alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (synchronizer.cpp)

This example Java source code file (synchronizer.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

biasedlocking\:\:revoke_and_rebias, chainmarker, forcemonitorscavenge, freehead, listlock, null, objectmonitor, objectsynchronizer\:\:inflate, readstablemark, self-, tevent, thread, traps, usebiasedlocking

The synchronizer.cpp Java example source code

/*
 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/vmSymbols.hpp"
#include "memory/resourceArea.hpp"
#include "oops/markOop.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/objectMonitor.inline.hpp"
#include "runtime/osThread.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/events.hpp"
#include "utilities/preserveException.hpp"
#ifdef TARGET_OS_FAMILY_linux
# include "os_linux.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_solaris
# include "os_solaris.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_windows
# include "os_windows.inline.hpp"
#endif
#ifdef TARGET_OS_FAMILY_bsd
# include "os_bsd.inline.hpp"
#endif

#if defined(__GNUC__)
  // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  #define ATTR __attribute__((noinline))
#else
  #define ATTR
#endif

// The "core" versions of monitor enter and exit reside in this file.
// The interpreter and compilers contain specialized transliterated
// variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
// for instance.  If you make changes here, make sure to modify the
// interpreter, and both C1 and C2 fast-path inline locking code emission.
//
//
// -----------------------------------------------------------------------------

#ifdef DTRACE_ENABLED

// Only bother with this argument setup if dtrace is available
// TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.

#define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  char* bytes = NULL;                                                      \
  int len = 0;                                                             \
  jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  if (klassname != NULL) {                                                 \
    bytes = (char*)klassname->bytes();                                     \
    len = klassname->utf8_length();                                        \
  }

#ifndef USDT2
HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
  jlong, uintptr_t, char*, int, long);
HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
  jlong, uintptr_t, char*, int);

#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
      HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
                       (monitor), bytes, len, (millis));                   \
    }                                                                      \
  }

#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
      HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
                       (uintptr_t)(monitor), bytes, len);                  \
    }                                                                      \
  }

#else /* USDT2 */

#define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
      HOTSPOT_MONITOR_WAIT(jtid,                                           \
                           (uintptr_t)(monitor), bytes, len, (millis));  \
    }                                                                      \
  }

#define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_PROBE_WAITED

#define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  {                                                                        \
    if (DTraceMonitorProbes) {                                            \
      DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
      HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
                       (uintptr_t)(monitor), bytes, len);                  \
    }                                                                      \
  }

#endif /* USDT2 */
#else //  ndef DTRACE_ENABLED

#define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
#define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}

#endif // ndef DTRACE_ENABLED

// This exists only as a workaround of dtrace bug 6254741
int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
  return 0;
}

#define NINFLATIONLOCKS 256
static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;

ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
int ObjectSynchronizer::gOmInUseCount = 0;
static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
#define CHAINMARKER (cast_to_oop<intptr_t>(-1))

// -----------------------------------------------------------------------------
//  Fast Monitor Enter/Exit
// This the fast monitor enter. The interpreter and compiler use
// some assembly copies of this code. Make sure update those code
// if the following function is changed. The implementation is
// extremely sensitive to race condition. Be careful.

void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
 if (UseBiasedLocking) {
    if (!SafepointSynchronize::is_at_safepoint()) {
      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
        return;
      }
    } else {
      assert(!attempt_rebias, "can not rebias toward VM thread");
      BiasedLocking::revoke_at_safepoint(obj);
    }
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 }

 slow_enter (obj, lock, THREAD) ;
}

void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
  // if displaced header is null, the previous enter is recursive enter, no-op
  markOop dhw = lock->displaced_header();
  markOop mark ;
  if (dhw == NULL) {
     // Recursive stack-lock.
     // Diagnostics -- Could be: stack-locked, inflating, inflated.
     mark = object->mark() ;
     assert (!mark->is_neutral(), "invariant") ;
     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
     }
     if (mark->has_monitor()) {
        ObjectMonitor * m = mark->monitor() ;
        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
        assert(m->is_entered(THREAD), "invariant") ;
     }
     return ;
  }

  mark = object->mark() ;

  // If the object is stack-locked by the current thread, try to
  // swing the displaced header from the box back to the mark.
  if (mark == (markOop) lock) {
     assert (dhw->is_neutral(), "invariant") ;
     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
        TEVENT (fast_exit: release stacklock) ;
        return;
     }
  }

  ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;
}

// -----------------------------------------------------------------------------
// Interpreter/Compiler Slow Case
// This routine is used to handle interpreter/compiler slow case
// We don't need to use fast path here, because it must have been
// failed in the interpreter/compiler code.
void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  markOop mark = obj->mark();
  assert(!mark->has_bias_pattern(), "should not see bias pattern here");

  if (mark->is_neutral()) {
    // Anticipate successful CAS -- the ST of the displaced mark must
    // be visible <= the ST performed by the CAS.
    lock->set_displaced_header(mark);
    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
      TEVENT (slow_enter: release stacklock) ;
      return ;
    }
    // Fall through to inflate() ...
  } else
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    assert(lock != mark->locker(), "must not re-lock the same lock");
    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    lock->set_displaced_header(NULL);
    return;
  }

#if 0
  // The following optimization isn't particularly useful.
  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
    lock->set_displaced_header (NULL) ;
    return ;
  }
#endif

  // The object header will never be displaced to this lock,
  // so it does not matter what the value is, except that it
  // must be non-zero to avoid looking like a re-entrant lock,
  // and must not look locked either.
  lock->set_displaced_header(markOopDesc::unused_mark());
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
}

// This routine is used to handle interpreter/compiler slow case
// We don't need to use fast path here, because it must have
// failed in the interpreter/compiler code. Simply use the heavy
// weight monitor should be ok, unless someone find otherwise.
void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
  fast_exit (object, lock, THREAD) ;
}

