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
  _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
  _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
  _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
  _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
  _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
  _zero_type[T_INT]         = TypeInt::ZERO;
  _zero_type[T_LONG]        = TypeLong::ZERO;
  _zero_type[T_FLOAT]       = TypeF::ZERO;
  _zero_type[T_DOUBLE]      = TypeD::ZERO;
  _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
  _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
  _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
  _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all

  // get_zero_type() should not happen for T_CONFLICT
  _zero_type[T_CONFLICT]= NULL;

  // Vector predefined types, it needs initialized _const_basic_type[].
  if (Matcher::vector_size_supported(T_BYTE,4)) {
    TypeVect::VECTS = TypeVect::make(T_BYTE,4);
  }
  if (Matcher::vector_size_supported(T_FLOAT,2)) {
    TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
  }
  if (Matcher::vector_size_supported(T_FLOAT,4)) {
    TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
  }
  if (Matcher::vector_size_supported(T_FLOAT,8)) {
    TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
  }
  mreg2type[Op_VecS] = TypeVect::VECTS;
  mreg2type[Op_VecD] = TypeVect::VECTD;
  mreg2type[Op_VecX] = TypeVect::VECTX;
  mreg2type[Op_VecY] = TypeVect::VECTY;

  // Restore working type arena.
  current->set_type_arena(save);
  current->set_type_dict(NULL);
}

//------------------------------Initialize-------------------------------------
void Type::Initialize(Compile* current) {
  assert(current->type_arena() != NULL, "must have created type arena");

  if (_shared_type_dict == NULL) {
    Initialize_shared(current);
  }

  Arena* type_arena = current->type_arena();

  // Create the hash-cons'ing dictionary with top-level storage allocation
  Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
  current->set_type_dict(tdic);

  // Transfer the shared types.
  DictI i(_shared_type_dict);
  for( ; i.test(); ++i ) {
    Type* t = (Type*)i._value;
    tdic->Insert(t,t);  // New Type, insert into Type table
  }
}

//------------------------------hashcons---------------------------------------
// Do the hash-cons trick.  If the Type already exists in the type table,
// delete the current Type and return the existing Type.  Otherwise stick the
// current Type in the Type table.
const Type *Type::hashcons(void) {
  debug_only(base());           // Check the assertion in Type::base().
  // Look up the Type in the Type dictionary
  Dict *tdic = type_dict();
  Type* old = (Type*)(tdic->Insert(this, this, false));
  if( old ) {                   // Pre-existing Type?
    if( old != this )           // Yes, this guy is not the pre-existing?
      delete this;              // Yes, Nuke this guy
    assert( old->_dual, "" );
    return old;                 // Return pre-existing
  }

  // Every type has a dual (to make my lattice symmetric).
  // Since we just discovered a new Type, compute its dual right now.
  assert( !_dual, "" );         // No dual yet
  _dual = xdual();              // Compute the dual
  if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
    _dual = this;
    return this;
  }
  assert( !_dual->_dual, "" );  // No reverse dual yet
  assert( !(*tdic)[_dual], "" ); // Dual not in type system either
  // New Type, insert into Type table
  tdic->Insert((void*)_dual,(void*)_dual);
  ((Type*)_dual)->_dual = this; // Finish up being symmetric
#ifdef ASSERT
  Type *dual_dual = (Type*)_dual->xdual();
  assert( eq(dual_dual), "xdual(xdual()) should be identity" );
  delete dual_dual;
#endif
  return this;                  // Return new Type
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool Type::eq( const Type * ) const {
  return true;                  // Nothing else can go wrong
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int Type::hash(void) const {
  return _base;
}

//------------------------------is_finite--------------------------------------
// Has a finite value
bool Type::is_finite() const {
  return false;
}

//------------------------------is_nan-----------------------------------------
// Is not a number (NaN)
bool Type::is_nan()    const {
  return false;
}

//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool Type::interface_vs_oop_helper(const Type *t) const {
  bool result = false;

  const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
  const TypePtr*    t_ptr =    t->make_ptr();
  if( this_ptr == NULL || t_ptr == NULL )
    return result;

  const TypeInstPtr* this_inst = this_ptr->isa_instptr();
  const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
  if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
    bool this_interface = this_inst->klass()->is_interface();
    bool    t_interface =    t_inst->klass()->is_interface();
    result = this_interface ^ t_interface;
  }

  return result;
}

bool Type::interface_vs_oop(const Type *t) const {
  if (interface_vs_oop_helper(t)) {
    return true;
  }
  // Now check the speculative parts as well
  const TypeOopPtr* this_spec = isa_oopptr() != NULL ? isa_oopptr()->speculative() : NULL;
  const TypeOopPtr* t_spec = t->isa_oopptr() != NULL ? t->isa_oopptr()->speculative() : NULL;
  if (this_spec != NULL && t_spec != NULL) {
    if (this_spec->interface_vs_oop_helper(t_spec)) {
      return true;
    }
    return false;
  }
  if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
    return true;
  }
  if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
    return true;
  }
  return false;
}

#endif

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  NOT virtual.  It enforces that meet is
// commutative and the lattice is symmetric.
const Type *Type::meet( const Type *t ) const {
  if (isa_narrowoop() && t->isa_narrowoop()) {
    const Type* result = make_ptr()->meet(t->make_ptr());
    return result->make_narrowoop();
  }
  if (isa_narrowklass() && t->isa_narrowklass()) {
    const Type* result = make_ptr()->meet(t->make_ptr());
    return result->make_narrowklass();
  }

  const Type *mt = xmeet(t);
  if (isa_narrowoop() || t->isa_narrowoop()) return mt;
  if (isa_narrowklass() || t->isa_narrowklass()) return mt;
#ifdef ASSERT
  assert( mt == t->xmeet(this), "meet not commutative" );
  const Type* dual_join = mt->_dual;
  const Type *t2t    = dual_join->xmeet(t->_dual);
  const Type *t2this = dual_join->xmeet(   _dual);

  // Interface meet Oop is Not Symmetric:
  // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
  // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull

  if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
    tty->print_cr("=== Meet Not Symmetric ===");
    tty->print("t   =                   ");         t->dump(); tty->cr();
    tty->print("this=                   ");            dump(); tty->cr();
    tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();

    tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
    tty->print("this_dual=              ");     _dual->dump(); tty->cr();
    tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();

    tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
    tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();

    fatal("meet not symmetric" );
  }
#endif
  return mt;
}

//------------------------------xmeet------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *Type::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Meeting TOP with anything?
  if( _base == Top ) return t;

  // Meeting BOTTOM with anything?
  if( _base == Bottom ) return BOTTOM;

  // Current "this->_base" is one of: Bad, Multi, Control, Top,
  // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
  switch (t->base()) {  // Switch on original type

  // Cut in half the number of cases I must handle.  Only need cases for when
  // the given enum "t->type" is less than or equal to the local enum "type".
  case FloatCon:
  case DoubleCon:
  case Int:
  case Long:
    return t->xmeet(this);

  case OopPtr:
    return t->xmeet(this);

  case InstPtr:
    return t->xmeet(this);

  case MetadataPtr:
  case KlassPtr:
    return t->xmeet(this);

  case AryPtr:
    return t->xmeet(this);

  case NarrowOop:
    return t->xmeet(this);

  case NarrowKlass:
    return t->xmeet(this);

  case Bad:                     // Type check
  default:                      // Bogus type not in lattice
    typerr(t);
    return Type::BOTTOM;

  case Bottom:                  // Ye Olde Default
    return t;

  case FloatTop:
    if( _base == FloatTop ) return this;
  case FloatBot:                // Float
    if( _base == FloatBot || _base == FloatTop ) return FLOAT;
    if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
    typerr(t);
    return Type::BOTTOM;

  case DoubleTop:
    if( _base == DoubleTop ) return this;
  case DoubleBot:               // Double
    if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
    if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
    typerr(t);
    return Type::BOTTOM;

  // These next few cases must match exactly or it is a compile-time error.
  case Control:                 // Control of code
  case Abio:                    // State of world outside of program
  case Memory:
    if( _base == t->_base )  return this;
    typerr(t);
    return Type::BOTTOM;

  case Top:                     // Top of the lattice
    return this;
  }

  // The type is unchanged
  return this;
}

//-----------------------------filter------------------------------------------
const Type *Type::filter( const Type *kills ) const {
  const Type* ft = join(kills);
  if (ft->empty())
    return Type::TOP;           // Canonical empty value
  return ft;
}

//------------------------------xdual------------------------------------------
// Compute dual right now.
const Type::TYPES Type::dual_type[Type::lastype] = {
  Bad,          // Bad
  Control,      // Control
  Bottom,       // Top
  Bad,          // Int - handled in v-call
  Bad,          // Long - handled in v-call
  Half,         // Half
  Bad,          // NarrowOop - handled in v-call
  Bad,          // NarrowKlass - handled in v-call

  Bad,          // Tuple - handled in v-call
  Bad,          // Array - handled in v-call
  Bad,          // VectorS - handled in v-call
  Bad,          // VectorD - handled in v-call
  Bad,          // VectorX - handled in v-call
  Bad,          // VectorY - handled in v-call

  Bad,          // AnyPtr - handled in v-call
  Bad,          // RawPtr - handled in v-call
  Bad,          // OopPtr - handled in v-call
  Bad,          // InstPtr - handled in v-call
  Bad,          // AryPtr - handled in v-call

  Bad,          //  MetadataPtr - handled in v-call
  Bad,          // KlassPtr - handled in v-call

  Bad,          // Function - handled in v-call
  Abio,         // Abio
  Return_Address,// Return_Address
  Memory,       // Memory
  FloatBot,     // FloatTop
  FloatCon,     // FloatCon
  FloatTop,     // FloatBot
  DoubleBot,    // DoubleTop
  DoubleCon,    // DoubleCon
  DoubleTop,    // DoubleBot
  Top           // Bottom
};

const Type *Type::xdual() const {
  // Note: the base() accessor asserts the sanity of _base.
  assert(_type_info[base()].dual_type != Bad, "implement with v-call");
  return new Type(_type_info[_base].dual_type);
}

//------------------------------has_memory-------------------------------------
bool Type::has_memory() const {
  Type::TYPES tx = base();
  if (tx == Memory) return true;
  if (tx == Tuple) {
    const TypeTuple *t = is_tuple();
    for (uint i=0; i < t->cnt(); i++) {
      tx = t->field_at(i)->base();
      if (tx == Memory)  return true;
    }
  }
  return false;
}

#ifndef PRODUCT
//------------------------------dump2------------------------------------------
void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
  st->print(_type_info[_base].msg);
}

//------------------------------dump-------------------------------------------
void Type::dump_on(outputStream *st) const {
  ResourceMark rm;
  Dict d(cmpkey,hashkey);       // Stop recursive type dumping
  dump2(d,1, st);
  if (is_ptr_to_narrowoop()) {
    st->print(" [narrow]");
  } else if (is_ptr_to_narrowklass()) {
    st->print(" [narrowklass]");
  }
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Singletons are integer, float or double constants.
bool Type::singleton(void) const {
  return _base == Top || _base == Half;
}

//------------------------------empty------------------------------------------
// TRUE if Type is a type with no values, FALSE otherwise.
bool Type::empty(void) const {
  switch (_base) {
  case DoubleTop:
  case FloatTop:
  case Top:
    return true;

  case Half:
  case Abio:
  case Return_Address:
  case Memory:
  case Bottom:
  case FloatBot:
  case DoubleBot:
    return false;  // never a singleton, therefore never empty
  }

  ShouldNotReachHere();
  return false;
}

//------------------------------dump_stats-------------------------------------
// Dump collected statistics to stderr
#ifndef PRODUCT
void Type::dump_stats() {
  tty->print("Types made: %d\n", type_dict()->Size());
}
#endif

//------------------------------typerr-----------------------------------------
void Type::typerr( const Type *t ) const {
#ifndef PRODUCT
  tty->print("\nError mixing types: ");
  dump();
  tty->print(" and ");
  t->dump();
  tty->print("\n");
#endif
  ShouldNotReachHere();
}


//=============================================================================
// Convenience common pre-built types.
const TypeF *TypeF::ZERO;       // Floating point zero
const TypeF *TypeF::ONE;        // Floating point one

//------------------------------make-------------------------------------------
// Create a float constant
const TypeF *TypeF::make(float f) {
  return (TypeF*)(new TypeF(f))->hashcons();
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeF::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is FloatCon
  switch (t->base()) {          // Switch on original type
  case AnyPtr:                  // Mixing with oops happens when javac
  case RawPtr:                  // reuses local variables
  case OopPtr:
  case InstPtr:
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
  case NarrowOop:
  case NarrowKlass:
  case Int:
  case Long:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;

  case FloatBot:
    return t;

  default:                      // All else is a mistake
    typerr(t);

  case FloatCon:                // Float-constant vs Float-constant?
    if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
                                // must compare bitwise as positive zero, negative zero and NaN have
                                // all the same representation in C++
      return FLOAT;             // Return generic float
                                // Equal constants
  case Top:
  case FloatTop:
    break;                      // Return the float constant
  }
  return this;                  // Return the float constant
}

//------------------------------xdual------------------------------------------
// Dual: symmetric
const Type *TypeF::xdual() const {
  return this;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeF::eq( const Type *t ) const {
  if( g_isnan(_f) ||
      g_isnan(t->getf()) ) {
    // One or both are NANs.  If both are NANs return true, else false.
    return (g_isnan(_f) && g_isnan(t->getf()));
  }
  if (_f == t->getf()) {
    // (NaN is impossible at this point, since it is not equal even to itself)
    if (_f == 0.0) {
      // difference between positive and negative zero
      if (jint_cast(_f) != jint_cast(t->getf()))  return false;
    }
    return true;
  }
  return false;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeF::hash(void) const {
  return *(int*)(&_f);
}

//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeF::is_finite() const {
  return g_isfinite(getf()) != 0;
}

//------------------------------is_nan-----------------------------------------
// Is not a number (NaN)
bool TypeF::is_nan()    const {
  return g_isnan(getf()) != 0;
}

//------------------------------dump2------------------------------------------
// Dump float constant Type
#ifndef PRODUCT
void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
  Type::dump2(d,depth, st);
  st->print("%f", _f);
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Singletons are integer, float or double constants
// or a single symbol.
bool TypeF::singleton(void) const {
  return true;                  // Always a singleton
}

bool TypeF::empty(void) const {
  return false;                 // always exactly a singleton
}

