alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (MethodGenerator.java)

This example Java source code file (MethodGenerator.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

arraylist, chunk, hashmap, iload, instruction, instructionhandle, instructionlist, invokeinterface, localvariablegen, method, object, string, string_sig, type, util

The MethodGenerator.java Java example source code

/*
 * reserved comment block
 * DO NOT REMOVE OR ALTER!
 */
/*
 * Copyright 2001-2004 The Apache Software Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * $Id: MethodGenerator.java,v 1.2.4.1 2005/09/05 11:16:47 pvedula Exp $
 */

package com.sun.org.apache.xalan.internal.xsltc.compiler.util;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
 import java.util.Hashtable;
import java.util.Iterator;
import java.util.Map;
import java.util.Stack;


import com.sun.org.apache.bcel.internal.Constants;
import com.sun.org.apache.bcel.internal.classfile.Field;
import com.sun.org.apache.bcel.internal.classfile.Method;
import com.sun.org.apache.bcel.internal.generic.ALOAD;
import com.sun.org.apache.bcel.internal.generic.ASTORE;
import com.sun.org.apache.bcel.internal.generic.BranchHandle;
import com.sun.org.apache.bcel.internal.generic.BranchInstruction;
import com.sun.org.apache.bcel.internal.generic.ConstantPoolGen;
import com.sun.org.apache.bcel.internal.generic.DLOAD;
import com.sun.org.apache.bcel.internal.generic.DSTORE;
import com.sun.org.apache.bcel.internal.generic.FLOAD;
import com.sun.org.apache.bcel.internal.generic.FSTORE;
import com.sun.org.apache.bcel.internal.generic.GETFIELD;
import com.sun.org.apache.bcel.internal.generic.GOTO;
import com.sun.org.apache.bcel.internal.generic.ICONST;
import com.sun.org.apache.bcel.internal.generic.IfInstruction;
import com.sun.org.apache.bcel.internal.generic.ILOAD;
import com.sun.org.apache.bcel.internal.generic.IndexedInstruction;
import com.sun.org.apache.bcel.internal.generic.INVOKEINTERFACE;
import com.sun.org.apache.bcel.internal.generic.INVOKESPECIAL;
import com.sun.org.apache.bcel.internal.generic.INVOKESTATIC;
import com.sun.org.apache.bcel.internal.generic.INVOKEVIRTUAL;
import com.sun.org.apache.bcel.internal.generic.ISTORE;
import com.sun.org.apache.bcel.internal.generic.Instruction;
import com.sun.org.apache.bcel.internal.generic.InstructionConstants;
import com.sun.org.apache.bcel.internal.generic.InstructionHandle;
import com.sun.org.apache.bcel.internal.generic.InstructionList;
import com.sun.org.apache.bcel.internal.generic.InstructionTargeter;
import com.sun.org.apache.bcel.internal.generic.LocalVariableGen;
import com.sun.org.apache.bcel.internal.generic.LocalVariableInstruction;
import com.sun.org.apache.bcel.internal.generic.LLOAD;
import com.sun.org.apache.bcel.internal.generic.LSTORE;
import com.sun.org.apache.bcel.internal.generic.MethodGen;
import com.sun.org.apache.bcel.internal.generic.NEW;
import com.sun.org.apache.bcel.internal.generic.PUTFIELD;
import com.sun.org.apache.bcel.internal.generic.RET;
import com.sun.org.apache.bcel.internal.generic.Select;
import com.sun.org.apache.bcel.internal.generic.TargetLostException;
import com.sun.org.apache.bcel.internal.generic.Type;

import com.sun.org.apache.xalan.internal.xsltc.compiler.Pattern;
import com.sun.org.apache.xalan.internal.xsltc.compiler.XSLTC;