// -----------------------------------------------------------------------------
// Class Loader  support to workaround deadlocks on the class loader lock objects
// Also used by GC
// complete_exit()/reenter() are used to wait on a nested lock
// i.e. to give up an outer lock completely and then re-enter
// Used when holding nested locks - lock acquisition order: lock1 then lock2
//  1) complete_exit lock1 - saving recursion count
//  2) wait on lock2
//  3) when notified on lock2, unlock lock2
//  4) reenter lock1 with original recursion count
//  5) lock lock2
// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
  TEVENT (complete_exit) ;
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());

  return monitor->complete_exit(THREAD);
}

// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
  TEVENT (reenter) ;
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());

  monitor->reenter(recursion, THREAD);
}
// -----------------------------------------------------------------------------
// JNI locks on java objects
// NOTE: must use heavy weight monitor to handle jni monitor enter
void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
  // the current locking is from JNI instead of Java code
  TEVENT (jni_enter) ;
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }
  THREAD->set_current_pending_monitor_is_from_java(false);
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  THREAD->set_current_pending_monitor_is_from_java(true);
}

// NOTE: must use heavy weight monitor to handle jni monitor enter
bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
  return monitor->try_enter(THREAD);
}


// NOTE: must use heavy weight monitor to handle jni monitor exit
void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
  TEVENT (jni_exit) ;
  if (UseBiasedLocking) {
    Handle h_obj(THREAD, obj);
    BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
    obj = h_obj();
  }
  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");

  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
  // If this thread has locked the object, exit the monitor.  Note:  can't use
  // monitor->check(CHECK); must exit even if an exception is pending.
  if (monitor->check(THREAD)) {
     monitor->exit(true, THREAD);
  }
}

// -----------------------------------------------------------------------------
// Internal VM locks on java objects
// standard constructor, allows locking failures
ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
  _dolock = doLock;
  _thread = thread;
  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
  _obj = obj;

  if (_dolock) {
    TEVENT (ObjectLocker) ;

    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
  }
}

ObjectLocker::~ObjectLocker() {
  if (_dolock) {
    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
  }
}


// -----------------------------------------------------------------------------
//  Wait/Notify/NotifyAll
// NOTE: must use heavy weight monitor to handle wait()
void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }
  if (millis < 0) {
    TEVENT (wait - throw IAX) ;
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  }
  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
  monitor->wait(millis, true, THREAD);

  /* This dummy call is in place to get around dtrace bug 6254741.  Once
     that's fixed we can uncomment the following line and remove the call */
  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
  dtrace_waited_probe(monitor, obj, THREAD);
}

void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }
  if (millis < 0) {
    TEVENT (wait - throw IAX) ;
    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  }
  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
}

void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  markOop mark = obj->mark();
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    return;
  }
  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
}

// NOTE: see comment of notify()
void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  markOop mark = obj->mark();
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    return;
  }
  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
}

// -----------------------------------------------------------------------------
// Hash Code handling
//
// Performance concern:
// OrderAccess::storestore() calls release() which STs 0 into the global volatile
// OrderAccess::Dummy variable.  This store is unnecessary for correctness.
// Many threads STing into a common location causes considerable cache migration
// or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
// until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
// latency on the executing processor -- is a better choice as it scales on SMP
// systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
// discussion of coherency costs.  Note that all our current reference platforms
// provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
//
// As a general policy we use "volatile" to control compiler-based reordering
// and explicit fences (barriers) to control for architectural reordering performed
// by the CPU(s) or platform.

struct SharedGlobals {
    // These are highly shared mostly-read variables.
    // To avoid false-sharing they need to be the sole occupants of a $ line.
    double padPrefix [8];
    volatile int stwRandom ;
    volatile int stwCycle ;

    // Hot RW variables -- Sequester to avoid false-sharing
    double padSuffix [16];
    volatile int hcSequence ;
    double padFinal [8] ;
} ;

static SharedGlobals GVars ;
static int MonitorScavengeThreshold = 1000000 ;
static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending

static markOop ReadStableMark (oop obj) {
  markOop mark = obj->mark() ;
  if (!mark->is_being_inflated()) {
    return mark ;       // normal fast-path return
  }

  int its = 0 ;
  for (;;) {
    markOop mark = obj->mark() ;
    if (!mark->is_being_inflated()) {
      return mark ;    // normal fast-path return
    }

    // The object is being inflated by some other thread.
    // The caller of ReadStableMark() must wait for inflation to complete.
    // Avoid live-lock
    // TODO: consider calling SafepointSynchronize::do_call_back() while
    // spinning to see if there's a safepoint pending.  If so, immediately
    // yielding or blocking would be appropriate.  Avoid spinning while
    // there is a safepoint pending.
    // TODO: add inflation contention performance counters.
    // TODO: restrict the aggregate number of spinners.

    ++its ;
    if (its > 10000 || !os::is_MP()) {
       if (its & 1) {
         os::NakedYield() ;
         TEVENT (Inflate: INFLATING - yield) ;
       } else {
         // Note that the following code attenuates the livelock problem but is not
         // a complete remedy.  A more complete solution would require that the inflating
         // thread hold the associated inflation lock.  The following code simply restricts
         // the number of spinners to at most one.  We'll have N-2 threads blocked
         // on the inflationlock, 1 thread holding the inflation lock and using
         // a yield/park strategy, and 1 thread in the midst of inflation.
         // A more refined approach would be to change the encoding of INFLATING
         // to allow encapsulation of a native thread pointer.  Threads waiting for
         // inflation to complete would use CAS to push themselves onto a singly linked
         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
         // and calling park().  When inflation was complete the thread that accomplished inflation
         // would detach the list and set the markword to inflated with a single CAS and
         // then for each thread on the list, set the flag and unpark() the thread.
         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
         // wakes at most one thread whereas we need to wake the entire list.
         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1) ;
         int YieldThenBlock = 0 ;
         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
         while (obj->mark() == markOopDesc::INFLATING()) {
           // Beware: NakedYield() is advisory and has almost no effect on some platforms
           // so we periodically call Self->_ParkEvent->park(1).
           // We use a mixed spin/yield/block mechanism.
           if ((YieldThenBlock++) >= 16) {
              Thread::current()->_ParkEvent->park(1) ;
           } else {
              os::NakedYield() ;
           }
         }
         Thread::muxRelease (InflationLocks + ix ) ;
         TEVENT (Inflate: INFLATING - yield/park) ;
       }
    } else {
       SpinPause() ;       // SMP-polite spinning
    }
  }
}