//=============================================================================
// Convenience common pre-built types.
const TypeD *TypeD::ZERO;       // Floating point zero
const TypeD *TypeD::ONE;        // Floating point one

//------------------------------make-------------------------------------------
const TypeD *TypeD::make(double d) {
  return (TypeD*)(new TypeD(d))->hashcons();
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeD::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is DoubleCon
  switch (t->base()) {          // Switch on original type
  case AnyPtr:                  // Mixing with oops happens when javac
  case RawPtr:                  // reuses local variables
  case OopPtr:
  case InstPtr:
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
  case NarrowOop:
  case NarrowKlass:
  case Int:
  case Long:
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;

  case DoubleBot:
    return t;

  default:                      // All else is a mistake
    typerr(t);

  case DoubleCon:               // Double-constant vs Double-constant?
    if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
      return DOUBLE;            // Return generic double
  case Top:
  case DoubleTop:
    break;
  }
  return this;                  // Return the double constant
}

//------------------------------xdual------------------------------------------
// Dual: symmetric
const Type *TypeD::xdual() const {
  return this;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeD::eq( const Type *t ) const {
  if( g_isnan(_d) ||
      g_isnan(t->getd()) ) {
    // One or both are NANs.  If both are NANs return true, else false.
    return (g_isnan(_d) && g_isnan(t->getd()));
  }
  if (_d == t->getd()) {
    // (NaN is impossible at this point, since it is not equal even to itself)
    if (_d == 0.0) {
      // difference between positive and negative zero
      if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
    }
    return true;
  }
  return false;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeD::hash(void) const {
  return *(int*)(&_d);
}

//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeD::is_finite() const {
  return g_isfinite(getd()) != 0;
}

//------------------------------is_nan-----------------------------------------
// Is not a number (NaN)
bool TypeD::is_nan()    const {
  return g_isnan(getd()) != 0;
}

//------------------------------dump2------------------------------------------
// Dump double constant Type
#ifndef PRODUCT
void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
  Type::dump2(d,depth,st);
  st->print("%f", _d);
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Singletons are integer, float or double constants
// or a single symbol.
bool TypeD::singleton(void) const {
  return true;                  // Always a singleton
}

bool TypeD::empty(void) const {
  return false;                 // always exactly a singleton
}

//=============================================================================
// Convience common pre-built types.
const TypeInt *TypeInt::MINUS_1;// -1
const TypeInt *TypeInt::ZERO;   // 0
const TypeInt *TypeInt::ONE;    // 1
const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
const TypeInt *TypeInt::CC_LE;  // [-1,0]
const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
const TypeInt *TypeInt::INT;    // 32-bit integers
const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]

//------------------------------TypeInt----------------------------------------
TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
}

//------------------------------make-------------------------------------------
const TypeInt *TypeInt::make( jint lo ) {
  return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
}

static int normalize_int_widen( jint lo, jint hi, int w ) {
  // Certain normalizations keep us sane when comparing types.
  // The 'SMALLINT' covers constants and also CC and its relatives.
  if (lo <= hi) {
    if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
    if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
  } else {
    if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
    if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
  }
  return w;
}

const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
  w = normalize_int_widen(lo, hi, w);
  return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type representation object
// with reference count equal to the number of Types pointing at it.
// Caller should wrap a Types around it.
const Type *TypeInt::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type?

  // Currently "this->_base" is a TypeInt
  switch (t->base()) {          // Switch on original type
  case AnyPtr:                  // Mixing with oops happens when javac
  case RawPtr:                  // reuses local variables
  case OopPtr:
  case InstPtr:
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
  case NarrowOop:
  case NarrowKlass:
  case Long:
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  default:                      // All else is a mistake
    typerr(t);
  case Top:                     // No change
    return this;
  case Int:                     // Int vs Int?
    break;
  }

  // Expand covered set
  const TypeInt *r = t->is_int();
  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
}

//------------------------------xdual------------------------------------------
// Dual: reverse hi & lo; flip widen
const Type *TypeInt::xdual() const {
  int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
  return new TypeInt(_hi,_lo,w);
}

//------------------------------widen------------------------------------------
// Only happens for optimistic top-down optimizations.
const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
  // Coming from TOP or such; no widening
  if( old->base() != Int ) return this;
  const TypeInt *ot = old->is_int();

  // If new guy is equal to old guy, no widening
  if( _lo == ot->_lo && _hi == ot->_hi )
    return old;

  // If new guy contains old, then we widened
  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
    // New contains old
    // If new guy is already wider than old, no widening
    if( _widen > ot->_widen ) return this;
    // If old guy was a constant, do not bother
    if (ot->_lo == ot->_hi)  return this;
    // Now widen new guy.
    // Check for widening too far
    if (_widen == WidenMax) {
      int max = max_jint;
      int min = min_jint;
      if (limit->isa_int()) {
        max = limit->is_int()->_hi;
        min = limit->is_int()->_lo;
      }
      if (min < _lo && _hi < max) {
        // If neither endpoint is extremal yet, push out the endpoint
        // which is closer to its respective limit.
        if (_lo >= 0 ||                 // easy common case
            (juint)(_lo - min) >= (juint)(max - _hi)) {
          // Try to widen to an unsigned range type of 31 bits:
          return make(_lo, max, WidenMax);
        } else {
          return make(min, _hi, WidenMax);
        }
      }
      return TypeInt::INT;
    }
    // Returned widened new guy
    return make(_lo,_hi,_widen+1);
  }

  // If old guy contains new, then we probably widened too far & dropped to
  // bottom.  Return the wider fellow.
  if ( ot->_lo <= _lo && ot->_hi >= _hi )
    return old;

  //fatal("Integer value range is not subset");
  //return this;
  return TypeInt::INT;
}

//------------------------------narrow---------------------------------------
// Only happens for pessimistic optimizations.
const Type *TypeInt::narrow( const Type *old ) const {
  if (_lo >= _hi)  return this;   // already narrow enough
  if (old == NULL)  return this;
  const TypeInt* ot = old->isa_int();
  if (ot == NULL)  return this;
  jint olo = ot->_lo;
  jint ohi = ot->_hi;

  // If new guy is equal to old guy, no narrowing
  if (_lo == olo && _hi == ohi)  return old;

  // If old guy was maximum range, allow the narrowing
  if (olo == min_jint && ohi == max_jint)  return this;

  if (_lo < olo || _hi > ohi)
    return this;                // doesn't narrow; pretty wierd

  // The new type narrows the old type, so look for a "death march".
  // See comments on PhaseTransform::saturate.
  juint nrange = _hi - _lo;
  juint orange = ohi - olo;
  if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
    // Use the new type only if the range shrinks a lot.
    // We do not want the optimizer computing 2^31 point by point.
    return old;
  }

  return this;
}

//-----------------------------filter------------------------------------------
const Type *TypeInt::filter( const Type *kills ) const {
  const TypeInt* ft = join(kills)->isa_int();
  if (ft == NULL || ft->empty())
    return Type::TOP;           // Canonical empty value
  if (ft->_widen < this->_widen) {
    // Do not allow the value of kill->_widen to affect the outcome.
    // The widen bits must be allowed to run freely through the graph.
    ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
  }
  return ft;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeInt::eq( const Type *t ) const {
  const TypeInt *r = t->is_int(); // Handy access
  return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeInt::hash(void) const {
  return _lo+_hi+_widen+(int)Type::Int;
}

//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeInt::is_finite() const {
  return true;
}

//------------------------------dump2------------------------------------------
// Dump TypeInt
#ifndef PRODUCT
static const char* intname(char* buf, jint n) {
  if (n == min_jint)
    return "min";
  else if (n < min_jint + 10000)
    sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
  else if (n == max_jint)
    return "max";
  else if (n > max_jint - 10000)
    sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
  else
    sprintf(buf, INT32_FORMAT, n);
  return buf;
}

void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
  char buf[40], buf2[40];
  if (_lo == min_jint && _hi == max_jint)
    st->print("int");
  else if (is_con())
    st->print("int:%s", intname(buf, get_con()));
  else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
    st->print("bool");
  else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
    st->print("byte");
  else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
    st->print("char");
  else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
    st->print("short");
  else if (_hi == max_jint)
    st->print("int:>=%s", intname(buf, _lo));
  else if (_lo == min_jint)
    st->print("int:<=%s", intname(buf, _hi));
  else
    st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));

  if (_widen != 0 && this != TypeInt::INT)
    st->print(":%.*s", _widen, "wwww");
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants.
bool TypeInt::singleton(void) const {
  return _lo >= _hi;
}

bool TypeInt::empty(void) const {
  return _lo > _hi;
}

//=============================================================================
// Convenience common pre-built types.
const TypeLong *TypeLong::MINUS_1;// -1
const TypeLong *TypeLong::ZERO; // 0
const TypeLong *TypeLong::ONE;  // 1
const TypeLong *TypeLong::POS;  // >=0
const TypeLong *TypeLong::LONG; // 64-bit integers
const TypeLong *TypeLong::INT;  // 32-bit subrange
const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange

//------------------------------TypeLong---------------------------------------
TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
}

//------------------------------make-------------------------------------------
const TypeLong *TypeLong::make( jlong lo ) {
  return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
}

static int normalize_long_widen( jlong lo, jlong hi, int w ) {
  // Certain normalizations keep us sane when comparing types.
  // The 'SMALLINT' covers constants.
  if (lo <= hi) {
    if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
    if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
  } else {
    if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
    if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
  }
  return w;
}

const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
  w = normalize_long_widen(lo, hi, w);
  return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
}


//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type representation object
// with reference count equal to the number of Types pointing at it.
// Caller should wrap a Types around it.
const Type *TypeLong::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type?

  // Currently "this->_base" is a TypeLong
  switch (t->base()) {          // Switch on original type
  case AnyPtr:                  // Mixing with oops happens when javac
  case RawPtr:                  // reuses local variables
  case OopPtr:
  case InstPtr:
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
  case NarrowOop:
  case NarrowKlass:
  case Int:
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  default:                      // All else is a mistake
    typerr(t);
  case Top:                     // No change
    return this;
  case Long:                    // Long vs Long?
    break;
  }

  // Expand covered set
  const TypeLong *r = t->is_long(); // Turn into a TypeLong
  return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
}

//------------------------------xdual------------------------------------------
// Dual: reverse hi & lo; flip widen
const Type *TypeLong::xdual() const {
  int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
  return new TypeLong(_hi,_lo,w);
}

//------------------------------widen------------------------------------------
// Only happens for optimistic top-down optimizations.
const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
  // Coming from TOP or such; no widening
  if( old->base() != Long ) return this;
  const TypeLong *ot = old->is_long();

  // If new guy is equal to old guy, no widening
  if( _lo == ot->_lo && _hi == ot->_hi )
    return old;

  // If new guy contains old, then we widened
  if( _lo <= ot->_lo && _hi >= ot->_hi ) {
    // New contains old
    // If new guy is already wider than old, no widening
    if( _widen > ot->_widen ) return this;
    // If old guy was a constant, do not bother
    if (ot->_lo == ot->_hi)  return this;
    // Now widen new guy.
    // Check for widening too far
    if (_widen == WidenMax) {
      jlong max = max_jlong;
      jlong min = min_jlong;
      if (limit->isa_long()) {
        max = limit->is_long()->_hi;
        min = limit->is_long()->_lo;
      }
      if (min < _lo && _hi < max) {
        // If neither endpoint is extremal yet, push out the endpoint
        // which is closer to its respective limit.
        if (_lo >= 0 ||                 // easy common case
            (julong)(_lo - min) >= (julong)(max - _hi)) {
          // Try to widen to an unsigned range type of 32/63 bits:
          if (max >= max_juint && _hi < max_juint)
            return make(_lo, max_juint, WidenMax);
          else
            return make(_lo, max, WidenMax);
        } else {
          return make(min, _hi, WidenMax);
        }
      }
      return TypeLong::LONG;
    }
    // Returned widened new guy
    return make(_lo,_hi,_widen+1);
  }

  // If old guy contains new, then we probably widened too far & dropped to
  // bottom.  Return the wider fellow.
  if ( ot->_lo <= _lo && ot->_hi >= _hi )
    return old;

  //  fatal("Long value range is not subset");
  // return this;
  return TypeLong::LONG;
}

//------------------------------narrow----------------------------------------
// Only happens for pessimistic optimizations.
const Type *TypeLong::narrow( const Type *old ) const {
  if (_lo >= _hi)  return this;   // already narrow enough
  if (old == NULL)  return this;
  const TypeLong* ot = old->isa_long();
  if (ot == NULL)  return this;
  jlong olo = ot->_lo;
  jlong ohi = ot->_hi;

  // If new guy is equal to old guy, no narrowing
  if (_lo == olo && _hi == ohi)  return old;

  // If old guy was maximum range, allow the narrowing
  if (olo == min_jlong && ohi == max_jlong)  return this;

  if (_lo < olo || _hi > ohi)
    return this;                // doesn't narrow; pretty wierd

  // The new type narrows the old type, so look for a "death march".
  // See comments on PhaseTransform::saturate.
  julong nrange = _hi - _lo;
  julong orange = ohi - olo;
  if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
    // Use the new type only if the range shrinks a lot.
    // We do not want the optimizer computing 2^31 point by point.
    return old;
  }

  return this;
}

//-----------------------------filter------------------------------------------
const Type *TypeLong::filter( const Type *kills ) const {
  const TypeLong* ft = join(kills)->isa_long();
  if (ft == NULL || ft->empty())
    return Type::TOP;           // Canonical empty value
  if (ft->_widen < this->_widen) {
    // Do not allow the value of kill->_widen to affect the outcome.
    // The widen bits must be allowed to run freely through the graph.
    ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
  }
  return ft;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeLong::eq( const Type *t ) const {
  const TypeLong *r = t->is_long(); // Handy access
  return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeLong::hash(void) const {
  return (int)(_lo+_hi+_widen+(int)Type::Long);
}

//------------------------------is_finite--------------------------------------
// Has a finite value
bool TypeLong::is_finite() const {
  return true;
}