/**
 * @author Jacek Ambroziak
 * @author Santiago Pericas-Geertsen
 */
public class MethodGenerator extends MethodGen
    implements com.sun.org.apache.xalan.internal.xsltc.compiler.Constants {
    protected static final int INVALID_INDEX   = -1;

    private static final String START_ELEMENT_SIG
        = "(" + STRING_SIG + ")V";
    private static final String END_ELEMENT_SIG
        = START_ELEMENT_SIG;

    private InstructionList _mapTypeSub;

    private static final int DOM_INDEX       = 1;
    private static final int ITERATOR_INDEX  = 2;
    private static final int HANDLER_INDEX   = 3;

    private static final int MAX_METHOD_SIZE = 65535;
    private static final int MAX_BRANCH_TARGET_OFFSET = 32767;
    private static final int MIN_BRANCH_TARGET_OFFSET = -32768;

    private static final int TARGET_METHOD_SIZE = 60000;
    private static final int MINIMUM_OUTLINEABLE_CHUNK_SIZE = 1000;

    private Instruction       _iloadCurrent;
    private Instruction       _istoreCurrent;
    private final Instruction _astoreHandler;
    private final Instruction _aloadHandler;
    private final Instruction _astoreIterator;
    private final Instruction _aloadIterator;
    private final Instruction _aloadDom;
    private final Instruction _astoreDom;

    private final Instruction _startElement;
    private final Instruction _endElement;
    private final Instruction _startDocument;
    private final Instruction _endDocument;
    private final Instruction _attribute;
    private final Instruction _uniqueAttribute;
    private final Instruction _namespace;

    private final Instruction _setStartNode;
    private final Instruction _reset;
    private final Instruction _nextNode;

    private SlotAllocator _slotAllocator;
    private boolean _allocatorInit = false;
    private LocalVariableRegistry _localVariableRegistry;
        /**
                 * A mapping between patterns and instruction lists used by
                 * test sequences to avoid compiling the same pattern multiple
                 * times. Note that patterns whose kernels are "*", "node()"
                 * and "@*" can between shared by test sequences.
                 */
        private Hashtable _preCompiled = new Hashtable();


    public MethodGenerator(int access_flags, Type return_type,
                           Type[] arg_types, String[] arg_names,
                           String method_name, String class_name,
                           InstructionList il, ConstantPoolGen cpg) {
        super(access_flags, return_type, arg_types, arg_names, method_name,
              class_name, il, cpg);

        _astoreHandler  = new ASTORE(HANDLER_INDEX);
        _aloadHandler   = new ALOAD(HANDLER_INDEX);
        _astoreIterator = new ASTORE(ITERATOR_INDEX);
        _aloadIterator  = new ALOAD(ITERATOR_INDEX);
        _aloadDom       = new ALOAD(DOM_INDEX);
        _astoreDom      = new ASTORE(DOM_INDEX);

        final int startElement =
            cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                      "startElement",
                                      START_ELEMENT_SIG);
        _startElement = new INVOKEINTERFACE(startElement, 2);

        final int endElement =
            cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                      "endElement",
                                      END_ELEMENT_SIG);
        _endElement = new INVOKEINTERFACE(endElement, 2);

        final int attribute =
            cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                      "addAttribute",
                                      "("
                                      + STRING_SIG
                                      + STRING_SIG
                                      + ")V");
        _attribute = new INVOKEINTERFACE(attribute, 3);

        final int uniqueAttribute =
            cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                      "addUniqueAttribute",
                                      "("
                                      + STRING_SIG
                                      + STRING_SIG
                                      + "I)V");
        _uniqueAttribute = new INVOKEINTERFACE(uniqueAttribute, 4);

        final int namespace =
            cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                      "namespaceAfterStartElement",
                                      "("
                                      + STRING_SIG
                                      + STRING_SIG
                                      + ")V");
        _namespace = new INVOKEINTERFACE(namespace, 3);

        int index = cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                              "startDocument",
                                              "()V");
        _startDocument = new INVOKEINTERFACE(index, 1);

        index = cpg.addInterfaceMethodref(TRANSLET_OUTPUT_INTERFACE,
                                          "endDocument",
                                          "()V");
        _endDocument = new INVOKEINTERFACE(index, 1);


        index = cpg.addInterfaceMethodref(NODE_ITERATOR,
                                          SET_START_NODE,
                                          SET_START_NODE_SIG);
        _setStartNode = new INVOKEINTERFACE(index, 2);

        index = cpg.addInterfaceMethodref(NODE_ITERATOR,
                                          "reset", "()"+NODE_ITERATOR_SIG);
        _reset = new INVOKEINTERFACE(index, 1);

        index = cpg.addInterfaceMethodref(NODE_ITERATOR, NEXT, NEXT_SIG);
        _nextNode = new INVOKEINTERFACE(index, 1);