// hashCode() generation :
//
// Possibilities:
// * MD5Digest of {obj,stwRandom}
// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
// * A DES- or AES-style SBox[] mechanism
// * One of the Phi-based schemes, such as:
//   2654435761 = 2^32 * Phi (golden ratio)
//   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
// * A variation of Marsaglia's shift-xor RNG scheme.
// * (obj ^ stwRandom) is appealing, but can result
//   in undesirable regularity in the hashCode values of adjacent objects
//   (objects allocated back-to-back, in particular).  This could potentially
//   result in hashtable collisions and reduced hashtable efficiency.
//   There are simple ways to "diffuse" the middle address bits over the
//   generated hashCode values:
//

static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0 ;
  if (hashCode == 0) {
     // This form uses an unguarded global Park-Miller RNG,
     // so it's possible for two threads to race and generate the same RNG.
     // On MP system we'll have lots of RW access to a global, so the
     // mechanism induces lots of coherency traffic.
     value = os::random() ;
  } else
  if (hashCode == 1) {
     // This variation has the property of being stable (idempotent)
     // between STW operations.  This can be useful in some of the 1-0
     // synchronization schemes.
     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
  } else
  if (hashCode == 2) {
     value = 1 ;            // for sensitivity testing
  } else
  if (hashCode == 3) {
     value = ++GVars.hcSequence ;
  } else
  if (hashCode == 4) {
     value = cast_from_oop<intptr_t>(obj) ;
  } else {
     // Marsaglia's xor-shift scheme with thread-specific state
     // This is probably the best overall implementation -- we'll
     // likely make this the default in future releases.
     unsigned t = Self->_hashStateX ;
     t ^= (t << 11) ;
     Self->_hashStateX = Self->_hashStateY ;
     Self->_hashStateY = Self->_hashStateZ ;
     Self->_hashStateZ = Self->_hashStateW ;
     unsigned v = Self->_hashStateW ;
     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
     Self->_hashStateW = v ;
     value = v ;
  }

  value &= markOopDesc::hash_mask;
  if (value == 0) value = 0xBAD ;
  assert (value != markOopDesc::no_hash, "invariant") ;
  TEVENT (hashCode: GENERATE) ;
  return value;
}
//
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  if (UseBiasedLocking) {
    // NOTE: many places throughout the JVM do not expect a safepoint
    // to be taken here, in particular most operations on perm gen
    // objects. However, we only ever bias Java instances and all of
    // the call sites of identity_hash that might revoke biases have
    // been checked to make sure they can handle a safepoint. The
    // added check of the bias pattern is to avoid useless calls to
    // thread-local storage.
    if (obj->mark()->has_bias_pattern()) {
      // Box and unbox the raw reference just in case we cause a STW safepoint.
      Handle hobj (Self, obj) ;
      // Relaxing assertion for bug 6320749.
      assert (Universe::verify_in_progress() ||
              !SafepointSynchronize::is_at_safepoint(),
             "biases should not be seen by VM thread here");
      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
      obj = hobj() ;
      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
    }
  }

  // hashCode() is a heap mutator ...
  // Relaxing assertion for bug 6320749.
  assert (Universe::verify_in_progress() ||
          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  assert (Universe::verify_in_progress() ||
          Self->is_Java_thread() , "invariant") ;
  assert (Universe::verify_in_progress() ||
         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;

  ObjectMonitor* monitor = NULL;
  markOop temp, test;
  intptr_t hash;
  markOop mark = ReadStableMark (obj);

  // object should remain ineligible for biased locking
  assert (!mark->has_bias_pattern(), "invariant") ;

  if (mark->is_neutral()) {
    hash = mark->hash();              // this is a normal header
    if (hash) {                       // if it has hash, just return it
      return hash;
    }
    hash = get_next_hash(Self, obj);  // allocate a new hash code
    temp = mark->copy_set_hash(hash); // merge the hash code into header
    // use (machine word version) atomic operation to install the hash
    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
    if (test == mark) {
      return hash;
    }
    // If atomic operation failed, we must inflate the header
    // into heavy weight monitor. We could add more code here
    // for fast path, but it does not worth the complexity.
  } else if (mark->has_monitor()) {
    monitor = mark->monitor();
    temp = monitor->header();
    assert (temp->is_neutral(), "invariant") ;
    hash = temp->hash();
    if (hash) {
      return hash;
    }
    // Skip to the following code to reduce code size
  } else if (Self->is_lock_owned((address)mark->locker())) {
    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
    assert (temp->is_neutral(), "invariant") ;
    hash = temp->hash();              // by current thread, check if the displaced
    if (hash) {                       // header contains hash code
      return hash;
    }
    // WARNING:
    //   The displaced header is strictly immutable.
    // It can NOT be changed in ANY cases. So we have
    // to inflate the header into heavyweight monitor
    // even the current thread owns the lock. The reason
    // is the BasicLock (stack slot) will be asynchronously
    // read by other threads during the inflate() function.
    // Any change to stack may not propagate to other threads
    // correctly.
  }

  // Inflate the monitor to set hash code
  monitor = ObjectSynchronizer::inflate(Self, obj);
  // Load displaced header and check it has hash code
  mark = monitor->header();
  assert (mark->is_neutral(), "invariant") ;
  hash = mark->hash();
  if (hash == 0) {
    hash = get_next_hash(Self, obj);
    temp = mark->copy_set_hash(hash); // merge hash code into header
    assert (temp->is_neutral(), "invariant") ;
    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
    if (test != mark) {
      // The only update to the header in the monitor (outside GC)
      // is install the hash code. If someone add new usage of
      // displaced header, please update this code
      hash = test->hash();
      assert (test->is_neutral(), "invariant") ;
      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
    }
  }
  // We finally get the hash
  return hash;
}

// Deprecated -- use FastHashCode() instead.

intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
  return FastHashCode (Thread::current(), obj()) ;
}


bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
                                                   Handle h_obj) {
  if (UseBiasedLocking) {
    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  assert(thread == JavaThread::current(), "Can only be called on current thread");
  oop obj = h_obj();

  markOop mark = ReadStableMark (obj) ;