//------------------------------dump2------------------------------------------
// Dump TypeLong
#ifndef PRODUCT
static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
  if (n > x) {
    if (n >= x + 10000)  return NULL;
    sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
  } else if (n < x) {
    if (n <= x - 10000)  return NULL;
    sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
  } else {
    return xname;
  }
  return buf;
}

static const char* longname(char* buf, jlong n) {
  const char* str;
  if (n == min_jlong)
    return "min";
  else if (n < min_jlong + 10000)
    sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
  else if (n == max_jlong)
    return "max";
  else if (n > max_jlong - 10000)
    sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
  else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
    return str;
  else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
    return str;
  else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
    return str;
  else
    sprintf(buf, JLONG_FORMAT, n);
  return buf;
}

void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
  char buf[80], buf2[80];
  if (_lo == min_jlong && _hi == max_jlong)
    st->print("long");
  else if (is_con())
    st->print("long:%s", longname(buf, get_con()));
  else if (_hi == max_jlong)
    st->print("long:>=%s", longname(buf, _lo));
  else if (_lo == min_jlong)
    st->print("long:<=%s", longname(buf, _hi));
  else
    st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));

  if (_widen != 0 && this != TypeLong::LONG)
    st->print(":%.*s", _widen, "wwww");
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants
bool TypeLong::singleton(void) const {
  return _lo >= _hi;
}

bool TypeLong::empty(void) const {
  return _lo > _hi;
}

//=============================================================================
// Convenience common pre-built types.
const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
const TypeTuple *TypeTuple::IFFALSE;
const TypeTuple *TypeTuple::IFTRUE;
const TypeTuple *TypeTuple::IFNEITHER;
const TypeTuple *TypeTuple::LOOPBODY;
const TypeTuple *TypeTuple::MEMBAR;
const TypeTuple *TypeTuple::STORECONDITIONAL;
const TypeTuple *TypeTuple::START_I2C;
const TypeTuple *TypeTuple::INT_PAIR;
const TypeTuple *TypeTuple::LONG_PAIR;
const TypeTuple *TypeTuple::INT_CC_PAIR;
const TypeTuple *TypeTuple::LONG_CC_PAIR;


//------------------------------make-------------------------------------------
// Make a TypeTuple from the range of a method signature
const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
  ciType* return_type = sig->return_type();
  uint total_fields = TypeFunc::Parms + return_type->size();
  const Type **field_array = fields(total_fields);
  switch (return_type->basic_type()) {
  case T_LONG:
    field_array[TypeFunc::Parms]   = TypeLong::LONG;
    field_array[TypeFunc::Parms+1] = Type::HALF;
    break;
  case T_DOUBLE:
    field_array[TypeFunc::Parms]   = Type::DOUBLE;
    field_array[TypeFunc::Parms+1] = Type::HALF;
    break;
  case T_OBJECT:
  case T_ARRAY:
  case T_BOOLEAN:
  case T_CHAR:
  case T_FLOAT:
  case T_BYTE:
  case T_SHORT:
  case T_INT:
    field_array[TypeFunc::Parms] = get_const_type(return_type);
    break;
  case T_VOID:
    break;
  default:
    ShouldNotReachHere();
  }
  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
}

// Make a TypeTuple from the domain of a method signature
const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
  uint total_fields = TypeFunc::Parms + sig->size();

  uint pos = TypeFunc::Parms;
  const Type **field_array;
  if (recv != NULL) {
    total_fields++;
    field_array = fields(total_fields);
    // Use get_const_type here because it respects UseUniqueSubclasses:
    field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
  } else {
    field_array = fields(total_fields);
  }

  int i = 0;
  while (pos < total_fields) {
    ciType* type = sig->type_at(i);

    switch (type->basic_type()) {
    case T_LONG:
      field_array[pos++] = TypeLong::LONG;
      field_array[pos++] = Type::HALF;
      break;
    case T_DOUBLE:
      field_array[pos++] = Type::DOUBLE;
      field_array[pos++] = Type::HALF;
      break;
    case T_OBJECT:
    case T_ARRAY:
    case T_BOOLEAN:
    case T_CHAR:
    case T_FLOAT:
    case T_BYTE:
    case T_SHORT:
    case T_INT:
      field_array[pos++] = get_const_type(type);
      break;
    default:
      ShouldNotReachHere();
    }
    i++;
  }
  return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
}

const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
  return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
}

//------------------------------fields-----------------------------------------
// Subroutine call type with space allocated for argument types
const Type **TypeTuple::fields( uint arg_cnt ) {
  const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
  flds[TypeFunc::Control  ] = Type::CONTROL;
  flds[TypeFunc::I_O      ] = Type::ABIO;
  flds[TypeFunc::Memory   ] = Type::MEMORY;
  flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
  flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;

  return flds;
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeTuple::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is Tuple
  switch (t->base()) {          // switch on original type

  case Bottom:                  // Ye Olde Default
    return t;

  default:                      // All else is a mistake
    typerr(t);

  case Tuple: {                 // Meeting 2 signatures?
    const TypeTuple *x = t->is_tuple();
    assert( _cnt == x->_cnt, "" );
    const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
    for( uint i=0; i<_cnt; i++ )
      fields[i] = field_at(i)->xmeet( x->field_at(i) );
    return TypeTuple::make(_cnt,fields);
  }
  case Top:
    break;
  }
  return this;                  // Return the double constant
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeTuple::xdual() const {
  const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
  for( uint i=0; i<_cnt; i++ )
    fields[i] = _fields[i]->dual();
  return new TypeTuple(_cnt,fields);
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeTuple::eq( const Type *t ) const {
  const TypeTuple *s = (const TypeTuple *)t;
  if (_cnt != s->_cnt)  return false;  // Unequal field counts
  for (uint i = 0; i < _cnt; i++)
    if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
      return false;             // Missed
  return true;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeTuple::hash(void) const {
  intptr_t sum = _cnt;
  for( uint i=0; i<_cnt; i++ )
    sum += (intptr_t)_fields[i];     // Hash on pointers directly
  return sum;
}

//------------------------------dump2------------------------------------------
// Dump signature Type
#ifndef PRODUCT
void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
  st->print("{");
  if( !depth || d[this] ) {     // Check for recursive print
    st->print("...}");
    return;
  }
  d.Insert((void*)this, (void*)this);   // Stop recursion
  if( _cnt ) {
    uint i;
    for( i=0; i<_cnt-1; i++ ) {
      st->print("%d:", i);
      _fields[i]->dump2(d, depth-1, st);
      st->print(", ");
    }
    st->print("%d:", i);
    _fields[i]->dump2(d, depth-1, st);
  }
  st->print("}");
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Singletons are integer, float or double constants
// or a single symbol.
bool TypeTuple::singleton(void) const {
  return false;                 // Never a singleton
}

bool TypeTuple::empty(void) const {
  for( uint i=0; i<_cnt; i++ ) {
    if (_fields[i]->empty())  return true;
  }
  return false;
}

//=============================================================================
// Convenience common pre-built types.

inline const TypeInt* normalize_array_size(const TypeInt* size) {
  // Certain normalizations keep us sane when comparing types.
  // We do not want arrayOop variables to differ only by the wideness
  // of their index types.  Pick minimum wideness, since that is the
  // forced wideness of small ranges anyway.
  if (size->_widen != Type::WidenMin)
    return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
  else
    return size;
}

//------------------------------make-------------------------------------------
const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
  if (UseCompressedOops && elem->isa_oopptr()) {
    elem = elem->make_narrowoop();
  }
  size = normalize_array_size(size);
  return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeAry::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is Ary
  switch (t->base()) {          // switch on original type

  case Bottom:                  // Ye Olde Default
    return t;

  default:                      // All else is a mistake
    typerr(t);

  case Array: {                 // Meeting 2 arrays?
    const TypeAry *a = t->is_ary();
    return TypeAry::make(_elem->meet(a->_elem),
                         _size->xmeet(a->_size)->is_int(),
                         _stable & a->_stable);
  }
  case Top:
    break;
  }
  return this;                  // Return the double constant
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeAry::xdual() const {
  const TypeInt* size_dual = _size->dual()->is_int();
  size_dual = normalize_array_size(size_dual);
  return new TypeAry(_elem->dual(), size_dual, !_stable);
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeAry::eq( const Type *t ) const {
  const TypeAry *a = (const TypeAry*)t;
  return _elem == a->_elem &&
    _stable == a->_stable &&
    _size == a->_size;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeAry::hash(void) const {
  return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
}

//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool TypeAry::interface_vs_oop(const Type *t) const {
  const TypeAry* t_ary = t->is_ary();
  if (t_ary) {
    return _elem->interface_vs_oop(t_ary->_elem);
  }
  return false;
}
#endif

//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
  if (_stable)  st->print("stable:");
  _elem->dump2(d, depth, st);
  st->print("[");
  _size->dump2(d, depth, st);
  st->print("]");
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Singletons are integer, float or double constants
// or a single symbol.
bool TypeAry::singleton(void) const {
  return false;                 // Never a singleton
}

bool TypeAry::empty(void) const {
  return _elem->empty() || _size->empty();
}

//--------------------------ary_must_be_exact----------------------------------
bool TypeAry::ary_must_be_exact() const {
  if (!UseExactTypes)       return false;
  // This logic looks at the element type of an array, and returns true
  // if the element type is either a primitive or a final instance class.
  // In such cases, an array built on this ary must have no subclasses.
  if (_elem == BOTTOM)      return false;  // general array not exact
  if (_elem == TOP   )      return false;  // inverted general array not exact
  const TypeOopPtr*  toop = NULL;
  if (UseCompressedOops && _elem->isa_narrowoop()) {
    toop = _elem->make_ptr()->isa_oopptr();
  } else {
    toop = _elem->isa_oopptr();
  }
  if (!toop)                return true;   // a primitive type, like int
  ciKlass* tklass = toop->klass();
  if (tklass == NULL)       return false;  // unloaded class
  if (!tklass->is_loaded()) return false;  // unloaded class
  const TypeInstPtr* tinst;
  if (_elem->isa_narrowoop())
    tinst = _elem->make_ptr()->isa_instptr();
  else
    tinst = _elem->isa_instptr();
  if (tinst)
    return tklass->as_instance_klass()->is_final();
  const TypeAryPtr*  tap;
  if (_elem->isa_narrowoop())
    tap = _elem->make_ptr()->isa_aryptr();
  else
    tap = _elem->isa_aryptr();
  if (tap)
    return tap->ary()->ary_must_be_exact();
  return false;
}

//==============================TypeVect=======================================
// Convenience common pre-built types.
const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors

//------------------------------make-------------------------------------------
const TypeVect* TypeVect::make(const Type *elem, uint length) {
  BasicType elem_bt = elem->array_element_basic_type();
  assert(is_java_primitive(elem_bt), "only primitive types in vector");
  assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
  assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
  int size = length * type2aelembytes(elem_bt);
  switch (Matcher::vector_ideal_reg(size)) {
  case Op_VecS:
    return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
  case Op_VecD:
  case Op_RegD:
    return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
  case Op_VecX:
    return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
  case Op_VecY:
    return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
  }
 ShouldNotReachHere();
  return NULL;
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeVect::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is Vector
  switch (t->base()) {          // switch on original type

  case Bottom:                  // Ye Olde Default
    return t;

  default:                      // All else is a mistake
    typerr(t);

  case VectorS:
  case VectorD:
  case VectorX:
  case VectorY: {                // Meeting 2 vectors?
    const TypeVect* v = t->is_vect();
    assert(  base() == v->base(), "");
    assert(length() == v->length(), "");
    assert(element_basic_type() == v->element_basic_type(), "");
    return TypeVect::make(_elem->xmeet(v->_elem), _length);
  }
  case Top:
    break;
  }
  return this;
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeVect::xdual() const {
  return new TypeVect(base(), _elem->dual(), _length);
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeVect::eq(const Type *t) const {
  const TypeVect *v = t->is_vect();
  return (_elem == v->_elem) && (_length == v->_length);
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeVect::hash(void) const {
  return (intptr_t)_elem + (intptr_t)_length;
}

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Vector is singleton if all elements are the same
// constant value (when vector is created with Replicate code).
bool TypeVect::singleton(void) const {
// There is no Con node for vectors yet.
//  return _elem->singleton();
  return false;
}

bool TypeVect::empty(void) const {
  return _elem->empty();
}

//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
  switch (base()) {
  case VectorS:
    st->print("vectors["); break;
  case VectorD:
    st->print("vectord["); break;
  case VectorX:
    st->print("vectorx["); break;
  case VectorY:
    st->print("vectory["); break;
  default:
    ShouldNotReachHere();
  }
  st->print("%d]:{", _length);
  _elem->dump2(d, depth, st);
  st->print("}");
}
#endif


//=============================================================================
// Convenience common pre-built types.
const TypePtr *TypePtr::NULL_PTR;
const TypePtr *TypePtr::NOTNULL;
const TypePtr *TypePtr::BOTTOM;

//------------------------------meet-------------------------------------------
// Meet over the PTR enum
const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
  //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
  { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
  { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
  { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
  { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
  { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
  { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
};

//------------------------------make-------------------------------------------
const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
  return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
}

//------------------------------cast_to_ptr_type-------------------------------
const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
  assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
  if( ptr == _ptr ) return this;
  return make(_base, ptr, _offset);
}

//------------------------------get_con----------------------------------------
intptr_t TypePtr::get_con() const {
  assert( _ptr == Null, "" );
  return _offset;
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypePtr::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is AnyPtr
  switch (t->base()) {          // switch on original type
  case Int:                     // Mixing ints & oops happens when javac
  case Long:                    // reuses local variables
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case NarrowOop:
  case NarrowKlass:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  case AnyPtr: {                // Meeting to AnyPtrs
    const TypePtr *tp = t->is_ptr();
    return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
  }
  case RawPtr:                  // For these, flip the call around to cut down
  case OopPtr:
  case InstPtr:                 // on the cases I have to handle.
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
    return t->xmeet(this);      // Call in reverse direction
  default:                      // All else is a mistake
    typerr(t);

  }
  return this;
}

//------------------------------meet_offset------------------------------------
int TypePtr::meet_offset( int offset ) const {
  // Either is 'TOP' offset?  Return the other offset!
  if( _offset == OffsetTop ) return offset;
  if( offset == OffsetTop ) return _offset;
  // If either is different, return 'BOTTOM' offset
  if( _offset != offset ) return OffsetBot;
  return _offset;
}

//------------------------------dual_offset------------------------------------
int TypePtr::dual_offset( ) const {
  if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
  if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
  return _offset;               // Map everything else into self
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
  BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
};
const Type *TypePtr::xdual() const {
  return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
}

//------------------------------xadd_offset------------------------------------
int TypePtr::xadd_offset( intptr_t offset ) const {
  // Adding to 'TOP' offset?  Return 'TOP'!
  if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
  // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
  // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  offset += (intptr_t)_offset;
  if (offset != (int)offset || offset == OffsetTop) return OffsetBot;