        _slotAllocator = new SlotAllocator();
        _slotAllocator.initialize(getLocalVariableRegistry().getLocals(false));
        _allocatorInit = true;
    }

    /**
     * Allocates a local variable. If the slot allocator has already been
     * initialized, then call addLocalVariable2() so that the new variable
     * is known to the allocator. Failing to do this may cause the allocator
     * to return a slot that is already in use.
     */
    public LocalVariableGen addLocalVariable(String name, Type type,
                                             InstructionHandle start,
                                             InstructionHandle end)
    {
        LocalVariableGen lvg;

        if (_allocatorInit) {
            lvg = addLocalVariable2(name, type, start);
        } else {
            lvg = super.addLocalVariable(name, type, start, end);
            getLocalVariableRegistry().registerLocalVariable(lvg);
        }
        return lvg;
    }

    public LocalVariableGen addLocalVariable2(String name, Type type,
                                              InstructionHandle start)
    {
        LocalVariableGen lvg = super.addLocalVariable(name, type,
                                              _slotAllocator.allocateSlot(type),
                                              start, null);
        getLocalVariableRegistry().registerLocalVariable(lvg);
        return lvg;
    }
    private LocalVariableRegistry getLocalVariableRegistry() {
        if (_localVariableRegistry == null) {
            _localVariableRegistry = new LocalVariableRegistry();
        }

        return _localVariableRegistry;
    }

    /**
     * Keeps track of all local variables used in the method.
     * <p>The
     * {@link MethodGen#addLocalVariable(String,Type,InstructionHandle,InstructionHandle)}</code>
     * and
     * {@link MethodGen#addLocalVariable(String,Type,int,InstructionHandle,InstructionHandle)}</code>
     * methods of {@link MethodGen} will only keep track of
     * {@link LocalVariableGen} object until it'ss removed by a call to
     * {@link MethodGen#removeLocalVariable(LocalVariableGen)}.</p>
     * <p>In order to support efficient copying of local variables to outlined
     * methods by
     * {@link #outline(InstructionHandle,InstructionHandle,String,ClassGenerator)},
     * this class keeps track of all local variables defined by the method.</p>
     */
    protected class LocalVariableRegistry {
        /**
         * <p>A java.lang.ArrayList of all
         * {@link LocalVariableGen}s created for this method, indexed by the
         * slot number of the local variable.  The JVM stack frame of local
         * variables is divided into "slots".  A single slot can be used to
         * store more than one variable in a method, without regard to type, so
         * long as the byte code keeps the ranges of the two disjoint.</p>
         * <p>If only one registration of use of a particular slot occurs, the
         * corresponding entry of <code>_variables contains the
         * <code>LocalVariableGen; if more than one occurs, the
         * corresponding entry contains all such <code>LocalVariableGens
         * registered for the same slot; and if none occurs, the entry will be
         * <code>null.
         */
        protected ArrayList _variables = new ArrayList();

        /**
         * Maps a name to a {@link LocalVariableGen}
         */
        protected HashMap _nameToLVGMap = new HashMap();

        /**
         * Registers a {@link org.apache.bcel.generic.LocalVariableGen}
         * for this method.
         * <p>Preconditions:
         * <ul>
         * <li>The range of instructions for lvg does not
         * overlap with the range of instructions for any
         * <code>LocalVariableGen with the same slot index previously
         * registered for this method.  <b>(Unchecked.)
         * </ul>