  // Uncontended case, header points to stack
  if (mark->has_locker()) {
    return thread->is_lock_owned((address)mark->locker());
  }
  // Contended case, header points to ObjectMonitor (tagged pointer)
  if (mark->has_monitor()) {
    ObjectMonitor* monitor = mark->monitor();
    return monitor->is_entered(thread) != 0 ;
  }
  // Unlocked case, header in place
  assert(mark->is_neutral(), "sanity check");
  return false;
}

// Be aware of this method could revoke bias of the lock object.
// This method querys the ownership of the lock handle specified by 'h_obj'.
// If the current thread owns the lock, it returns owner_self. If no
// thread owns the lock, it returns owner_none. Otherwise, it will return
// ower_other.
ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
(JavaThread *self, Handle h_obj) {
  // The caller must beware this method can revoke bias, and
  // revocation can result in a safepoint.
  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  assert (self->thread_state() != _thread_blocked , "invariant") ;

  // Possible mark states: neutral, biased, stack-locked, inflated

  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
    // CASE: biased
    BiasedLocking::revoke_and_rebias(h_obj, false, self);
    assert(!h_obj->mark()->has_bias_pattern(),
           "biases should be revoked by now");
  }

  assert(self == JavaThread::current(), "Can only be called on current thread");
  oop obj = h_obj();
  markOop mark = ReadStableMark (obj) ;

  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
  if (mark->has_locker()) {
    return self->is_lock_owned((address)mark->locker()) ?
      owner_self : owner_other;
  }

  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
  // The Object:ObjectMonitor relationship is stable as long as we're
  // not at a safepoint.
  if (mark->has_monitor()) {
    void * owner = mark->monitor()->_owner ;
    if (owner == NULL) return owner_none ;
    return (owner == self ||
            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
  }

  // CASE: neutral
  assert(mark->is_neutral(), "sanity check");
  return owner_none ;           // it's unlocked
}

// FIXME: jvmti should call this
JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
  if (UseBiasedLocking) {
    if (SafepointSynchronize::is_at_safepoint()) {
      BiasedLocking::revoke_at_safepoint(h_obj);
    } else {
      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
    }
    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  }

  oop obj = h_obj();
  address owner = NULL;

  markOop mark = ReadStableMark (obj) ;

  // Uncontended case, header points to stack
  if (mark->has_locker()) {
    owner = (address) mark->locker();
  }

  // Contended case, header points to ObjectMonitor (tagged pointer)
  if (mark->has_monitor()) {
    ObjectMonitor* monitor = mark->monitor();
    assert(monitor != NULL, "monitor should be non-null");
    owner = (address) monitor->owner();
  }

  if (owner != NULL) {
    // owning_thread_from_monitor_owner() may also return NULL here
    return Threads::owning_thread_from_monitor_owner(owner, doLock);
  }

  // Unlocked case, header in place
  // Cannot have assertion since this object may have been
  // locked by another thread when reaching here.
  // assert(mark->is_neutral(), "sanity check");

  return NULL;
}
// Visitors ...

void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
  ObjectMonitor* block = gBlockList;
  ObjectMonitor* mid;
  while (block) {
    assert(block->object() == CHAINMARKER, "must be a block header");
    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
      mid = block + i;
      oop object = (oop) mid->object();
      if (object != NULL) {
        closure->do_monitor(mid);
      }
    }
    block = (ObjectMonitor*) block->FreeNext;
  }
}

// Get the next block in the block list.
static inline ObjectMonitor* next(ObjectMonitor* block) {
  assert(block->object() == CHAINMARKER, "must be a block header");
  block = block->FreeNext ;
  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
  return block;
}


void ObjectSynchronizer::oops_do(OopClosure* f) {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
    assert(block->object() == CHAINMARKER, "must be a block header");
    for (int i = 1; i < _BLOCKSIZE; i++) {
      ObjectMonitor* mid = &block[i];
      if (mid->object() != NULL) {
        f->do_oop((oop*)mid->object_addr());
      }
    }
  }
}


// -----------------------------------------------------------------------------
// ObjectMonitor Lifecycle
// -----------------------
// Inflation unlinks monitors from the global gFreeList and
// associates them with objects.  Deflation -- which occurs at
// STW-time -- disassociates idle monitors from objects.  Such
// scavenged monitors are returned to the gFreeList.
//
// The global list is protected by ListLock.  All the critical sections
// are short and operate in constant-time.
//
// ObjectMonitors reside in type-stable memory (TSM) and are immortal.
//
// Lifecycle:
// --   unassigned and on the global free list
// --   unassigned and on a thread's private omFreeList
// --   assigned to an object.  The object is inflated and the mark refers
//      to the objectmonitor.
//


// Constraining monitor pool growth via MonitorBound ...
//
// The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
// the rate of scavenging is driven primarily by GC.  As such,  we can find
// an inordinate number of monitors in circulation.
// To avoid that scenario we can artificially induce a STW safepoint
// if the pool appears to be growing past some reasonable bound.
// Generally we favor time in space-time tradeoffs, but as there's no
// natural back-pressure on the # of extant monitors we need to impose some
// type of limit.  Beware that if MonitorBound is set to too low a value
// we could just loop. In addition, if MonitorBound is set to a low value
// we'll incur more safepoints, which are harmful to performance.
// See also: GuaranteedSafepointInterval
//
// The current implementation uses asynchronous VM operations.
//

static void InduceScavenge (Thread * Self, const char * Whence) {
  // Induce STW safepoint to trim monitors
  // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
  // More precisely, trigger an asynchronous STW safepoint as the number
  // of active monitors passes the specified threshold.
  // TODO: assert thread state is reasonable

  if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
    if (ObjectMonitor::Knob_Verbose) {
      ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
      ::fflush(stdout) ;
    }
    // Induce a 'null' safepoint to scavenge monitors
    // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
    // to the VMthread and have a lifespan longer than that of this activation record.
    // The VMThread will delete the op when completed.
    VMThread::execute (new VM_ForceAsyncSafepoint()) ;

    if (ObjectMonitor::Knob_Verbose) {
      ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
      ::fflush(stdout) ;
    }
  }
}
/* Too slow for general assert or debug
void ObjectSynchronizer::verifyInUse (Thread *Self) {
   ObjectMonitor* mid;
   int inusetally = 0;
   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
     inusetally ++;
   }
   assert(inusetally == Self->omInUseCount, "inuse count off");

   int freetally = 0;
   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
     freetally ++;
   }
   assert(freetally == Self->omFreeCount, "free count off");
}
*/
ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
    // A large MAXPRIVATE value reduces both list lock contention
    // and list coherency traffic, but also tends to increase the
    // number of objectMonitors in circulation as well as the STW
    // scavenge costs.  As usual, we lean toward time in space-time
    // tradeoffs.
    const int MAXPRIVATE = 1024 ;
    for (;;) {
        ObjectMonitor * m ;