  // assert( _offset >= 0 && _offset+offset >= 0, "" );
  // It is possible to construct a negative offset during PhaseCCP

  return (int)offset;        // Sum valid offsets
}

//------------------------------add_offset-------------------------------------
const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
  return make( AnyPtr, _ptr, xadd_offset(offset) );
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypePtr::eq( const Type *t ) const {
  const TypePtr *a = (const TypePtr*)t;
  return _ptr == a->ptr() && _offset == a->offset();
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypePtr::hash(void) const {
  return _ptr + _offset;
}

//------------------------------dump2------------------------------------------
const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
  "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
};

#ifndef PRODUCT
void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  if( _ptr == Null ) st->print("NULL");
  else st->print("%s *", ptr_msg[_ptr]);
  if( _offset == OffsetTop ) st->print("+top");
  else if( _offset == OffsetBot ) st->print("+bot");
  else if( _offset ) st->print("+%d", _offset);
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants
bool TypePtr::singleton(void) const {
  // TopPTR, Null, AnyNull, Constant are all singletons
  return (_offset != OffsetBot) && !below_centerline(_ptr);
}

bool TypePtr::empty(void) const {
  return (_offset == OffsetTop) || above_centerline(_ptr);
}

//=============================================================================
// Convenience common pre-built types.
const TypeRawPtr *TypeRawPtr::BOTTOM;
const TypeRawPtr *TypeRawPtr::NOTNULL;

//------------------------------make-------------------------------------------
const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
  assert( ptr != Constant, "what is the constant?" );
  assert( ptr != Null, "Use TypePtr for NULL" );
  return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
}

const TypeRawPtr *TypeRawPtr::make( address bits ) {
  assert( bits, "Use TypePtr for NULL" );
  return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
}

//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
  assert( ptr != Constant, "what is the constant?" );
  assert( ptr != Null, "Use TypePtr for NULL" );
  assert( _bits==0, "Why cast a constant address?");
  if( ptr == _ptr ) return this;
  return make(ptr);
}

//------------------------------get_con----------------------------------------
intptr_t TypeRawPtr::get_con() const {
  assert( _ptr == Null || _ptr == Constant, "" );
  return (intptr_t)_bits;
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeRawPtr::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is RawPtr
  switch( t->base() ) {         // switch on original type
  case Bottom:                  // Ye Olde Default
    return t;
  case Top:
    return this;
  case AnyPtr:                  // Meeting to AnyPtrs
    break;
  case RawPtr: {                // might be top, bot, any/not or constant
    enum PTR tptr = t->is_ptr()->ptr();
    enum PTR ptr = meet_ptr( tptr );
    if( ptr == Constant ) {     // Cannot be equal constants, so...
      if( tptr == Constant && _ptr != Constant)  return t;
      if( _ptr == Constant && tptr != Constant)  return this;
      ptr = NotNull;            // Fall down in lattice
    }
    return make( ptr );
  }

  case OopPtr:
  case InstPtr:
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
    return TypePtr::BOTTOM;     // Oop meet raw is not well defined
  default:                      // All else is a mistake
    typerr(t);
  }

  // Found an AnyPtr type vs self-RawPtr type
  const TypePtr *tp = t->is_ptr();
  switch (tp->ptr()) {
  case TypePtr::TopPTR:  return this;
  case TypePtr::BotPTR:  return t;
  case TypePtr::Null:
    if( _ptr == TypePtr::TopPTR ) return t;
    return TypeRawPtr::BOTTOM;
  case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
  case TypePtr::AnyNull:
    if( _ptr == TypePtr::Constant) return this;
    return make( meet_ptr(TypePtr::AnyNull) );
  default: ShouldNotReachHere();
  }
  return this;
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeRawPtr::xdual() const {
  return new TypeRawPtr( dual_ptr(), _bits );
}

//------------------------------add_offset-------------------------------------
const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
  if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
  if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
  if( offset == 0 ) return this; // No change
  switch (_ptr) {
  case TypePtr::TopPTR:
  case TypePtr::BotPTR:
  case TypePtr::NotNull:
    return this;
  case TypePtr::Null:
  case TypePtr::Constant: {
    address bits = _bits+offset;
    if ( bits == 0 ) return TypePtr::NULL_PTR;
    return make( bits );
  }
  default:  ShouldNotReachHere();
  }
  return NULL;                  // Lint noise
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeRawPtr::eq( const Type *t ) const {
  const TypeRawPtr *a = (const TypeRawPtr*)t;
  return _bits == a->_bits && TypePtr::eq(t);
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeRawPtr::hash(void) const {
  return (intptr_t)_bits + TypePtr::hash();
}

//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  if( _ptr == Constant )
    st->print(INTPTR_FORMAT, _bits);
  else
    st->print("rawptr:%s", ptr_msg[_ptr]);
}
#endif

//=============================================================================
// Convenience common pre-built type.
const TypeOopPtr *TypeOopPtr::BOTTOM;

//------------------------------TypeOopPtr-------------------------------------
TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, const TypeOopPtr* speculative)
  : TypePtr(t, ptr, offset),
    _const_oop(o), _klass(k),
    _klass_is_exact(xk),
    _is_ptr_to_narrowoop(false),
    _is_ptr_to_narrowklass(false),
    _is_ptr_to_boxed_value(false),
    _instance_id(instance_id),
    _speculative(speculative) {
  if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
      (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
    _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
  }
#ifdef _LP64
  if (_offset != 0) {
    if (_offset == oopDesc::klass_offset_in_bytes()) {
      _is_ptr_to_narrowklass = UseCompressedClassPointers;
    } else if (klass() == NULL) {
      // Array with unknown body type
      assert(this->isa_aryptr(), "only arrays without klass");
      _is_ptr_to_narrowoop = UseCompressedOops;
    } else if (this->isa_aryptr()) {
      _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
                             _offset != arrayOopDesc::length_offset_in_bytes());
    } else if (klass()->is_instance_klass()) {
      ciInstanceKlass* ik = klass()->as_instance_klass();
      ciField* field = NULL;
      if (this->isa_klassptr()) {
        // Perm objects don't use compressed references
      } else if (_offset == OffsetBot || _offset == OffsetTop) {
        // unsafe access
        _is_ptr_to_narrowoop = UseCompressedOops;
      } else { // exclude unsafe ops
        assert(this->isa_instptr(), "must be an instance ptr.");

        if (klass() == ciEnv::current()->Class_klass() &&
            (_offset == java_lang_Class::klass_offset_in_bytes() ||
             _offset == java_lang_Class::array_klass_offset_in_bytes())) {
          // Special hidden fields from the Class.
          assert(this->isa_instptr(), "must be an instance ptr.");
          _is_ptr_to_narrowoop = false;
        } else if (klass() == ciEnv::current()->Class_klass() &&
                   _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
          // Static fields
          assert(o != NULL, "must be constant");
          ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
          ciField* field = k->get_field_by_offset(_offset, true);
          assert(field != NULL, "missing field");
          BasicType basic_elem_type = field->layout_type();
          _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
                                                       basic_elem_type == T_ARRAY);
        } else {
          // Instance fields which contains a compressed oop references.
          field = ik->get_field_by_offset(_offset, false);
          if (field != NULL) {
            BasicType basic_elem_type = field->layout_type();
            _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
                                                         basic_elem_type == T_ARRAY);
          } else if (klass()->equals(ciEnv::current()->Object_klass())) {
            // Compile::find_alias_type() cast exactness on all types to verify
            // that it does not affect alias type.
            _is_ptr_to_narrowoop = UseCompressedOops;
          } else {
            // Type for the copy start in LibraryCallKit::inline_native_clone().
            _is_ptr_to_narrowoop = UseCompressedOops;
          }
        }
      }
    }
  }
#endif
}

//------------------------------make-------------------------------------------
const TypeOopPtr *TypeOopPtr::make(PTR ptr,
                                   int offset, int instance_id, const TypeOopPtr* speculative) {
  assert(ptr != Constant, "no constant generic pointers");
  ciKlass*  k = Compile::current()->env()->Object_klass();
  bool      xk = false;
  ciObject* o = NULL;
  return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative))->hashcons();
}


//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
  assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
  if( ptr == _ptr ) return this;
  return make(ptr, _offset, _instance_id, _speculative);
}

//-----------------------------cast_to_instance_id----------------------------
const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
  // There are no instances of a general oop.
  // Return self unchanged.
  return this;
}

//-----------------------------cast_to_exactness-------------------------------
const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
  // There is no such thing as an exact general oop.
  // Return self unchanged.
  return this;
}


//------------------------------as_klass_type----------------------------------
// Return the klass type corresponding to this instance or array type.
// It is the type that is loaded from an object of this type.
const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
  ciKlass* k = klass();
  bool    xk = klass_is_exact();
  if (k == NULL)
    return TypeKlassPtr::OBJECT;
  else
    return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
}

const Type *TypeOopPtr::xmeet(const Type *t) const {
  const Type* res = xmeet_helper(t);
  if (res->isa_oopptr() == NULL) {
    return res;
  }

  if (res->isa_oopptr() != NULL) {
    // type->speculative() == NULL means that speculation is no better
    // than type, i.e. type->speculative() == type. So there are 2
    // ways to represent the fact that we have no useful speculative
    // data and we should use a single one to be able to test for
    // equality between types. Check whether type->speculative() ==
    // type and set speculative to NULL if it is the case.
    const TypeOopPtr* res_oopptr = res->is_oopptr();
    if (res_oopptr->remove_speculative() == res_oopptr->speculative()) {
      return res_oopptr->remove_speculative();
    }
  }

  return res;
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is OopPtr
  switch (t->base()) {          // switch on original type

  case Int:                     // Mixing ints & oops happens when javac
  case Long:                    // reuses local variables
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case NarrowOop:
  case NarrowKlass:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  default:                      // All else is a mistake
    typerr(t);

  case RawPtr:
  case MetadataPtr:
  case KlassPtr:
    return TypePtr::BOTTOM;     // Oop meet raw is not well defined

  case AnyPtr: {
    // Found an AnyPtr type vs self-OopPtr type
    const TypePtr *tp = t->is_ptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case Null:
      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
      // else fall through:
    case TopPTR:
    case AnyNull: {
      int instance_id = meet_instance_id(InstanceTop);
      const TypeOopPtr* speculative = _speculative;
      return make(ptr, offset, instance_id, speculative);
    }
    case BotPTR:
    case NotNull:
      return TypePtr::make(AnyPtr, ptr, offset);
    default: typerr(t);
    }
  }

  case OopPtr: {                 // Meeting to other OopPtrs
    const TypeOopPtr *tp = t->is_oopptr();
    int instance_id = meet_instance_id(tp->instance_id());
    const TypeOopPtr* speculative = meet_speculative(tp);
    return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative);
  }

  case InstPtr:                  // For these, flip the call around to cut down
  case AryPtr:
    return t->xmeet(this);      // Call in reverse direction

  } // End of switch
  return this;                  // Return the double constant
}


//------------------------------xdual------------------------------------------
// Dual of a pure heap pointer.  No relevant klass or oop information.
const Type *TypeOopPtr::xdual() const {
  assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
  assert(const_oop() == NULL,             "no constants here");
  return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
}

//--------------------------make_from_klass_common-----------------------------
// Computes the element-type given a klass.
const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
  if (klass->is_instance_klass()) {
    Compile* C = Compile::current();
    Dependencies* deps = C->dependencies();
    assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
    // Element is an instance
    bool klass_is_exact = false;
    if (klass->is_loaded()) {
      // Try to set klass_is_exact.
      ciInstanceKlass* ik = klass->as_instance_klass();
      klass_is_exact = ik->is_final();
      if (!klass_is_exact && klass_change
          && deps != NULL && UseUniqueSubclasses) {
        ciInstanceKlass* sub = ik->unique_concrete_subklass();
        if (sub != NULL) {
          deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
          klass = ik = sub;
          klass_is_exact = sub->is_final();
        }
      }
      if (!klass_is_exact && try_for_exact
          && deps != NULL && UseExactTypes) {
        if (!ik->is_interface() && !ik->has_subklass()) {
          // Add a dependence; if concrete subclass added we need to recompile
          deps->assert_leaf_type(ik);
          klass_is_exact = true;
        }
      }
    }
    return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
  } else if (klass->is_obj_array_klass()) {
    // Element is an object array. Recursively call ourself.
    const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
    bool xk = etype->klass_is_exact();
    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
    // We used to pass NotNull in here, asserting that the sub-arrays
    // are all not-null.  This is not true in generally, as code can
    // slam NULLs down in the subarrays.
    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
    return arr;
  } else if (klass->is_type_array_klass()) {
    // Element is an typeArray
    const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
    // We used to pass NotNull in here, asserting that the array pointer
    // is not-null. That was not true in general.
    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
    return arr;
  } else {
    ShouldNotReachHere();
    return NULL;
  }
}