* @param lvg The variable to be registered */ protected void registerLocalVariable(LocalVariableGen lvg) { int slot = lvg.getIndex(); int registrySize = _variables.size(); // If the LocalVariableGen uses a slot index beyond any previously // encountered, expand the _variables, padding with intervening null // entries as required. if (slot >= registrySize) { for (int i = registrySize; i < slot; i++) { _variables.add(null); } _variables.add(lvg); } else { // If the LocalVariableGen reuses a slot, make sure the entry // in _variables contains an ArrayList and add the newly // registered LocalVariableGen to the list. If the entry in // _variables just contains null padding, store the // LocalVariableGen directly. Object localsInSlot = _variables.get(slot); if (localsInSlot != null) { if (localsInSlot instanceof LocalVariableGen) { ArrayList listOfLocalsInSlot = new ArrayList(); listOfLocalsInSlot.add(localsInSlot); listOfLocalsInSlot.add(lvg); _variables.set(slot, listOfLocalsInSlot); } else { ((ArrayList) localsInSlot).add(lvg); } } else { _variables.set(slot, lvg); } } registerByName(lvg); } /** * <p>Find which {@link LocalVariableGen}, if any, is registered for a * particular JVM local stack frame slot at a particular position in the * byte code for the method.</p> * <p>Preconditions: * <ul> * <li>The {@link InstructionList#setPositions()} has been called for * the {@link InstructionList} associated with this * {@link MethodGenerator}.</li> * </ul>

* @param slot the JVM local stack frame slot number * @param offset the position in the byte code * @return the <code>LocalVariableGen for the local variable * stored in the relevant slot at the relevant offset; <code>null * if there is none. */ protected LocalVariableGen lookupRegisteredLocalVariable(int slot, int offset) { Object localsInSlot = (_variables != null) ? _variables.get(slot) : null; // If this slot index was never used, _variables.get will return // null; if it was used once, it will return the LocalVariableGen; // more than once it will return an ArrayList of all the // LocalVariableGens for variables stored in that slot. For each // LocalVariableGen, check whether its range includes the // specified offset, and return the first such encountered. if (localsInSlot != null) { if (localsInSlot instanceof LocalVariableGen) { LocalVariableGen lvg = (LocalVariableGen)localsInSlot; if (offsetInLocalVariableGenRange(lvg, offset)) { return lvg; } } else { ArrayList listOfLocalsInSlot = (ArrayList) localsInSlot; int size = listOfLocalsInSlot.size(); for (int i = 0; i < size; i++) { LocalVariableGen lvg = (LocalVariableGen)listOfLocalsInSlot.get(i); if (offsetInLocalVariableGenRange(lvg, offset)) { return lvg; } } } } // No local variable stored in the specified slot at the specified return null; } /** * <p>Set up a mapping of the name of the specified * {@link LocalVariableGen} object to the <code>LocalVariableGen * itself.</p> * <p>This is a bit of a hack. XSLTC is relying on the fact that the * name that is being looked up won't be duplicated, which isn't * guaranteed. It replaces code which used to call * {@link MethodGen#getLocalVariables()} and looped through the * <code>LocalVariableGen objects it contained to find the one * with the specified name. However, <code>getLocalVariables() * has the side effect of setting the start and end for any * <code>LocalVariableGen which did not already have them * set, which causes problems for outlining..</p> * <p>See also {@link #lookUpByName(String)} and * {@link #removeByNameTracking(LocalVariableGen)}</P * @param lvg a <code>LocalVariableGen */ protected void registerByName(LocalVariableGen lvg) { Object duplicateNameEntry = _nameToLVGMap.get(lvg.getName()); if (duplicateNameEntry == null) { _nameToLVGMap.put(lvg.getName(), lvg); } else { ArrayList sameNameList; if (duplicateNameEntry instanceof ArrayList) { sameNameList = (ArrayList) duplicateNameEntry; sameNameList.add(lvg); } else { sameNameList = new ArrayList(); sameNameList.add(duplicateNameEntry); sameNameList.add(lvg); } _nameToLVGMap.put(lvg.getName(), sameNameList); } } /** * Remove the mapping from the name of the specified * {@link LocalVariableGen} to itself. * See also {@link #registerByName(LocalVariableGen)} and * {@link #lookUpByName(String)} * @param lvg a <code>LocalVariableGen */ protected void removeByNameTracking(LocalVariableGen lvg) { Object duplicateNameEntry = _nameToLVGMap.get(lvg.getName()); if (duplicateNameEntry instanceof ArrayList) { ArrayList sameNameList = (ArrayList) duplicateNameEntry; for (int i = 0; i < sameNameList.size(); i++) { if (sameNameList.get(i) == lvg) { sameNameList.remove(i); break; } } } else { _nameToLVGMap.remove(lvg); } } /** * <p>Given the name of a variable, finds a {@link LocalVariableGen} * corresponding to it.</p> * <p>See also {@link #registerByName(LocalVariableGen)} and * {@link #removeByNameTracking(LocalVariableGen)}</p> * @param name * @return */ protected LocalVariableGen lookUpByName(String name) { LocalVariableGen lvg = null; Object duplicateNameEntry = _nameToLVGMap.get(name); if (duplicateNameEntry instanceof ArrayList) { ArrayList sameNameList = (ArrayList) duplicateNameEntry; for (int i = 0; i < sameNameList.size(); i++) { lvg = (LocalVariableGen)sameNameList.get(i); if (lvg.getName() == name) { break; } } } else { lvg = (LocalVariableGen) duplicateNameEntry; } return lvg; } /** * <p>Gets all {@link LocalVariableGen} objects for this method.