        // 1: try to allocate from the thread's local omFreeList.
        // Threads will attempt to allocate first from their local list, then
        // from the global list, and only after those attempts fail will the thread
        // attempt to instantiate new monitors.   Thread-local free lists take
        // heat off the ListLock and improve allocation latency, as well as reducing
        // coherency traffic on the shared global list.
        m = Self->omFreeList ;
        if (m != NULL) {
           Self->omFreeList = m->FreeNext ;
           Self->omFreeCount -- ;
           // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
           guarantee (m->object() == NULL, "invariant") ;
           if (MonitorInUseLists) {
             m->FreeNext = Self->omInUseList;
             Self->omInUseList = m;
             Self->omInUseCount ++;
             // verifyInUse(Self);
           } else {
             m->FreeNext = NULL;
           }
           return m ;
        }

        // 2: try to allocate from the global gFreeList
        // CONSIDER: use muxTry() instead of muxAcquire().
        // If the muxTry() fails then drop immediately into case 3.
        // If we're using thread-local free lists then try
        // to reprovision the caller's free list.
        if (gFreeList != NULL) {
            // Reprovision the thread's omFreeList.
            // Use bulk transfers to reduce the allocation rate and heat
            // on various locks.
            Thread::muxAcquire (&ListLock, "omAlloc") ;
            for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
                MonitorFreeCount --;
                ObjectMonitor * take = gFreeList ;
                gFreeList = take->FreeNext ;
                guarantee (take->object() == NULL, "invariant") ;
                guarantee (!take->is_busy(), "invariant") ;
                take->Recycle() ;
                omRelease (Self, take, false) ;
            }
            Thread::muxRelease (&ListLock) ;
            Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
            if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
            TEVENT (omFirst - reprovision) ;

            const int mx = MonitorBound ;
            if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
              // We can't safely induce a STW safepoint from omAlloc() as our thread
              // state may not be appropriate for such activities and callers may hold
              // naked oops, so instead we defer the action.
              InduceScavenge (Self, "omAlloc") ;
            }
            continue;
        }

        // 3: allocate a block of new ObjectMonitors
        // Both the local and global free lists are empty -- resort to malloc().
        // In the current implementation objectMonitors are TSM - immortal.
        assert (_BLOCKSIZE > 1, "invariant") ;
        ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];

        // NOTE: (almost) no way to recover if allocation failed.
        // We might be able to induce a STW safepoint and scavenge enough
        // objectMonitors to permit progress.
        if (temp == NULL) {
            vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), OOM_MALLOC_ERROR,
                                   "Allocate ObjectMonitors");
        }

        // Format the block.
        // initialize the linked list, each monitor points to its next
        // forming the single linked free list, the very first monitor
        // will points to next block, which forms the block list.
        // The trick of using the 1st element in the block as gBlockList
        // linkage should be reconsidered.  A better implementation would
        // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }

        for (int i = 1; i < _BLOCKSIZE ; i++) {
           temp[i].FreeNext = &temp[i+1];
        }

        // terminate the last monitor as the end of list
        temp[_BLOCKSIZE - 1].FreeNext = NULL ;

        // Element [0] is reserved for global list linkage
        temp[0].set_object(CHAINMARKER);

        // Consider carving out this thread's current request from the
        // block in hand.  This avoids some lock traffic and redundant
        // list activity.

        // Acquire the ListLock to manipulate BlockList and FreeList.
        // An Oyama-Taura-Yonezawa scheme might be more efficient.
        Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
        MonitorPopulation += _BLOCKSIZE-1;
        MonitorFreeCount += _BLOCKSIZE-1;

        // Add the new block to the list of extant blocks (gBlockList).
        // The very first objectMonitor in a block is reserved and dedicated.
        // It serves as blocklist "next" linkage.
        temp[0].FreeNext = gBlockList;
        gBlockList = temp;

        // Add the new string of objectMonitors to the global free list
        temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
        gFreeList = temp + 1;
        Thread::muxRelease (&ListLock) ;
        TEVENT (Allocate block of monitors) ;
    }
}

// Place "m" on the caller's private per-thread omFreeList.
// In practice there's no need to clamp or limit the number of
// monitors on a thread's omFreeList as the only time we'll call
// omRelease is to return a monitor to the free list after a CAS
// attempt failed.  This doesn't allow unbounded #s of monitors to
// accumulate on a thread's free list.
//

void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
    guarantee (m->object() == NULL, "invariant") ;

    // Remove from omInUseList
    if (MonitorInUseLists && fromPerThreadAlloc) {
      ObjectMonitor* curmidinuse = NULL;
      for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
       if (m == mid) {
         // extract from per-thread in-use-list
         if (mid == Self->omInUseList) {
           Self->omInUseList = mid->FreeNext;
         } else if (curmidinuse != NULL) {
           curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
         }
         Self->omInUseCount --;
         // verifyInUse(Self);
         break;
       } else {
         curmidinuse = mid;
         mid = mid->FreeNext;
      }
    }
  }

  // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  m->FreeNext = Self->omFreeList ;
  Self->omFreeList = m ;
  Self->omFreeCount ++ ;
}

// Return the monitors of a moribund thread's local free list to
// the global free list.  Typically a thread calls omFlush() when
// it's dying.  We could also consider having the VM thread steal
// monitors from threads that have not run java code over a few
// consecutive STW safepoints.  Relatedly, we might decay
// omFreeProvision at STW safepoints.
//
// Also return the monitors of a moribund thread"s omInUseList to
// a global gOmInUseList under the global list lock so these
// will continue to be scanned.
//
// We currently call omFlush() from the Thread:: dtor _after the thread
// has been excised from the thread list and is no longer a mutator.
// That means that omFlush() can run concurrently with a safepoint and
// the scavenge operator.  Calling omFlush() from JavaThread::exit() might
// be a better choice as we could safely reason that that the JVM is
// not at a safepoint at the time of the call, and thus there could
// be not inopportune interleavings between omFlush() and the scavenge
// operator.