//------------------------------make_from_constant-----------------------------
// Make a java pointer from an oop constant
const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
                                                 bool require_constant,
                                                 bool is_autobox_cache) {
  assert(!o->is_null_object(), "null object not yet handled here.");
  ciKlass* klass = o->klass();
  if (klass->is_instance_klass()) {
    // Element is an instance
    if (require_constant) {
      if (!o->can_be_constant())  return NULL;
    } else if (!o->should_be_constant()) {
      return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
    }
    return TypeInstPtr::make(o);
  } else if (klass->is_obj_array_klass()) {
    // Element is an object array. Recursively call ourself.
    const TypeOopPtr *etype =
      TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
    if (is_autobox_cache) {
      // The pointers in the autobox arrays are always non-null.
      etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
    }
    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
    // We used to pass NotNull in here, asserting that the sub-arrays
    // are all not-null.  This is not true in generally, as code can
    // slam NULLs down in the subarrays.
    if (require_constant) {
      if (!o->can_be_constant())  return NULL;
    } else if (!o->should_be_constant()) {
      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
    }
    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, is_autobox_cache);
    return arr;
  } else if (klass->is_type_array_klass()) {
    // Element is an typeArray
    const Type* etype =
      (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
    const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
    // We used to pass NotNull in here, asserting that the array pointer
    // is not-null. That was not true in general.
    if (require_constant) {
      if (!o->can_be_constant())  return NULL;
    } else if (!o->should_be_constant()) {
      return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
    }
    const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
    return arr;
  }

  fatal("unhandled object type");
  return NULL;
}

//------------------------------get_con----------------------------------------
intptr_t TypeOopPtr::get_con() const {
  assert( _ptr == Null || _ptr == Constant, "" );
  assert( _offset >= 0, "" );

  if (_offset != 0) {
    // After being ported to the compiler interface, the compiler no longer
    // directly manipulates the addresses of oops.  Rather, it only has a pointer
    // to a handle at compile time.  This handle is embedded in the generated
    // code and dereferenced at the time the nmethod is made.  Until that time,
    // it is not reasonable to do arithmetic with the addresses of oops (we don't
    // have access to the addresses!).  This does not seem to currently happen,
    // but this assertion here is to help prevent its occurence.
    tty->print_cr("Found oop constant with non-zero offset");
    ShouldNotReachHere();
  }

  return (intptr_t)const_oop()->constant_encoding();
}


//-----------------------------filter------------------------------------------
// Do not allow interface-vs.-noninterface joins to collapse to top.
const Type *TypeOopPtr::filter(const Type *kills) const {

  const Type* ft = join(kills);
  const TypeInstPtr* ftip = ft->isa_instptr();
  const TypeInstPtr* ktip = kills->isa_instptr();

  if (ft->empty()) {
    // Check for evil case of 'this' being a class and 'kills' expecting an
    // interface.  This can happen because the bytecodes do not contain
    // enough type info to distinguish a Java-level interface variable
    // from a Java-level object variable.  If we meet 2 classes which
    // both implement interface I, but their meet is at 'j/l/O' which
    // doesn't implement I, we have no way to tell if the result should
    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
    // into a Phi which "knows" it's an Interface type we'll have to
    // uplift the type.
    if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
      return kills;             // Uplift to interface

    return Type::TOP;           // Canonical empty value
  }

  // If we have an interface-typed Phi or cast and we narrow to a class type,
  // the join should report back the class.  However, if we have a J/L/Object
  // class-typed Phi and an interface flows in, it's possible that the meet &
  // join report an interface back out.  This isn't possible but happens
  // because the type system doesn't interact well with interfaces.
  if (ftip != NULL && ktip != NULL &&
      ftip->is_loaded() &&  ftip->klass()->is_interface() &&
      ktip->is_loaded() && !ktip->klass()->is_interface()) {
    // Happens in a CTW of rt.jar, 320-341, no extra flags
    assert(!ftip->klass_is_exact(), "interface could not be exact");
    return ktip->cast_to_ptr_type(ftip->ptr());
  }

  return ft;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeOopPtr::eq( const Type *t ) const {
  const TypeOopPtr *a = (const TypeOopPtr*)t;
  if (_klass_is_exact != a->_klass_is_exact ||
      _instance_id != a->_instance_id ||
      !eq_speculative(a))  return false;
  ciObject* one = const_oop();
  ciObject* two = a->const_oop();
  if (one == NULL || two == NULL) {
    return (one == two) && TypePtr::eq(t);
  } else {
    return one->equals(two) && TypePtr::eq(t);
  }
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeOopPtr::hash(void) const {
  return
    (const_oop() ? const_oop()->hash() : 0) +
    _klass_is_exact +
    _instance_id +
    hash_speculative() +
    TypePtr::hash();
}

//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  st->print("oopptr:%s", ptr_msg[_ptr]);
  if( _klass_is_exact ) st->print(":exact");
  if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
  switch( _offset ) {
  case OffsetTop: st->print("+top"); break;
  case OffsetBot: st->print("+any"); break;
  case         0: break;
  default:        st->print("+%d",_offset); break;
  }
  if (_instance_id == InstanceTop)
    st->print(",iid=top");
  else if (_instance_id != InstanceBot)
    st->print(",iid=%d",_instance_id);

  dump_speculative(st);
}

/**
 *dump the speculative part of the type
 */
void TypeOopPtr::dump_speculative(outputStream *st) const {
  if (_speculative != NULL) {
    st->print(" (speculative=");
    _speculative->dump_on(st);
    st->print(")");
  }
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants
bool TypeOopPtr::singleton(void) const {
  // detune optimizer to not generate constant oop + constant offset as a constant!
  // TopPTR, Null, AnyNull, Constant are all singletons
  return (_offset == 0) && !below_centerline(_ptr);
}

//------------------------------add_offset-------------------------------------
const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
  return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
}

/**
 * Return same type without a speculative part
 */
const TypeOopPtr* TypeOopPtr::remove_speculative() const {
  return make(_ptr, _offset, _instance_id, NULL);
}

//------------------------------meet_instance_id--------------------------------
int TypeOopPtr::meet_instance_id( int instance_id ) const {
  // Either is 'TOP' instance?  Return the other instance!
  if( _instance_id == InstanceTop ) return  instance_id;
  if(  instance_id == InstanceTop ) return _instance_id;
  // If either is different, return 'BOTTOM' instance
  if( _instance_id != instance_id ) return InstanceBot;
  return _instance_id;
}

//------------------------------dual_instance_id--------------------------------
int TypeOopPtr::dual_instance_id( ) const {
  if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
  if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
  return _instance_id;              // Map everything else into self
}

/**
 * meet of the speculative parts of 2 types
 *
 * @param other  type to meet with
 */
const TypeOopPtr* TypeOopPtr::meet_speculative(const TypeOopPtr* other) const {
  bool this_has_spec = (_speculative != NULL);
  bool other_has_spec = (other->speculative() != NULL);

  if (!this_has_spec && !other_has_spec) {
    return NULL;
  }

  // If we are at a point where control flow meets and one branch has
  // a speculative type and the other has not, we meet the speculative
  // type of one branch with the actual type of the other. If the
  // actual type is exact and the speculative is as well, then the
  // result is a speculative type which is exact and we can continue
  // speculation further.
  const TypeOopPtr* this_spec = _speculative;
  const TypeOopPtr* other_spec = other->speculative();

  if (!this_has_spec) {
    this_spec = this;
  }

  if (!other_has_spec) {
    other_spec = other;
  }

  return this_spec->meet(other_spec)->is_oopptr();
}

/**
 * dual of the speculative part of the type
 */
const TypeOopPtr* TypeOopPtr::dual_speculative() const {
  if (_speculative == NULL) {
    return NULL;
  }
  return _speculative->dual()->is_oopptr();
}

/**
 * add offset to the speculative part of the type
 *
 * @param offset  offset to add
 */
const TypeOopPtr* TypeOopPtr::add_offset_speculative(intptr_t offset) const {
  if (_speculative == NULL) {
    return NULL;
  }
  return _speculative->add_offset(offset)->is_oopptr();
}

/**
 * Are the speculative parts of 2 types equal?
 *
 * @param other  type to compare this one to
 */
bool TypeOopPtr::eq_speculative(const TypeOopPtr* other) const {
  if (_speculative == NULL || other->speculative() == NULL) {
    return _speculative == other->speculative();
  }

  if (_speculative->base() != other->speculative()->base()) {
    return false;
  }

  return _speculative->eq(other->speculative());
}

/**
 * Hash of the speculative part of the type
 */
int TypeOopPtr::hash_speculative() const {
  if (_speculative == NULL) {
    return 0;
  }

  return _speculative->hash();
}


//=============================================================================
// Convenience common pre-built types.
const TypeInstPtr *TypeInstPtr::NOTNULL;
const TypeInstPtr *TypeInstPtr::BOTTOM;
const TypeInstPtr *TypeInstPtr::MIRROR;
const TypeInstPtr *TypeInstPtr::MARK;
const TypeInstPtr *TypeInstPtr::KLASS;

//------------------------------TypeInstPtr-------------------------------------
TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id, const TypeOopPtr* speculative)
  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative), _name(k->name()) {
   assert(k != NULL &&
          (k->is_loaded() || o == NULL),
          "cannot have constants with non-loaded klass");
};

//------------------------------make-------------------------------------------
const TypeInstPtr *TypeInstPtr::make(PTR ptr,
                                     ciKlass* k,
                                     bool xk,
                                     ciObject* o,
                                     int offset,
                                     int instance_id,
                                     const TypeOopPtr* speculative) {
  assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
  // Either const_oop() is NULL or else ptr is Constant
  assert( (!o && ptr != Constant) || (o && ptr == Constant),
          "constant pointers must have a value supplied" );
  // Ptr is never Null
  assert( ptr != Null, "NULL pointers are not typed" );

  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  if (!UseExactTypes)  xk = false;
  if (ptr == Constant) {
    // Note:  This case includes meta-object constants, such as methods.
    xk = true;
  } else if (k->is_loaded()) {
    ciInstanceKlass* ik = k->as_instance_klass();
    if (!xk && ik->is_final())     xk = true;   // no inexact final klass
    if (xk && ik->is_interface())  xk = false;  // no exact interface
  }

  // Now hash this baby
  TypeInstPtr *result =
    (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative))->hashcons();

  return result;
}

/**
 *  Create constant type for a constant boxed value
 */
const Type* TypeInstPtr::get_const_boxed_value() const {
  assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
  assert((const_oop() != NULL), "should be called only for constant object");
  ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
  BasicType bt = constant.basic_type();
  switch (bt) {
    case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
    case T_INT:      return TypeInt::make(constant.as_int());
    case T_CHAR:     return TypeInt::make(constant.as_char());
    case T_BYTE:     return TypeInt::make(constant.as_byte());
    case T_SHORT:    return TypeInt::make(constant.as_short());
    case T_FLOAT:    return TypeF::make(constant.as_float());
    case T_DOUBLE:   return TypeD::make(constant.as_double());
    case T_LONG:     return TypeLong::make(constant.as_long());
    default:         break;
  }
  fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
  return NULL;
}

//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
  if( ptr == _ptr ) return this;
  // Reconstruct _sig info here since not a problem with later lazy
  // construction, _sig will show up on demand.
  return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative);
}


//-----------------------------cast_to_exactness-------------------------------
const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
  if( klass_is_exact == _klass_is_exact ) return this;
  if (!UseExactTypes)  return this;
  if (!_klass->is_loaded())  return this;
  ciInstanceKlass* ik = _klass->as_instance_klass();
  if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
  if( ik->is_interface() )              return this;  // cannot set xk
  return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative);
}

//-----------------------------cast_to_instance_id----------------------------
const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
  if( instance_id == _instance_id ) return this;
  return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative);
}

//------------------------------xmeet_unloaded---------------------------------
// Compute the MEET of two InstPtrs when at least one is unloaded.
// Assume classes are different since called after check for same name/class-loader
const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
    int off = meet_offset(tinst->offset());
    PTR ptr = meet_ptr(tinst->ptr());
    int instance_id = meet_instance_id(tinst->instance_id());
    const TypeOopPtr* speculative = meet_speculative(tinst);

    const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
    const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
    if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
      //
      // Meet unloaded class with java/lang/Object
      //
      // Meet
      //          |                     Unloaded Class
      //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
      //  ===================================================================
      //   TOP    | ..........................Unloaded......................|
      //  AnyNull |  U-AN    |................Unloaded......................|
      // Constant | ... O-NN .................................. |   O-BOT   |
      //  NotNull | ... O-NN .................................. |   O-BOT   |
      //  BOTTOM  | ........................Object-BOTTOM ..................|
      //
      assert(loaded->ptr() != TypePtr::Null, "insanity check");
      //
      if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
      else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative); }
      else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
      else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
        if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
        else                                      { return TypeInstPtr::NOTNULL; }
      }
      else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }

      return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
    }

    // Both are unloaded, not the same class, not Object
    // Or meet unloaded with a different loaded class, not java/lang/Object
    if( ptr != TypePtr::BotPTR ) {
      return TypeInstPtr::NOTNULL;
    }
    return TypeInstPtr::BOTTOM;
}


//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is Pointer
  switch (t->base()) {          // switch on original type

  case Int:                     // Mixing ints & oops happens when javac
  case Long:                    // reuses local variables
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case NarrowOop:
  case NarrowKlass:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  default:                      // All else is a mistake
    typerr(t);

  case MetadataPtr:
  case KlassPtr:
  case RawPtr: return TypePtr::BOTTOM;

  case AryPtr: {                // All arrays inherit from Object class
    const TypeAryPtr *tp = t->is_aryptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    int instance_id = meet_instance_id(tp->instance_id());
    const TypeOopPtr* speculative = meet_speculative(tp);
    switch (ptr) {
    case TopPTR:
    case AnyNull:                // Fall 'down' to dual of object klass
      // For instances when a subclass meets a superclass we fall
      // below the centerline when the superclass is exact. We need to
      // do the same here.
      if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
        return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
      } else {
        // cannot subclass, so the meet has to fall badly below the centerline
        ptr = NotNull;
        instance_id = InstanceBot;
        return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
      }
    case Constant:
    case NotNull:
    case BotPTR:                // Fall down to object klass
      // LCA is object_klass, but if we subclass from the top we can do better
      if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
        // If 'this' (InstPtr) is above the centerline and it is Object class
        // then we can subclass in the Java class hierarchy.
        // For instances when a subclass meets a superclass we fall
        // below the centerline when the superclass is exact. We need
        // to do the same here.
        if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
          // that is, tp's array type is a subtype of my klass
          return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
                                  tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative);
        }
      }
      // The other case cannot happen, since I cannot be a subtype of an array.
      // The meet falls down to Object class below centerline.
      if( ptr == Constant )
         ptr = NotNull;
      instance_id = InstanceBot;
      return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative);
    default: typerr(t);
    }
  }

  case OopPtr: {                // Meeting to OopPtrs
    // Found a OopPtr type vs self-InstPtr type
    const TypeOopPtr *tp = t->is_oopptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case TopPTR:
    case AnyNull: {
      int instance_id = meet_instance_id(InstanceTop);
      const TypeOopPtr* speculative = meet_speculative(tp);
      return make(ptr, klass(), klass_is_exact(),
                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
    }
    case NotNull:
    case BotPTR: {
      int instance_id = meet_instance_id(tp->instance_id());
      const TypeOopPtr* speculative = meet_speculative(tp);
      return TypeOopPtr::make(ptr, offset, instance_id, speculative);
    }
    default: typerr(t);
    }
  }

  case AnyPtr: {                // Meeting to AnyPtrs
    // Found an AnyPtr type vs self-InstPtr type
    const TypePtr *tp = t->is_ptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case Null:
      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
      // else fall through to AnyNull
    case TopPTR:
    case AnyNull: {
      int instance_id = meet_instance_id(InstanceTop);
      const TypeOopPtr* speculative = _speculative;
      return make(ptr, klass(), klass_is_exact(),
                  (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative);
    }
    case NotNull:
    case BotPTR:
      return TypePtr::make(AnyPtr, ptr, offset);
    default: typerr(t);
    }
  }