* <p>When the includeRemoved argument has the value * <code>false, this method replaces uses of * {@link MethodGen#getLocalVariables()} which has * a side-effect of setting the start and end range for any * <code>LocalVariableGen if either was null. That * side-effect causes problems for outlining of code in XSLTC. * @param includeRemoved Specifies whether all local variables ever * declared should be returned (<code>true) or only those not * removed (<code>false) * @return an array of <code>LocalVariableGen containing all the * local variables */ protected LocalVariableGen[] getLocals(boolean includeRemoved) { LocalVariableGen[] locals = null; ArrayList allVarsEverDeclared = new ArrayList(); if (includeRemoved) { int slotCount = allVarsEverDeclared.size(); for (int i = 0; i < slotCount; i++) { Object slotEntries = _variables.get(i); if (slotEntries != null) { if (slotEntries instanceof ArrayList) { ArrayList slotList = (ArrayList) slotEntries; for (int j = 0; j < slotList.size(); j++) { allVarsEverDeclared.add(slotList.get(i)); } } else { allVarsEverDeclared.add(slotEntries); } } } } else { Iterator nameVarsPairsIter = _nameToLVGMap.entrySet().iterator(); while (nameVarsPairsIter.hasNext()) { Map.Entry nameVarsPair = (Map.Entry) nameVarsPairsIter.next(); Object vars = nameVarsPair.getValue(); if (vars != null) { if (vars instanceof ArrayList) { ArrayList varsList = (ArrayList) vars; for (int i = 0; i < varsList.size(); i++) { allVarsEverDeclared.add(varsList.get(i)); } } else { allVarsEverDeclared.add(vars); } } } } locals = new LocalVariableGen[allVarsEverDeclared.size()]; allVarsEverDeclared.toArray(locals); return locals; } } /** * Determines whether a particular variable is in use at a particular offset * in the byte code for this method. * <p>Preconditions: * <ul> * <li>The {@link InstructionList#setPositions()} has been called for the * {@link InstructionList} associated with this {@link MethodGenerator}. * </li>