void ObjectSynchronizer::omFlush (Thread * Self) {
    ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
    Self->omFreeList = NULL ;
    ObjectMonitor * Tail = NULL ;
    int Tally = 0;
    if (List != NULL) {
      ObjectMonitor * s ;
      for (s = List ; s != NULL ; s = s->FreeNext) {
          Tally ++ ;
          Tail = s ;
          guarantee (s->object() == NULL, "invariant") ;
          guarantee (!s->is_busy(), "invariant") ;
          s->set_owner (NULL) ;   // redundant but good hygiene
          TEVENT (omFlush - Move one) ;
      }
      guarantee (Tail != NULL && List != NULL, "invariant") ;
    }

    ObjectMonitor * InUseList = Self->omInUseList;
    ObjectMonitor * InUseTail = NULL ;
    int InUseTally = 0;
    if (InUseList != NULL) {
      Self->omInUseList = NULL;
      ObjectMonitor *curom;
      for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
        InUseTail = curom;
        InUseTally++;
      }
// TODO debug
      assert(Self->omInUseCount == InUseTally, "inuse count off");
      Self->omInUseCount = 0;
      guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
    }

    Thread::muxAcquire (&ListLock, "omFlush") ;
    if (Tail != NULL) {
      Tail->FreeNext = gFreeList ;
      gFreeList = List ;
      MonitorFreeCount += Tally;
    }

    if (InUseTail != NULL) {
      InUseTail->FreeNext = gOmInUseList;
      gOmInUseList = InUseList;
      gOmInUseCount += InUseTally;
    }

    Thread::muxRelease (&ListLock) ;
    TEVENT (omFlush) ;
}

// Fast path code shared by multiple functions
ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  markOop mark = obj->mark();
  if (mark->has_monitor()) {
    assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
    assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
    return mark->monitor();
  }
  return ObjectSynchronizer::inflate(Thread::current(), obj);
}


// Note that we could encounter some performance loss through false-sharing as
// multiple locks occupy the same $ line.  Padding might be appropriate.


ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  // Inflate mutates the heap ...
  // Relaxing assertion for bug 6320749.
  assert (Universe::verify_in_progress() ||
          !SafepointSynchronize::is_at_safepoint(), "invariant") ;

  for (;;) {
      const markOop mark = object->mark() ;
      assert (!mark->has_bias_pattern(), "invariant") ;

      // The mark can be in one of the following states:
      // *  Inflated     - just return
      // *  Stack-locked - coerce it to inflated
      // *  INFLATING    - busy wait for conversion to complete
      // *  Neutral      - aggressively inflate the object.
      // *  BIASED       - Illegal.  We should never see this

      // CASE: inflated
      if (mark->has_monitor()) {
          ObjectMonitor * inf = mark->monitor() ;
          assert (inf->header()->is_neutral(), "invariant");
          assert (inf->object() == object, "invariant") ;
          assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
          return inf ;
      }

      // CASE: inflation in progress - inflating over a stack-lock.
      // Some other thread is converting from stack-locked to inflated.
      // Only that thread can complete inflation -- other threads must wait.
      // The INFLATING value is transient.
      // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
      // We could always eliminate polling by parking the thread on some auxiliary list.
      if (mark == markOopDesc::INFLATING()) {
         TEVENT (Inflate: spin while INFLATING) ;
         ReadStableMark(object) ;
         continue ;
      }

      // CASE: stack-locked
      // Could be stack-locked either by this thread or by some other thread.
      //
      // Note that we allocate the objectmonitor speculatively, _before_ attempting
      // to install INFLATING into the mark word.  We originally installed INFLATING,
      // allocated the objectmonitor, and then finally STed the address of the
      // objectmonitor into the mark.  This was correct, but artificially lengthened
      // the interval in which INFLATED appeared in the mark, thus increasing
      // the odds of inflation contention.
      //
      // We now use per-thread private objectmonitor free lists.
      // These list are reprovisioned from the global free list outside the
      // critical INFLATING...ST interval.  A thread can transfer
      // multiple objectmonitors en-mass from the global free list to its local free list.
      // This reduces coherency traffic and lock contention on the global free list.
      // Using such local free lists, it doesn't matter if the omAlloc() call appears
      // before or after the CAS(INFLATING) operation.
      // See the comments in omAlloc().

      if (mark->has_locker()) {
          ObjectMonitor * m = omAlloc (Self) ;
          // Optimistically prepare the objectmonitor - anticipate successful CAS
          // We do this before the CAS in order to minimize the length of time
          // in which INFLATING appears in the mark.
          m->Recycle();
          m->_Responsible  = NULL ;
          m->OwnerIsThread = 0 ;
          m->_recursions   = 0 ;
          m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class

          markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
          if (cmp != mark) {
             omRelease (Self, m, true) ;
             continue ;       // Interference -- just retry
          }

          // We've successfully installed INFLATING (0) into the mark-word.
          // This is the only case where 0 will appear in a mark-work.
          // Only the singular thread that successfully swings the mark-word
          // to 0 can perform (or more precisely, complete) inflation.
          //
          // Why do we CAS a 0 into the mark-word instead of just CASing the
          // mark-word from the stack-locked value directly to the new inflated state?
          // Consider what happens when a thread unlocks a stack-locked object.
          // It attempts to use CAS to swing the displaced header value from the
          // on-stack basiclock back into the object header.  Recall also that the
          // header value (hashcode, etc) can reside in (a) the object header, or
          // (b) a displaced header associated with the stack-lock, or (c) a displaced
          // header in an objectMonitor.  The inflate() routine must copy the header
          // value from the basiclock on the owner's stack to the objectMonitor, all
          // the while preserving the hashCode stability invariants.  If the owner
          // decides to release the lock while the value is 0, the unlock will fail
          // and control will eventually pass from slow_exit() to inflate.  The owner
          // will then spin, waiting for the 0 value to disappear.   Put another way,
          // the 0 causes the owner to stall if the owner happens to try to
          // drop the lock (restoring the header from the basiclock to the object)
          // while inflation is in-progress.  This protocol avoids races that might
          // would otherwise permit hashCode values to change or "flicker" for an object.
          // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
          // 0 serves as a "BUSY" inflate-in-progress indicator.