  /*
                 A-top         }
               /   |   \       }  Tops
           B-top A-any C-top   }
              | /  |  \ |      }  Any-nulls
           B-any   |   C-any   }
              |    |    |
           B-con A-con C-con   } constants; not comparable across classes
              |    |    |
           B-not   |   C-not   }
              | \  |  / |      }  not-nulls
           B-bot A-not C-bot   }
               \   |   /       }  Bottoms
                 A-bot         }
  */

  case InstPtr: {                // Meeting 2 Oops?
    // Found an InstPtr sub-type vs self-InstPtr type
    const TypeInstPtr *tinst = t->is_instptr();
    int off = meet_offset( tinst->offset() );
    PTR ptr = meet_ptr( tinst->ptr() );
    int instance_id = meet_instance_id(tinst->instance_id());
    const TypeOopPtr* speculative = meet_speculative(tinst);

    // Check for easy case; klasses are equal (and perhaps not loaded!)
    // If we have constants, then we created oops so classes are loaded
    // and we can handle the constants further down.  This case handles
    // both-not-loaded or both-loaded classes
    if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
      return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative);
    }

    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
    ciKlass* tinst_klass = tinst->klass();
    ciKlass* this_klass  = this->klass();
    bool tinst_xk = tinst->klass_is_exact();
    bool this_xk  = this->klass_is_exact();
    if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
      // One of these classes has not been loaded
      const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
#ifndef PRODUCT
      if( PrintOpto && Verbose ) {
        tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
        tty->print("  this == "); this->dump(); tty->cr();
        tty->print(" tinst == "); tinst->dump(); tty->cr();
      }
#endif
      return unloaded_meet;
    }

    // Handle mixing oops and interfaces first.
    if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
                                        tinst_klass == ciEnv::current()->Object_klass())) {
      ciKlass *tmp = tinst_klass; // Swap interface around
      tinst_klass = this_klass;
      this_klass = tmp;
      bool tmp2 = tinst_xk;
      tinst_xk = this_xk;
      this_xk = tmp2;
    }
    if (tinst_klass->is_interface() &&
        !(this_klass->is_interface() ||
          // Treat java/lang/Object as an honorary interface,
          // because we need a bottom for the interface hierarchy.
          this_klass == ciEnv::current()->Object_klass())) {
      // Oop meets interface!

      // See if the oop subtypes (implements) interface.
      ciKlass *k;
      bool xk;
      if( this_klass->is_subtype_of( tinst_klass ) ) {
        // Oop indeed subtypes.  Now keep oop or interface depending
        // on whether we are both above the centerline or either is
        // below the centerline.  If we are on the centerline
        // (e.g., Constant vs. AnyNull interface), use the constant.
        k  = below_centerline(ptr) ? tinst_klass : this_klass;
        // If we are keeping this_klass, keep its exactness too.
        xk = below_centerline(ptr) ? tinst_xk    : this_xk;
      } else {                  // Does not implement, fall to Object
        // Oop does not implement interface, so mixing falls to Object
        // just like the verifier does (if both are above the
        // centerline fall to interface)
        k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
        xk = above_centerline(ptr) ? tinst_xk : false;
        // Watch out for Constant vs. AnyNull interface.
        if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
        instance_id = InstanceBot;
      }
      ciObject* o = NULL;  // the Constant value, if any
      if (ptr == Constant) {
        // Find out which constant.
        o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
      }
      return make(ptr, k, xk, o, off, instance_id, speculative);
    }

    // Either oop vs oop or interface vs interface or interface vs Object

    // !!! Here's how the symmetry requirement breaks down into invariants:
    // If we split one up & one down AND they subtype, take the down man.
    // If we split one up & one down AND they do NOT subtype, "fall hard".
    // If both are up and they subtype, take the subtype class.
    // If both are up and they do NOT subtype, "fall hard".
    // If both are down and they subtype, take the supertype class.
    // If both are down and they do NOT subtype, "fall hard".
    // Constants treated as down.

    // Now, reorder the above list; observe that both-down+subtype is also
    // "fall hard"; "fall hard" becomes the default case:
    // If we split one up & one down AND they subtype, take the down man.
    // If both are up and they subtype, take the subtype class.

    // If both are down and they subtype, "fall hard".
    // If both are down and they do NOT subtype, "fall hard".
    // If both are up and they do NOT subtype, "fall hard".
    // If we split one up & one down AND they do NOT subtype, "fall hard".

    // If a proper subtype is exact, and we return it, we return it exactly.
    // If a proper supertype is exact, there can be no subtyping relationship!
    // If both types are equal to the subtype, exactness is and-ed below the
    // centerline and or-ed above it.  (N.B. Constants are always exact.)

    // Check for subtyping:
    ciKlass *subtype = NULL;
    bool subtype_exact = false;
    if( tinst_klass->equals(this_klass) ) {
      subtype = this_klass;
      subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
    } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
      subtype = this_klass;     // Pick subtyping class
      subtype_exact = this_xk;
    } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
      subtype = tinst_klass;    // Pick subtyping class
      subtype_exact = tinst_xk;
    }

    if( subtype ) {
      if( above_centerline(ptr) ) { // both are up?
        this_klass = tinst_klass = subtype;
        this_xk = tinst_xk = subtype_exact;
      } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
        this_klass = tinst_klass; // tinst is down; keep down man
        this_xk = tinst_xk;
      } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
        tinst_klass = this_klass; // this is down; keep down man
        tinst_xk = this_xk;
      } else {
        this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
      }
    }

    // Check for classes now being equal
    if (tinst_klass->equals(this_klass)) {
      // If the klasses are equal, the constants may still differ.  Fall to
      // NotNull if they do (neither constant is NULL; that is a special case
      // handled elsewhere).
      ciObject* o = NULL;             // Assume not constant when done
      ciObject* this_oop  = const_oop();
      ciObject* tinst_oop = tinst->const_oop();
      if( ptr == Constant ) {
        if (this_oop != NULL && tinst_oop != NULL &&
            this_oop->equals(tinst_oop) )
          o = this_oop;
        else if (above_centerline(this ->_ptr))
          o = tinst_oop;
        else if (above_centerline(tinst ->_ptr))
          o = this_oop;
        else
          ptr = NotNull;
      }
      return make(ptr, this_klass, this_xk, o, off, instance_id, speculative);
    } // Else classes are not equal

    // Since klasses are different, we require a LCA in the Java
    // class hierarchy - which means we have to fall to at least NotNull.
    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
      ptr = NotNull;
    instance_id = InstanceBot;

    // Now we find the LCA of Java classes
    ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
    return make(ptr, k, false, NULL, off, instance_id, speculative);
  } // End of case InstPtr

  } // End of switch
  return this;                  // Return the double constant
}


//------------------------java_mirror_type--------------------------------------
ciType* TypeInstPtr::java_mirror_type() const {
  // must be a singleton type
  if( const_oop() == NULL )  return NULL;

  // must be of type java.lang.Class
  if( klass() != ciEnv::current()->Class_klass() )  return NULL;

  return const_oop()->as_instance()->java_mirror_type();
}


//------------------------------xdual------------------------------------------
// Dual: do NOT dual on klasses.  This means I do NOT understand the Java
// inheritance mechanism.
const Type *TypeInstPtr::xdual() const {
  return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative());
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeInstPtr::eq( const Type *t ) const {
  const TypeInstPtr *p = t->is_instptr();
  return
    klass()->equals(p->klass()) &&
    TypeOopPtr::eq(p);          // Check sub-type stuff
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeInstPtr::hash(void) const {
  int hash = klass()->hash() + TypeOopPtr::hash();
  return hash;
}

//------------------------------dump2------------------------------------------
// Dump oop Type
#ifndef PRODUCT
void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  // Print the name of the klass.
  klass()->print_name_on(st);

  switch( _ptr ) {
  case Constant:
    // TO DO: Make CI print the hex address of the underlying oop.
    if (WizardMode || Verbose) {
      const_oop()->print_oop(st);
    }
  case BotPTR:
    if (!WizardMode && !Verbose) {
      if( _klass_is_exact ) st->print(":exact");
      break;
    }
  case TopPTR:
  case AnyNull:
  case NotNull:
    st->print(":%s", ptr_msg[_ptr]);
    if( _klass_is_exact ) st->print(":exact");
    break;
  }

  if( _offset ) {               // Dump offset, if any
    if( _offset == OffsetBot )      st->print("+any");
    else if( _offset == OffsetTop ) st->print("+unknown");
    else st->print("+%d", _offset);
  }

  st->print(" *");
  if (_instance_id == InstanceTop)
    st->print(",iid=top");
  else if (_instance_id != InstanceBot)
    st->print(",iid=%d",_instance_id);

  dump_speculative(st);
}
#endif

//------------------------------add_offset-------------------------------------
const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
  return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id, add_offset_speculative(offset));
}

const TypeOopPtr *TypeInstPtr::remove_speculative() const {
  return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, NULL);
}

//=============================================================================
// Convenience common pre-built types.
const TypeAryPtr *TypeAryPtr::RANGE;
const TypeAryPtr *TypeAryPtr::OOPS;
const TypeAryPtr *TypeAryPtr::NARROWOOPS;
const TypeAryPtr *TypeAryPtr::BYTES;
const TypeAryPtr *TypeAryPtr::SHORTS;
const TypeAryPtr *TypeAryPtr::CHARS;
const TypeAryPtr *TypeAryPtr::INTS;
const TypeAryPtr *TypeAryPtr::LONGS;
const TypeAryPtr *TypeAryPtr::FLOATS;
const TypeAryPtr *TypeAryPtr::DOUBLES;

//------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative) {
  assert(!(k == NULL && ary->_elem->isa_int()),
         "integral arrays must be pre-equipped with a class");
  if (!xk)  xk = ary->ary_must_be_exact();
  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  if (!UseExactTypes)  xk = (ptr == Constant);
  return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative))->hashcons();
}

//------------------------------make-------------------------------------------
const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id, const TypeOopPtr* speculative, bool is_autobox_cache) {
  assert(!(k == NULL && ary->_elem->isa_int()),
         "integral arrays must be pre-equipped with a class");
  assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
  if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
  assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
  if (!UseExactTypes)  xk = (ptr == Constant);
  return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative))->hashcons();
}

//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
  if( ptr == _ptr ) return this;
  return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
}


//-----------------------------cast_to_exactness-------------------------------
const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
  if( klass_is_exact == _klass_is_exact ) return this;
  if (!UseExactTypes)  return this;
  if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
  return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative);
}

//-----------------------------cast_to_instance_id----------------------------
const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
  if( instance_id == _instance_id ) return this;
  return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative);
}

//-----------------------------narrow_size_type-------------------------------
// Local cache for arrayOopDesc::max_array_length(etype),
// which is kind of slow (and cached elsewhere by other users).
static jint max_array_length_cache[T_CONFLICT+1];
static jint max_array_length(BasicType etype) {
  jint& cache = max_array_length_cache[etype];
  jint res = cache;
  if (res == 0) {
    switch (etype) {
    case T_NARROWOOP:
      etype = T_OBJECT;
      break;
    case T_NARROWKLASS:
    case T_CONFLICT:
    case T_ILLEGAL:
    case T_VOID:
      etype = T_BYTE;           // will produce conservatively high value
    }
    cache = res = arrayOopDesc::max_array_length(etype);
  }
  return res;
}

// Narrow the given size type to the index range for the given array base type.
// Return NULL if the resulting int type becomes empty.
const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
  jint hi = size->_hi;
  jint lo = size->_lo;
  jint min_lo = 0;
  jint max_hi = max_array_length(elem()->basic_type());
  //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
  bool chg = false;
  if (lo < min_lo) {
    lo = min_lo;
    if (size->is_con()) {
      hi = lo;
    }
    chg = true;
  }
  if (hi > max_hi) {
    hi = max_hi;
    if (size->is_con()) {
      lo = hi;
    }
    chg = true;
  }
  // Negative length arrays will produce weird intermediate dead fast-path code
  if (lo > hi)
    return TypeInt::ZERO;
  if (!chg)
    return size;
  return TypeInt::make(lo, hi, Type::WidenMin);
}

//-------------------------------cast_to_size----------------------------------
const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
  assert(new_size != NULL, "");
  new_size = narrow_size_type(new_size);
  if (new_size == size())  return this;
  const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative);
}


//------------------------------cast_to_stable---------------------------------
const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
  if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
    return this;

  const Type* elem = this->elem();
  const TypePtr* elem_ptr = elem->make_ptr();

  if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
    // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
    elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
  }

  const TypeAry* new_ary = TypeAry::make(elem, size(), stable);

  return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
}

//-----------------------------stable_dimension--------------------------------
int TypeAryPtr::stable_dimension() const {
  if (!is_stable())  return 0;
  int dim = 1;
  const TypePtr* elem_ptr = elem()->make_ptr();
  if (elem_ptr != NULL && elem_ptr->isa_aryptr())
    dim += elem_ptr->is_aryptr()->stable_dimension();
  return dim;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeAryPtr::eq( const Type *t ) const {
  const TypeAryPtr *p = t->is_aryptr();
  return
    _ary == p->_ary &&  // Check array
    TypeOopPtr::eq(p);  // Check sub-parts
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeAryPtr::hash(void) const {
  return (intptr_t)_ary + TypeOopPtr::hash();
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?
  // Current "this->_base" is Pointer
  switch (t->base()) {          // switch on original type