* @param lvg the {@link LocalVariableGen} for the variable * @param offset the position in the byte code * @return <code>true if and only if the specified variable is in * use at the particular byte code offset. */ boolean offsetInLocalVariableGenRange(LocalVariableGen lvg, int offset) { InstructionHandle lvgStart = lvg.getStart(); InstructionHandle lvgEnd = lvg.getEnd(); // If no start handle is recorded for the LocalVariableGen, it is // assumed to be in use from the beginning of the method. if (lvgStart == null) { lvgStart = getInstructionList().getStart(); } // If no end handle is recorded for the LocalVariableGen, it is assumed // to be in use to the end of the method. if (lvgEnd == null) { lvgEnd = getInstructionList().getEnd(); } // Does the range of the instruction include the specified offset? // Note that the InstructionHandle.getPosition method returns the // offset of the beginning of an instruction. A LocalVariableGen's // range includes the end instruction itself, so that instruction's // length must be taken into consideration in computing whether the // varible is in range at a particular offset. return ((lvgStart.getPosition() <= offset) && (lvgEnd.getPosition() + lvgEnd.getInstruction().getLength() >= offset)); } public void removeLocalVariable(LocalVariableGen lvg) { _slotAllocator.releaseSlot(lvg); getLocalVariableRegistry().removeByNameTracking(lvg); super.removeLocalVariable(lvg); } public Instruction loadDOM() { return _aloadDom; } public Instruction storeDOM() { return _astoreDom; } public Instruction storeHandler() { return _astoreHandler; } public Instruction loadHandler() { return _aloadHandler; } public Instruction storeIterator() { return _astoreIterator; } public Instruction loadIterator() { return _aloadIterator; } public final Instruction setStartNode() { return _setStartNode; } public final Instruction reset() { return _reset; } public final Instruction nextNode() { return _nextNode; } public final Instruction startElement() { return _startElement; } public final Instruction endElement() { return _endElement; } public final Instruction startDocument() { return _startDocument; } public final Instruction endDocument() { return _endDocument; } public final Instruction attribute() { return _attribute; } public final Instruction uniqueAttribute() { return _uniqueAttribute; } public final Instruction namespace() { return _namespace; } public Instruction loadCurrentNode() { if (_iloadCurrent == null) { int idx = getLocalIndex("current"); if (idx > 0) _iloadCurrent = new ILOAD(idx); else _iloadCurrent = new ICONST(0); } return _iloadCurrent; } public Instruction storeCurrentNode() { return _istoreCurrent != null ? _istoreCurrent : (_istoreCurrent = new ISTORE(getLocalIndex("current"))); } /** by default context node is the same as current node. MK437 */ public Instruction loadContextNode() { return loadCurrentNode(); } public Instruction storeContextNode() { return storeCurrentNode(); } public int getLocalIndex(String name) { return getLocalVariable(name).getIndex(); } public LocalVariableGen getLocalVariable(String name) { return getLocalVariableRegistry().lookUpByName(name); } public void setMaxLocals() { // Get the current number of local variable slots int maxLocals = super.getMaxLocals(); int prevLocals = maxLocals; // Get numer of actual variables final LocalVariableGen[] localVars = super.getLocalVariables(); if (localVars != null) { if (localVars.length > maxLocals) maxLocals = localVars.length; } // We want at least 5 local variable slots (for parameters) if (maxLocals < 5) maxLocals = 5; super.setMaxLocals(maxLocals); } /** * Add a pre-compiled pattern to this mode. */ public void addInstructionList(Pattern pattern, InstructionList ilist) { _preCompiled.put(pattern, ilist); } /** * Get the instruction list for a pre-compiled pattern. Used by * test sequences to avoid compiling patterns more than once. */ public InstructionList getInstructionList(Pattern pattern) { return (InstructionList) _preCompiled.get(pattern); } /** * Used to keep track of an outlineable chunk of instructions in the * current method. See {@link OutlineableChunkStart} and * {@link OutlineableChunkEnd} for more information. */ private class Chunk implements Comparable { /** * {@link InstructionHandle} of the first instruction in the outlineable * chunk. */ private InstructionHandle m_start; /** * {@link org.apache.bcel.generic.InstructionHandle} of the first * instruction in the outlineable chunk. */ private InstructionHandle m_end; /** * Number of bytes in the instructions contained in this outlineable * chunk. */ private int m_size; /** * <p>Constructor for an outlineable {@link MethodGenerator.Chunk}.

* <p>Preconditions: * <ul> * <li>The {@link InstructionList#setPositions()} has been called for * the {@link InstructionList} associated with this * {@link MethodGenerator}.</li> * </ul>