          // fetch the displaced mark from the owner's stack.
          // The owner can't die or unwind past the lock while our INFLATING
          // object is in the mark.  Furthermore the owner can't complete
          // an unlock on the object, either.
          markOop dmw = mark->displaced_mark_helper() ;
          assert (dmw->is_neutral(), "invariant") ;

          // Setup monitor fields to proper values -- prepare the monitor
          m->set_header(dmw) ;

          // Optimization: if the mark->locker stack address is associated
          // with this thread we could simply set m->_owner = Self and
          // m->OwnerIsThread = 1. Note that a thread can inflate an object
          // that it has stack-locked -- as might happen in wait() -- directly
          // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
          m->set_owner(mark->locker());
          m->set_object(object);
          // TODO-FIXME: assert BasicLock->dhw != 0.

          // Must preserve store ordering. The monitor state must
          // be stable at the time of publishing the monitor address.
          guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
          object->release_set_mark(markOopDesc::encode(m));

          // Hopefully the performance counters are allocated on distinct cache lines
          // to avoid false sharing on MP systems ...
          if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
          TEVENT(Inflate: overwrite stacklock) ;
          if (TraceMonitorInflation) {
            if (object->is_instance()) {
              ResourceMark rm;
              tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
                (void *) object, (intptr_t) object->mark(),
                object->klass()->external_name());
            }
          }
          return m ;
      }

      // CASE: neutral
      // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
      // If we know we're inflating for entry it's better to inflate by swinging a
      // pre-locked objectMonitor pointer into the object header.   A successful
      // CAS inflates the object *and* confers ownership to the inflating thread.
      // In the current implementation we use a 2-step mechanism where we CAS()
      // to inflate and then CAS() again to try to swing _owner from NULL to Self.
      // An inflateTry() method that we could call from fast_enter() and slow_enter()
      // would be useful.

      assert (mark->is_neutral(), "invariant");
      ObjectMonitor * m = omAlloc (Self) ;
      // prepare m for installation - set monitor to initial state
      m->Recycle();
      m->set_header(mark);
      m->set_owner(NULL);
      m->set_object(object);
      m->OwnerIsThread = 1 ;
      m->_recursions   = 0 ;
      m->_Responsible  = NULL ;
      m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class

      if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
          m->set_object (NULL) ;
          m->set_owner  (NULL) ;
          m->OwnerIsThread = 0 ;
          m->Recycle() ;
          omRelease (Self, m, true) ;
          m = NULL ;
          continue ;
          // interference - the markword changed - just retry.
          // The state-transitions are one-way, so there's no chance of
          // live-lock -- "Inflated" is an absorbing state.
      }

      // Hopefully the performance counters are allocated on distinct
      // cache lines to avoid false sharing on MP systems ...
      if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
      TEVENT(Inflate: overwrite neutral) ;
      if (TraceMonitorInflation) {
        if (object->is_instance()) {
          ResourceMark rm;
          tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
            (void *) object, (intptr_t) object->mark(),
            object->klass()->external_name());
        }
      }
      return m ;
  }
}

// Note that we could encounter some performance loss through false-sharing as
// multiple locks occupy the same $ line.  Padding might be appropriate.


// Deflate_idle_monitors() is called at all safepoints, immediately
// after all mutators are stopped, but before any objects have moved.
// It traverses the list of known monitors, deflating where possible.
// The scavenged monitor are returned to the monitor free list.
//
// Beware that we scavenge at *every* stop-the-world point.
// Having a large number of monitors in-circulation negatively
// impacts the performance of some applications (e.g., PointBase).
// Broadly, we want to minimize the # of monitors in circulation.
//
// We have added a flag, MonitorInUseLists, which creates a list
// of active monitors for each thread. deflate_idle_monitors()
// only scans the per-thread inuse lists. omAlloc() puts all
// assigned monitors on the per-thread list. deflate_idle_monitors()
// returns the non-busy monitors to the global free list.
// When a thread dies, omFlush() adds the list of active monitors for
// that thread to a global gOmInUseList acquiring the
// global list lock. deflate_idle_monitors() acquires the global
// list lock to scan for non-busy monitors to the global free list.
// An alternative could have used a single global inuse list. The
// downside would have been the additional cost of acquiring the global list lock
// for every omAlloc().
//
// Perversely, the heap size -- and thus the STW safepoint rate --
// typically drives the scavenge rate.  Large heaps can mean infrequent GC,
// which in turn can mean large(r) numbers of objectmonitors in circulation.
// This is an unfortunate aspect of this design.
//

enum ManifestConstants {
    ClearResponsibleAtSTW   = 0,
    MaximumRecheckInterval  = 1000
} ;

// Deflate a single monitor if not in use
// Return true if deflated, false if in use
bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
                                         ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  bool deflated;
  // Normal case ... The monitor is associated with obj.
  guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  guarantee (mid == obj->mark()->monitor(), "invariant");
  guarantee (mid->header()->is_neutral(), "invariant");

  if (mid->is_busy()) {
     if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
     deflated = false;
  } else {
     // Deflate the monitor if it is no longer being used
     // It's idle - scavenge and return to the global free list
     // plain old deflation ...
     TEVENT (deflate_idle_monitors - scavenge1) ;
     if (TraceMonitorInflation) {
       if (obj->is_instance()) {
         ResourceMark rm;
           tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
                (void *) obj, (intptr_t) obj->mark(), obj->klass()->external_name());
       }
     }

     // Restore the header back to obj
     obj->release_set_mark(mid->header());
     mid->clear();

     assert (mid->object() == NULL, "invariant") ;

     // Move the object to the working free list defined by FreeHead,FreeTail.
     if (*FreeHeadp == NULL) *FreeHeadp = mid;
     if (*FreeTailp != NULL) {
       ObjectMonitor * prevtail = *FreeTailp;
       assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
       prevtail->FreeNext = mid;
      }
     *FreeTailp = mid;
     deflated = true;
  }
  return deflated;
}