  // Mixing ints & oops happens when javac reuses local variables
  case Int:
  case Long:
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case NarrowOop:
  case NarrowKlass:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  default:                      // All else is a mistake
    typerr(t);

  case OopPtr: {                // Meeting to OopPtrs
    // Found a OopPtr type vs self-AryPtr type
    const TypeOopPtr *tp = t->is_oopptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case TopPTR:
    case AnyNull: {
      int instance_id = meet_instance_id(InstanceTop);
      const TypeOopPtr* speculative = meet_speculative(tp);
      return make(ptr, (ptr == Constant ? const_oop() : NULL),
                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
    }
    case BotPTR:
    case NotNull: {
      int instance_id = meet_instance_id(tp->instance_id());
      const TypeOopPtr* speculative = meet_speculative(tp);
      return TypeOopPtr::make(ptr, offset, instance_id, speculative);
    }
    default: ShouldNotReachHere();
    }
  }

  case AnyPtr: {                // Meeting two AnyPtrs
    // Found an AnyPtr type vs self-AryPtr type
    const TypePtr *tp = t->is_ptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case TopPTR:
      return this;
    case BotPTR:
    case NotNull:
      return TypePtr::make(AnyPtr, ptr, offset);
    case Null:
      if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
      // else fall through to AnyNull
    case AnyNull: {
      int instance_id = meet_instance_id(InstanceTop);
      const TypeOopPtr* speculative = _speculative;
      return make(ptr, (ptr == Constant ? const_oop() : NULL),
                  _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
    }
    default: ShouldNotReachHere();
    }
  }

  case MetadataPtr:
  case KlassPtr:
  case RawPtr: return TypePtr::BOTTOM;

  case AryPtr: {                // Meeting 2 references?
    const TypeAryPtr *tap = t->is_aryptr();
    int off = meet_offset(tap->offset());
    const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
    PTR ptr = meet_ptr(tap->ptr());
    int instance_id = meet_instance_id(tap->instance_id());
    const TypeOopPtr* speculative = meet_speculative(tap);
    ciKlass* lazy_klass = NULL;
    if (tary->_elem->isa_int()) {
      // Integral array element types have irrelevant lattice relations.
      // It is the klass that determines array layout, not the element type.
      if (_klass == NULL)
        lazy_klass = tap->_klass;
      else if (tap->_klass == NULL || tap->_klass == _klass) {
        lazy_klass = _klass;
      } else {
        // Something like byte[int+] meets char[int+].
        // This must fall to bottom, not (int[-128..65535])[int+].
        instance_id = InstanceBot;
        tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
      }
    } else // Non integral arrays.
    // Must fall to bottom if exact klasses in upper lattice
    // are not equal or super klass is exact.
    if ( above_centerline(ptr) && klass() != tap->klass() &&
         // meet with top[] and bottom[] are processed further down:
         tap ->_klass != NULL  && this->_klass != NULL   &&
         // both are exact and not equal:
        ((tap ->_klass_is_exact && this->_klass_is_exact) ||
         // 'tap'  is exact and super or unrelated:
         (tap ->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
         // 'this' is exact and super or unrelated:
         (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
      tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
      return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot);
    }

    bool xk = false;
    switch (tap->ptr()) {
    case AnyNull:
    case TopPTR:
      // Compute new klass on demand, do not use tap->_klass
      if (below_centerline(this->_ptr)) {
        xk = this->_klass_is_exact;
      } else {
        xk = (tap->_klass_is_exact | this->_klass_is_exact);
      }
      return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative);
    case Constant: {
      ciObject* o = const_oop();
      if( _ptr == Constant ) {
        if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
          xk = (klass() == tap->klass());
          ptr = NotNull;
          o = NULL;
          instance_id = InstanceBot;
        } else {
          xk = true;
        }
      } else if(above_centerline(_ptr)) {
        o = tap->const_oop();
        xk = true;
      } else {
        // Only precise for identical arrays
        xk = this->_klass_is_exact && (klass() == tap->klass());
      }
      return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative);
    }
    case NotNull:
    case BotPTR:
      // Compute new klass on demand, do not use tap->_klass
      if (above_centerline(this->_ptr))
            xk = tap->_klass_is_exact;
      else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
              (klass() == tap->klass()); // Only precise for identical arrays
      return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative);
    default: ShouldNotReachHere();
    }
  }

  // All arrays inherit from Object class
  case InstPtr: {
    const TypeInstPtr *tp = t->is_instptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    int instance_id = meet_instance_id(tp->instance_id());
    const TypeOopPtr* speculative = meet_speculative(tp);
    switch (ptr) {
    case TopPTR:
    case AnyNull:                // Fall 'down' to dual of object klass
      // For instances when a subclass meets a superclass we fall
      // below the centerline when the superclass is exact. We need to
      // do the same here.
      if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
        return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
      } else {
        // cannot subclass, so the meet has to fall badly below the centerline
        ptr = NotNull;
        instance_id = InstanceBot;
        return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
      }
    case Constant:
    case NotNull:
    case BotPTR:                // Fall down to object klass
      // LCA is object_klass, but if we subclass from the top we can do better
      if (above_centerline(tp->ptr())) {
        // If 'tp'  is above the centerline and it is Object class
        // then we can subclass in the Java class hierarchy.
        // For instances when a subclass meets a superclass we fall
        // below the centerline when the superclass is exact. We need
        // to do the same here.
        if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
          // that is, my array type is a subtype of 'tp' klass
          return make(ptr, (ptr == Constant ? const_oop() : NULL),
                      _ary, _klass, _klass_is_exact, offset, instance_id, speculative);
        }
      }
      // The other case cannot happen, since t cannot be a subtype of an array.
      // The meet falls down to Object class below centerline.
      if( ptr == Constant )
         ptr = NotNull;
      instance_id = InstanceBot;
      return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative);
    default: typerr(t);
    }
  }
  }
  return this;                  // Lint noise
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeAryPtr::xdual() const {
  return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative());
}

//----------------------interface_vs_oop---------------------------------------
#ifdef ASSERT
bool TypeAryPtr::interface_vs_oop(const Type *t) const {
  const TypeAryPtr* t_aryptr = t->isa_aryptr();
  if (t_aryptr) {
    return _ary->interface_vs_oop(t_aryptr->_ary);
  }
  return false;
}
#endif

//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  _ary->dump2(d,depth,st);
  switch( _ptr ) {
  case Constant:
    const_oop()->print(st);
    break;
  case BotPTR:
    if (!WizardMode && !Verbose) {
      if( _klass_is_exact ) st->print(":exact");
      break;
    }
  case TopPTR:
  case AnyNull:
  case NotNull:
    st->print(":%s", ptr_msg[_ptr]);
    if( _klass_is_exact ) st->print(":exact");
    break;
  }

  if( _offset != 0 ) {
    int header_size = objArrayOopDesc::header_size() * wordSize;
    if( _offset == OffsetTop )       st->print("+undefined");
    else if( _offset == OffsetBot )  st->print("+any");
    else if( _offset < header_size ) st->print("+%d", _offset);
    else {
      BasicType basic_elem_type = elem()->basic_type();
      int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
      int elem_size = type2aelembytes(basic_elem_type);
      st->print("[%d]", (_offset - array_base)/elem_size);
    }
  }
  st->print(" *");
  if (_instance_id == InstanceTop)
    st->print(",iid=top");
  else if (_instance_id != InstanceBot)
    st->print(",iid=%d",_instance_id);

  dump_speculative(st);
}
#endif

bool TypeAryPtr::empty(void) const {
  if (_ary->empty())       return true;
  return TypeOopPtr::empty();
}

//------------------------------add_offset-------------------------------------
const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
  return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset));
}

const TypeOopPtr *TypeAryPtr::remove_speculative() const {
  return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, _offset, _instance_id, NULL);
}

//=============================================================================

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeNarrowPtr::hash(void) const {
  return _ptrtype->hash() + 7;
}

bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
  return _ptrtype->singleton();
}

bool TypeNarrowPtr::empty(void) const {
  return _ptrtype->empty();
}

intptr_t TypeNarrowPtr::get_con() const {
  return _ptrtype->get_con();
}

bool TypeNarrowPtr::eq( const Type *t ) const {
  const TypeNarrowPtr* tc = isa_same_narrowptr(t);
  if (tc != NULL) {
    if (_ptrtype->base() != tc->_ptrtype->base()) {
      return false;
    }
    return tc->_ptrtype->eq(_ptrtype);
  }
  return false;
}

const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
  const TypePtr* odual = _ptrtype->dual()->is_ptr();
  return make_same_narrowptr(odual);
}


const Type *TypeNarrowPtr::filter( const Type *kills ) const {
  if (isa_same_narrowptr(kills)) {
    const Type* ft =_ptrtype->filter(is_same_narrowptr(kills)->_ptrtype);
    if (ft->empty())
      return Type::TOP;           // Canonical empty value
    if (ft->isa_ptr()) {
      return make_hash_same_narrowptr(ft->isa_ptr());
    }
    return ft;
  } else if (kills->isa_ptr()) {
    const Type* ft = _ptrtype->join(kills);
    if (ft->empty())
      return Type::TOP;           // Canonical empty value
    return ft;
  } else {
    return Type::TOP;
  }
}

//------------------------------xmeet------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  if (t->base() == base()) {
    const Type* result = _ptrtype->xmeet(t->make_ptr());
    if (result->isa_ptr()) {
      return make_hash_same_narrowptr(result->is_ptr());
    }
    return result;
  }

  // Current "this->_base" is NarrowKlass or NarrowOop
  switch (t->base()) {          // switch on original type

  case Int:                     // Mixing ints & oops happens when javac
  case Long:                    // reuses local variables
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case AnyPtr:
  case RawPtr:
  case OopPtr:
  case InstPtr:
  case AryPtr:
  case MetadataPtr:
  case KlassPtr:
  case NarrowOop:
  case NarrowKlass:

  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  default:                      // All else is a mistake
    typerr(t);

  } // End of switch

  return this;
}

#ifndef PRODUCT
void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  _ptrtype->dump2(d, depth, st);
}
#endif

const TypeNarrowOop *TypeNarrowOop::BOTTOM;
const TypeNarrowOop *TypeNarrowOop::NULL_PTR;


const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
  return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
}


#ifndef PRODUCT
void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
  st->print("narrowoop: ");
  TypeNarrowPtr::dump2(d, depth, st);
}
#endif

const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;

const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
  return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
}

#ifndef PRODUCT
void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
  st->print("narrowklass: ");
  TypeNarrowPtr::dump2(d, depth, st);
}
#endif


//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeMetadataPtr::eq( const Type *t ) const {
  const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
  ciMetadata* one = metadata();
  ciMetadata* two = a->metadata();
  if (one == NULL || two == NULL) {
    return (one == two) && TypePtr::eq(t);
  } else {
    return one->equals(two) && TypePtr::eq(t);
  }
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeMetadataPtr::hash(void) const {
  return
    (metadata() ? metadata()->hash() : 0) +
    TypePtr::hash();
}

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants
bool TypeMetadataPtr::singleton(void) const {
  // detune optimizer to not generate constant metadta + constant offset as a constant!
  // TopPTR, Null, AnyNull, Constant are all singletons
  return (_offset == 0) && !below_centerline(_ptr);
}

//------------------------------add_offset-------------------------------------
const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
  return make( _ptr, _metadata, xadd_offset(offset));
}

//-----------------------------filter------------------------------------------
// Do not allow interface-vs.-noninterface joins to collapse to top.
const Type *TypeMetadataPtr::filter( const Type *kills ) const {
  const TypeMetadataPtr* ft = join(kills)->isa_metadataptr();
  if (ft == NULL || ft->empty())
    return Type::TOP;           // Canonical empty value
  return ft;
}

 //------------------------------get_con----------------------------------------
intptr_t TypeMetadataPtr::get_con() const {
  assert( _ptr == Null || _ptr == Constant, "" );
  assert( _offset >= 0, "" );

  if (_offset != 0) {
    // After being ported to the compiler interface, the compiler no longer
    // directly manipulates the addresses of oops.  Rather, it only has a pointer
    // to a handle at compile time.  This handle is embedded in the generated
    // code and dereferenced at the time the nmethod is made.  Until that time,
    // it is not reasonable to do arithmetic with the addresses of oops (we don't
    // have access to the addresses!).  This does not seem to currently happen,
    // but this assertion here is to help prevent its occurence.
    tty->print_cr("Found oop constant with non-zero offset");
    ShouldNotReachHere();
  }

  return (intptr_t)metadata()->constant_encoding();
}

//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
  if( ptr == _ptr ) return this;
  return make(ptr, metadata(), _offset);
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is OopPtr
  switch (t->base()) {          // switch on original type

  case Int:                     // Mixing ints & oops happens when javac
  case Long:                    // reuses local variables
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case NarrowOop:
  case NarrowKlass:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  default:                      // All else is a mistake
    typerr(t);

  case AnyPtr: {
    // Found an AnyPtr type vs self-OopPtr type
    const TypePtr *tp = t->is_ptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case Null:
      if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
      // else fall through:
    case TopPTR:
    case AnyNull: {
      return make(ptr, NULL, offset);
    }
    case BotPTR:
    case NotNull:
      return TypePtr::make(AnyPtr, ptr, offset);
    default: typerr(t);
    }
  }

  case RawPtr:
  case KlassPtr:
  case OopPtr:
  case InstPtr:
  case AryPtr:
    return TypePtr::BOTTOM;     // Oop meet raw is not well defined

  case MetadataPtr: {
    const TypeMetadataPtr *tp = t->is_metadataptr();
    int offset = meet_offset(tp->offset());
    PTR tptr = tp->ptr();
    PTR ptr = meet_ptr(tptr);
    ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
    if (tptr == TopPTR || _ptr == TopPTR ||
        metadata()->equals(tp->metadata())) {
      return make(ptr, md, offset);
    }
    // metadata is different
    if( ptr == Constant ) {  // Cannot be equal constants, so...
      if( tptr == Constant && _ptr != Constant)  return t;
      if( _ptr == Constant && tptr != Constant)  return this;
      ptr = NotNull;            // Fall down in lattice
    }
    return make(ptr, NULL, offset);
    break;
  }
  } // End of switch
  return this;                  // Return the double constant
}


//------------------------------xdual------------------------------------------
// Dual of a pure metadata pointer.
const Type *TypeMetadataPtr::xdual() const {
  return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
}

//------------------------------dump2------------------------------------------
#ifndef PRODUCT
void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
  st->print("metadataptr:%s", ptr_msg[_ptr]);
  if( metadata() ) st->print(INTPTR_FORMAT, metadata());
  switch( _offset ) {
  case OffsetTop: st->print("+top"); break;
  case OffsetBot: st->print("+any"); break;
  case         0: break;
  default:        st->print("+%d",_offset); break;
  }
}
#endif


//=============================================================================
// Convenience common pre-built type.
const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;

TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
  TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
}

const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
  return make(Constant, m, 0);
}
const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
  return make(Constant, m, 0);
}

//------------------------------make-------------------------------------------
// Create a meta data constant
const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
  assert(m == NULL || !m->is_klass(), "wrong type");
  return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
}


//=============================================================================
// Convenience common pre-built types.