* @param start The {@link InstructionHandle} of the first * instruction in the outlineable chunk. * @param end The {@link InstructionHandle} of the last * instruction in the outlineable chunk. */ Chunk(InstructionHandle start, InstructionHandle end) { m_start = start; m_end = end; m_size = end.getPosition() - start.getPosition(); } /** * Determines whether this outlineable {@link MethodGenerator.Chunk} is * followed immediately by the argument * <code>MethodGenerator.Chunk, with no other intervening * instructions, including {@link OutlineableChunkStart} or * {@link OutlineableChunkEnd} instructions. * @param neighbour an outlineable {@link MethodGenerator.Chunk} * @return <code>true if and only if the argument chunk * immediately follows <code>this chunk */ boolean isAdjacentTo(Chunk neighbour) { return getChunkEnd().getNext() == neighbour.getChunkStart(); } /** * Getter method for the start of this {@linke MethodGenerator.Chunk} * @return the {@link org.apache.bcel.generic.InstructionHandle} of the * start of this chunk */ InstructionHandle getChunkStart() { return m_start; } /** * Getter method for the end of this {@link MethodGenerator.Chunk} * @return the {@link InstructionHandle} of the start of this chunk */ InstructionHandle getChunkEnd() { return m_end; } /** * The size of this {@link MethodGenerator.Chunk} * @return the number of bytes in the byte code represented by this * chunk. */ int getChunkSize() { return m_size; } /** * Implements the <code>java.util.Comparable.compareTo(Object) * method. * @return * <ul> * <li>A positive int if the length of this * chunk in bytes is greater than that of <code>comparand * <li>A negative int if the length of this * chunk in bytes is less than that of <code>comparand * <li>Zero, otherwise. * </ul> */ public int compareTo(Object comparand) { return getChunkSize() - ((Chunk)comparand).getChunkSize(); } } /** * Find the outlineable chunks in this method that would be the best choices * to outline, based on size and position in the method. * @param classGen The {@link ClassGen} with which the generated methods * will be associated * @param totalMethodSize the size of the bytecode in the original method * @return a <code>java.util.ArrayList containing the * {@link MethodGenerator.Chunk}s that may be outlined from this method */ private ArrayList getCandidateChunks(ClassGenerator classGen, int totalMethodSize) { Iterator instructions = getInstructionList().iterator(); ArrayList candidateChunks = new ArrayList(); ArrayList currLevelChunks = new ArrayList(); Stack subChunkStack = new Stack(); boolean openChunkAtCurrLevel = false; boolean firstInstruction = true; InstructionHandle currentHandle; if (m_openChunks != 0) { String msg = (new ErrorMsg(ErrorMsg.OUTLINE_ERR_UNBALANCED_MARKERS)) .toString(); throw new InternalError(msg); } // Scan instructions in the method, keeping track of the nesting level // of outlineable chunks. // // currLevelChunks // keeps track of the child chunks of a chunk. For each chunk, // there will be a pair of entries: the InstructionHandles for the // start and for the end of the chunk // subChunkStack // a stack containing the partially accumulated currLevelChunks for // each chunk that's still open at the current position in the // InstructionList. // candidateChunks // the list of chunks which have been accepted as candidates chunks // for outlining do { // Get the next instruction. The loop will perform one extra // iteration after it reaches the end of the InstructionList, with // currentHandle set to null. currentHandle = instructions.hasNext() ? (InstructionHandle) instructions.next() : null; Instruction inst = (currentHandle != null) ? currentHandle.getInstruction() : null; // At the first iteration, create a chunk representing all the // code in the method. This is done just to simplify the logic - // this chunk can never be outlined because it will be too big. if (firstInstruction) { openChunkAtCurrLevel = true; currLevelChunks.add(currentHandle); firstInstruction = false; } // Found a new chunk if (inst instanceof OutlineableChunkStart) { // If last MarkerInstruction encountered was an // OutlineableChunkStart, this represents the first chunk // nested within that previous chunk - push the list of chunks // from the outer level onto the stack if (openChunkAtCurrLevel) { subChunkStack.push(currLevelChunks); currLevelChunks = new ArrayList(); } openChunkAtCurrLevel = true; currLevelChunks.add(currentHandle); // Close off an open chunk } else if (currentHandle == null || inst instanceof OutlineableChunkEnd) { ArrayList nestedSubChunks = null; // If the last MarkerInstruction