// Caller acquires ListLock
int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  ObjectMonitor* mid;
  ObjectMonitor* next;
  ObjectMonitor* curmidinuse = NULL;
  int deflatedcount = 0;

  for (mid = *listheadp; mid != NULL; ) {
     oop obj = (oop) mid->object();
     bool deflated = false;
     if (obj != NULL) {
       deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
     }
     if (deflated) {
       // extract from per-thread in-use-list
       if (mid == *listheadp) {
         *listheadp = mid->FreeNext;
       } else if (curmidinuse != NULL) {
         curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
       }
       next = mid->FreeNext;
       mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
       mid = next;
       deflatedcount++;
     } else {
       curmidinuse = mid;
       mid = mid->FreeNext;
    }
  }
  return deflatedcount;
}

void ObjectSynchronizer::deflate_idle_monitors() {
  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  int nInuse = 0 ;              // currently associated with objects
  int nInCirculation = 0 ;      // extant
  int nScavenged = 0 ;          // reclaimed
  bool deflated = false;

  ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  ObjectMonitor * FreeTail = NULL ;

  TEVENT (deflate_idle_monitors) ;
  // Prevent omFlush from changing mids in Thread dtor's during deflation
  // And in case the vm thread is acquiring a lock during a safepoint
  // See e.g. 6320749
  Thread::muxAcquire (&ListLock, "scavenge - return") ;

  if (MonitorInUseLists) {
    int inUse = 0;
    for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
      nInCirculation+= cur->omInUseCount;
      int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
      cur->omInUseCount-= deflatedcount;
      // verifyInUse(cur);
      nScavenged += deflatedcount;
      nInuse += cur->omInUseCount;
     }

   // For moribund threads, scan gOmInUseList
   if (gOmInUseList) {
     nInCirculation += gOmInUseCount;
     int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
     gOmInUseCount-= deflatedcount;
     nScavenged += deflatedcount;
     nInuse += gOmInUseCount;
    }

  } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  // Iterate over all extant monitors - Scavenge all idle monitors.
    assert(block->object() == CHAINMARKER, "must be a block header");
    nInCirculation += _BLOCKSIZE ;
    for (int i = 1 ; i < _BLOCKSIZE; i++) {
      ObjectMonitor* mid = &block[i];
      oop obj = (oop) mid->object();

      if (obj == NULL) {
        // The monitor is not associated with an object.
        // The monitor should either be a thread-specific private
        // free list or the global free list.
        // obj == NULL IMPLIES mid->is_busy() == 0
        guarantee (!mid->is_busy(), "invariant") ;
        continue ;
      }
      deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);

      if (deflated) {
        mid->FreeNext = NULL ;
        nScavenged ++ ;
      } else {
        nInuse ++;
      }
    }
  }

  MonitorFreeCount += nScavenged;

  // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.

  if (ObjectMonitor::Knob_Verbose) {
    ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
        nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
        MonitorPopulation, MonitorFreeCount) ;
    ::fflush(stdout) ;
  }

  ForceMonitorScavenge = 0;    // Reset

  // Move the scavenged monitors back to the global free list.
  if (FreeHead != NULL) {
     guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
     assert (FreeTail->FreeNext == NULL, "invariant") ;
     // constant-time list splice - prepend scavenged segment to gFreeList
     FreeTail->FreeNext = gFreeList ;
     gFreeList = FreeHead ;
  }
  Thread::muxRelease (&ListLock) ;

  if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);

  // TODO: Add objectMonitor leak detection.
  // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  GVars.stwRandom = os::random() ;
  GVars.stwCycle ++ ;
}

// Monitor cleanup on JavaThread::exit

// Iterate through monitor cache and attempt to release thread's monitors
// Gives up on a particular monitor if an exception occurs, but continues
// the overall iteration, swallowing the exception.
class ReleaseJavaMonitorsClosure: public MonitorClosure {
private:
  TRAPS;

public:
  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  void do_monitor(ObjectMonitor* mid) {
    if (mid->owner() == THREAD) {
      (void)mid->complete_exit(CHECK);
    }
  }
};

// Release all inflated monitors owned by THREAD.  Lightweight monitors are
// ignored.  This is meant to be called during JNI thread detach which assumes
// all remaining monitors are heavyweight.  All exceptions are swallowed.
// Scanning the extant monitor list can be time consuming.
// A simple optimization is to add a per-thread flag that indicates a thread
// called jni_monitorenter() during its lifetime.
//
// Instead of No_Savepoint_Verifier it might be cheaper to
// use an idiom of the form:
//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
//   <code that must not run at safepoint>
//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
// Since the tests are extremely cheap we could leave them enabled
// for normal product builds.

void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  assert(THREAD == JavaThread::current(), "must be current Java thread");
  No_Safepoint_Verifier nsv ;
  ReleaseJavaMonitorsClosure rjmc(THREAD);
  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  ObjectSynchronizer::monitors_iterate(&rjmc);
  Thread::muxRelease(&ListLock);
  THREAD->clear_pending_exception();
}

//------------------------------------------------------------------------------
// Non-product code

#ifndef PRODUCT

// Verify all monitors in the monitor cache, the verification is weak.
void ObjectSynchronizer::verify() {
  ObjectMonitor* block = gBlockList;
  ObjectMonitor* mid;
  while (block) {
    assert(block->object() == CHAINMARKER, "must be a block header");
    for (int i = 1; i < _BLOCKSIZE; i++) {
      mid = block + i;
      oop object = (oop) mid->object();
      if (object != NULL) {
        mid->verify();
      }
    }
    block = (ObjectMonitor*) block->FreeNext;
  }
}

// Check if monitor belongs to the monitor cache
// The list is grow-only so it's *relatively* safe to traverse
// the list of extant blocks without taking a lock.

int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  ObjectMonitor* block = gBlockList;

  while (block) {
    assert(block->object() == CHAINMARKER, "must be a block header");
    if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
      address mon = (address) monitor;
      address blk = (address) block;
      size_t diff = mon - blk;
      assert((diff % sizeof(ObjectMonitor)) == 0, "check");
      return 1;
    }
    block = (ObjectMonitor*) block->FreeNext;
  }
  return 0;
}

#endif

Other Java examples (source code examples)

Here is a short list of links related to this Java synchronizer.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.