// Not-null object klass or below
const TypeKlassPtr *TypeKlassPtr::OBJECT;
const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;

//------------------------------TypeKlassPtr-----------------------------------
TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
  : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
}

//------------------------------make-------------------------------------------
// ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
  assert( k != NULL, "Expect a non-NULL klass");
  assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
  TypeKlassPtr *r =
    (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();

  return r;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeKlassPtr::eq( const Type *t ) const {
  const TypeKlassPtr *p = t->is_klassptr();
  return
    klass()->equals(p->klass()) &&
    TypePtr::eq(p);
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeKlassPtr::hash(void) const {
  return klass()->hash() + TypePtr::hash();
}

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants
bool TypeKlassPtr::singleton(void) const {
  // detune optimizer to not generate constant klass + constant offset as a constant!
  // TopPTR, Null, AnyNull, Constant are all singletons
  return (_offset == 0) && !below_centerline(_ptr);
}

// Do not allow interface-vs.-noninterface joins to collapse to top.
const Type *TypeKlassPtr::filter(const Type *kills) const {
  // logic here mirrors the one from TypeOopPtr::filter. See comments
  // there.
  const Type* ft = join(kills);
  const TypeKlassPtr* ftkp = ft->isa_klassptr();
  const TypeKlassPtr* ktkp = kills->isa_klassptr();

  if (ft->empty()) {
    if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
      return kills;             // Uplift to interface

    return Type::TOP;           // Canonical empty value
  }

  // Interface klass type could be exact in opposite to interface type,
  // return it here instead of incorrect Constant ptr J/L/Object (6894807).
  if (ftkp != NULL && ktkp != NULL &&
      ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
      !ftkp->klass_is_exact() && // Keep exact interface klass
      ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
    return ktkp->cast_to_ptr_type(ftkp->ptr());
  }

  return ft;
}

//----------------------compute_klass------------------------------------------
// Compute the defining klass for this class
ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
  // Compute _klass based on element type.
  ciKlass* k_ary = NULL;
  const TypeInstPtr *tinst;
  const TypeAryPtr *tary;
  const Type* el = elem();
  if (el->isa_narrowoop()) {
    el = el->make_ptr();
  }

  // Get element klass
  if ((tinst = el->isa_instptr()) != NULL) {
    // Compute array klass from element klass
    k_ary = ciObjArrayKlass::make(tinst->klass());
  } else if ((tary = el->isa_aryptr()) != NULL) {
    // Compute array klass from element klass
    ciKlass* k_elem = tary->klass();
    // If element type is something like bottom[], k_elem will be null.
    if (k_elem != NULL)
      k_ary = ciObjArrayKlass::make(k_elem);
  } else if ((el->base() == Type::Top) ||
             (el->base() == Type::Bottom)) {
    // element type of Bottom occurs from meet of basic type
    // and object; Top occurs when doing join on Bottom.
    // Leave k_ary at NULL.
  } else {
    // Cannot compute array klass directly from basic type,
    // since subtypes of TypeInt all have basic type T_INT.
#ifdef ASSERT
    if (verify && el->isa_int()) {
      // Check simple cases when verifying klass.
      BasicType bt = T_ILLEGAL;
      if (el == TypeInt::BYTE) {
        bt = T_BYTE;
      } else if (el == TypeInt::SHORT) {
        bt = T_SHORT;
      } else if (el == TypeInt::CHAR) {
        bt = T_CHAR;
      } else if (el == TypeInt::INT) {
        bt = T_INT;
      } else {
        return _klass; // just return specified klass
      }
      return ciTypeArrayKlass::make(bt);
    }
#endif
    assert(!el->isa_int(),
           "integral arrays must be pre-equipped with a class");
    // Compute array klass directly from basic type
    k_ary = ciTypeArrayKlass::make(el->basic_type());
  }
  return k_ary;
}

//------------------------------klass------------------------------------------
// Return the defining klass for this class
ciKlass* TypeAryPtr::klass() const {
  if( _klass ) return _klass;   // Return cached value, if possible

  // Oops, need to compute _klass and cache it
  ciKlass* k_ary = compute_klass();

  if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
    // The _klass field acts as a cache of the underlying
    // ciKlass for this array type.  In order to set the field,
    // we need to cast away const-ness.
    //
    // IMPORTANT NOTE: we *never* set the _klass field for the
    // type TypeAryPtr::OOPS.  This Type is shared between all
    // active compilations.  However, the ciKlass which represents
    // this Type is *not* shared between compilations, so caching
    // this value would result in fetching a dangling pointer.
    //
    // Recomputing the underlying ciKlass for each request is
    // a bit less efficient than caching, but calls to
    // TypeAryPtr::OOPS->klass() are not common enough to matter.
    ((TypeAryPtr*)this)->_klass = k_ary;
    if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
        _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
      ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
    }
  }
  return k_ary;
}


//------------------------------add_offset-------------------------------------
// Access internals of klass object
const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
  return make( _ptr, klass(), xadd_offset(offset) );
}

//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
  assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
  if( ptr == _ptr ) return this;
  return make(ptr, _klass, _offset);
}


//-----------------------------cast_to_exactness-------------------------------
const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
  if( klass_is_exact == _klass_is_exact ) return this;
  if (!UseExactTypes)  return this;
  return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
}


//-----------------------------as_instance_type--------------------------------
// Corresponding type for an instance of the given class.
// It will be NotNull, and exact if and only if the klass type is exact.
const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
  ciKlass* k = klass();
  bool    xk = klass_is_exact();
  //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
  const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
  guarantee(toop != NULL, "need type for given klass");
  toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
  return toop->cast_to_exactness(xk)->is_oopptr();
}


//------------------------------xmeet------------------------------------------
// Compute the MEET of two types, return a new Type object.
const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is Pointer
  switch (t->base()) {          // switch on original type

  case Int:                     // Mixing ints & oops happens when javac
  case Long:                    // reuses local variables
  case FloatTop:
  case FloatCon:
  case FloatBot:
  case DoubleTop:
  case DoubleCon:
  case DoubleBot:
  case NarrowOop:
  case NarrowKlass:
  case Bottom:                  // Ye Olde Default
    return Type::BOTTOM;
  case Top:
    return this;

  default:                      // All else is a mistake
    typerr(t);

  case AnyPtr: {                // Meeting to AnyPtrs
    // Found an AnyPtr type vs self-KlassPtr type
    const TypePtr *tp = t->is_ptr();
    int offset = meet_offset(tp->offset());
    PTR ptr = meet_ptr(tp->ptr());
    switch (tp->ptr()) {
    case TopPTR:
      return this;
    case Null:
      if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
    case AnyNull:
      return make( ptr, klass(), offset );
    case BotPTR:
    case NotNull:
      return TypePtr::make(AnyPtr, ptr, offset);
    default: typerr(t);
    }
  }

  case RawPtr:
  case MetadataPtr:
  case OopPtr:
  case AryPtr:                  // Meet with AryPtr
  case InstPtr:                 // Meet with InstPtr
    return TypePtr::BOTTOM;

  //
  //             A-top         }
  //           /   |   \       }  Tops
  //       B-top A-any C-top   }
  //          | /  |  \ |      }  Any-nulls
  //       B-any   |   C-any   }
  //          |    |    |
  //       B-con A-con C-con   } constants; not comparable across classes
  //          |    |    |
  //       B-not   |   C-not   }
  //          | \  |  / |      }  not-nulls
  //       B-bot A-not C-bot   }
  //           \   |   /       }  Bottoms
  //             A-bot         }
  //

  case KlassPtr: {  // Meet two KlassPtr types
    const TypeKlassPtr *tkls = t->is_klassptr();
    int  off     = meet_offset(tkls->offset());
    PTR  ptr     = meet_ptr(tkls->ptr());

    // Check for easy case; klasses are equal (and perhaps not loaded!)
    // If we have constants, then we created oops so classes are loaded
    // and we can handle the constants further down.  This case handles
    // not-loaded classes
    if( ptr != Constant && tkls->klass()->equals(klass()) ) {
      return make( ptr, klass(), off );
    }

    // Classes require inspection in the Java klass hierarchy.  Must be loaded.
    ciKlass* tkls_klass = tkls->klass();
    ciKlass* this_klass = this->klass();
    assert( tkls_klass->is_loaded(), "This class should have been loaded.");
    assert( this_klass->is_loaded(), "This class should have been loaded.");

    // If 'this' type is above the centerline and is a superclass of the
    // other, we can treat 'this' as having the same type as the other.
    if ((above_centerline(this->ptr())) &&
        tkls_klass->is_subtype_of(this_klass)) {
      this_klass = tkls_klass;
    }
    // If 'tinst' type is above the centerline and is a superclass of the
    // other, we can treat 'tinst' as having the same type as the other.
    if ((above_centerline(tkls->ptr())) &&
        this_klass->is_subtype_of(tkls_klass)) {
      tkls_klass = this_klass;
    }

    // Check for classes now being equal
    if (tkls_klass->equals(this_klass)) {
      // If the klasses are equal, the constants may still differ.  Fall to
      // NotNull if they do (neither constant is NULL; that is a special case
      // handled elsewhere).
      if( ptr == Constant ) {
        if (this->_ptr == Constant && tkls->_ptr == Constant &&
            this->klass()->equals(tkls->klass()));
        else if (above_centerline(this->ptr()));
        else if (above_centerline(tkls->ptr()));
        else
          ptr = NotNull;
      }
      return make( ptr, this_klass, off );
    } // Else classes are not equal

    // Since klasses are different, we require the LCA in the Java
    // class hierarchy - which means we have to fall to at least NotNull.
    if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
      ptr = NotNull;
    // Now we find the LCA of Java classes
    ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
    return   make( ptr, k, off );
  } // End of case KlassPtr

  } // End of switch
  return this;                  // Return the double constant
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type    *TypeKlassPtr::xdual() const {
  return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
}

//------------------------------get_con----------------------------------------
intptr_t TypeKlassPtr::get_con() const {
  assert( _ptr == Null || _ptr == Constant, "" );
  assert( _offset >= 0, "" );

  if (_offset != 0) {
    // After being ported to the compiler interface, the compiler no longer
    // directly manipulates the addresses of oops.  Rather, it only has a pointer
    // to a handle at compile time.  This handle is embedded in the generated
    // code and dereferenced at the time the nmethod is made.  Until that time,
    // it is not reasonable to do arithmetic with the addresses of oops (we don't
    // have access to the addresses!).  This does not seem to currently happen,
    // but this assertion here is to help prevent its occurence.
    tty->print_cr("Found oop constant with non-zero offset");
    ShouldNotReachHere();
  }

  return (intptr_t)klass()->constant_encoding();
}
//------------------------------dump2------------------------------------------
// Dump Klass Type
#ifndef PRODUCT
void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
  switch( _ptr ) {
  case Constant:
    st->print("precise ");
  case NotNull:
    {
      const char *name = klass()->name()->as_utf8();
      if( name ) {
        st->print("klass %s: " INTPTR_FORMAT, name, klass());
      } else {
        ShouldNotReachHere();
      }
    }
  case BotPTR:
    if( !WizardMode && !Verbose && !_klass_is_exact ) break;
  case TopPTR:
  case AnyNull:
    st->print(":%s", ptr_msg[_ptr]);
    if( _klass_is_exact ) st->print(":exact");
    break;
  }

  if( _offset ) {               // Dump offset, if any
    if( _offset == OffsetBot )      { st->print("+any"); }
    else if( _offset == OffsetTop ) { st->print("+unknown"); }
    else                            { st->print("+%d", _offset); }
  }

  st->print(" *");
}
#endif



//=============================================================================
// Convenience common pre-built types.

//------------------------------make-------------------------------------------
const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
  return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
}

//------------------------------make-------------------------------------------
const TypeFunc *TypeFunc::make(ciMethod* method) {
  Compile* C = Compile::current();
  const TypeFunc* tf = C->last_tf(method); // check cache
  if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
  const TypeTuple *domain;
  if (method->is_static()) {
    domain = TypeTuple::make_domain(NULL, method->signature());
  } else {
    domain = TypeTuple::make_domain(method->holder(), method->signature());
  }
  const TypeTuple *range  = TypeTuple::make_range(method->signature());
  tf = TypeFunc::make(domain, range);
  C->set_last_tf(method, tf);  // fill cache
  return tf;
}

//------------------------------meet-------------------------------------------
// Compute the MEET of two types.  It returns a new Type object.
const Type *TypeFunc::xmeet( const Type *t ) const {
  // Perform a fast test for common case; meeting the same types together.
  if( this == t ) return this;  // Meeting same type-rep?

  // Current "this->_base" is Func
  switch (t->base()) {          // switch on original type

  case Bottom:                  // Ye Olde Default
    return t;

  default:                      // All else is a mistake
    typerr(t);

  case Top:
    break;
  }
  return this;                  // Return the double constant
}

//------------------------------xdual------------------------------------------
// Dual: compute field-by-field dual
const Type *TypeFunc::xdual() const {
  return this;
}

//------------------------------eq---------------------------------------------
// Structural equality check for Type representations
bool TypeFunc::eq( const Type *t ) const {
  const TypeFunc *a = (const TypeFunc*)t;
  return _domain == a->_domain &&
    _range == a->_range;
}

//------------------------------hash-------------------------------------------
// Type-specific hashing function.
int TypeFunc::hash(void) const {
  return (intptr_t)_domain + (intptr_t)_range;
}

//------------------------------dump2------------------------------------------
// Dump Function Type
#ifndef PRODUCT
void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
  if( _range->_cnt <= Parms )
    st->print("void");
  else {
    uint i;
    for (i = Parms; i < _range->_cnt-1; i++) {
      _range->field_at(i)->dump2(d,depth,st);
      st->print("/");
    }
    _range->field_at(i)->dump2(d,depth,st);
  }
  st->print(" ");
  st->print("( ");
  if( !depth || d[this] ) {     // Check for recursive dump
    st->print("...)");
    return;
  }
  d.Insert((void*)this,(void*)this);    // Stop recursion
  if (Parms < _domain->_cnt)
    _domain->field_at(Parms)->dump2(d,depth-1,st);
  for (uint i = Parms+1; i < _domain->_cnt; i++) {
    st->print(", ");
    _domain->field_at(i)->dump2(d,depth-1,st);
  }
  st->print(" )");
}
#endif

//------------------------------singleton--------------------------------------
// TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
// constants (Ldi nodes).  Singletons are integer, float or double constants
// or a single symbol.
bool TypeFunc::singleton(void) const {
  return false;                 // Never a singleton
}

bool TypeFunc::empty(void) const {
  return false;                 // Never empty
}


BasicType TypeFunc::return_type() const{
  if (range()->cnt() == TypeFunc::Parms) {
    return T_VOID;
  }
  return range()->field_at(TypeFunc::Parms)->basic_type();
}

Other Java examples (source code examples)

Here is a short list of links related to this Java type.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.