encountered was an // OutlineableChunkEnd, it means that the current instruction // marks the end of a chunk that contained child chunks. // Those children might need to be examined below in case they // are better candidates for outlining than the current chunk. if (!openChunkAtCurrLevel) { nestedSubChunks = currLevelChunks; currLevelChunks = (ArrayList)subChunkStack.pop(); } // Get the handle for the start of this chunk (the last entry // in currLevelChunks) InstructionHandle chunkStart = (InstructionHandle) currLevelChunks.get( currLevelChunks.size()-1); int chunkEndPosition = (currentHandle != null) ? currentHandle.getPosition() : totalMethodSize; int chunkSize = chunkEndPosition - chunkStart.getPosition(); // Two ranges of chunk size to consider: // // 1. [0,TARGET_METHOD_SIZE] // Keep this chunk in consideration as a candidate, // and ignore its subchunks, if any - there's nothing to be // gained by outlining both the current chunk and its // children! // // 2. (TARGET_METHOD_SIZE,+infinity) // Ignore this chunk - it's too big. Add its subchunks // as candidates, after merging adjacent chunks to produce // chunks that are as large as possible if (chunkSize <= TARGET_METHOD_SIZE) { currLevelChunks.add(currentHandle); } else { if (!openChunkAtCurrLevel) { int childChunkCount = nestedSubChunks.size() / 2; if (childChunkCount > 0) { Chunk[] childChunks = new Chunk[childChunkCount]; // Gather all the child chunks of the current chunk for (int i = 0; i < childChunkCount; i++) { InstructionHandle start = (InstructionHandle) nestedSubChunks .get(i*2); InstructionHandle end = (InstructionHandle) nestedSubChunks .get(i*2+1); childChunks[i] = new Chunk(start, end); } // Merge adjacent siblings ArrayList mergedChildChunks = mergeAdjacentChunks(childChunks); // Add chunks that mean minimum size requirements // to the list of candidate chunks for outlining for (int i = 0; i < mergedChildChunks.size(); i++) { Chunk mergedChunk = (Chunk)mergedChildChunks.get(i); int mergedSize = mergedChunk.getChunkSize(); if (mergedSize >= MINIMUM_OUTLINEABLE_CHUNK_SIZE && mergedSize <= TARGET_METHOD_SIZE) { candidateChunks.add(mergedChunk); } } } } // Drop the chunk which was too big currLevelChunks.remove(currLevelChunks.size() - 1); } // currLevelChunks contains pairs of InstructionHandles. If // its size is an odd number, the loop has encountered the // start of a chunk at this level, but not its end. openChunkAtCurrLevel = ((currLevelChunks.size() & 0x1) == 1); } } while (currentHandle != null); return candidateChunks; } /** * Merge adjacent sibling chunks to produce larger candidate chunks for * outlining * @param chunks array of sibling {@link MethodGenerator.Chunk}s that are * under consideration for outlining. Chunks must be in * the order encountered in the {@link InstructionList} * @return a <code>java.util.ArrayList of * <code>MethodGenerator.Chunks maximally merged */ private ArrayList mergeAdjacentChunks(Chunk[] chunks) { int[] adjacencyRunStart = new int[chunks.length]; int[] adjacencyRunLength = new int[chunks.length]; boolean[] chunkWasMerged = new boolean[chunks.length]; int maximumRunOfChunks = 0; int startOfCurrentRun; int numAdjacentRuns = 0; ArrayList mergedChunks = new ArrayList(); startOfCurrentRun = 0; // Loop through chunks, and record in adjacencyRunStart where each // run of adjacent chunks begins and how many are in that run. For // example, given chunks A B C D E F, if A is adjacent to B, but not // to C, and C, D, E and F are all adjacent, // adjacencyRunStart[0] == 0; adjacencyRunLength[0] == 2 // adjacencyRunStart[1] == 2; adjacencyRunLength[1] == 4 for (int i = 1; i < chunks.length; i++) { if (!chunks[i-1].isAdjacentTo(chunks[i])) { int lengthOfRun = i - startOfCurrentRun; // Track the longest run of chunks found if (maximumRunOfChunks < lengthOfRun) { maximumRunOfChunks = lengthOfRun; } if (lengthOfRun > 1 ) { adjacencyRunLength[numAdjacentRuns] = lengthOfRun; adjacencyRunStart[numAdjacentRuns] = startOfCurrentRun; numAdjacentRuns++; } startOfCurrentRun = i; } } if (chunks.length - startOfCurrentRun > 1) { int lengthOfRun = chunks.length - startOfCurrentRun; // Track the longest run of chunks found if (maximumRunOfChunks < lengthOfRun) { maximumRunOfChunks = lengthOfRun; } adjacencyRunLength[numAdjacentRuns] = chunks.length - startOfCurrentRun; adjacencyRunStart[numAdjacentRuns] = startOfCurrentRun; numAdjacentRuns++; } // Try merging adjacent chunks to come up with better sized chunks for // outlining. This algorithm is not optimal, but it should be // reasonably fast. Consider an example like this, where four chunks // of the sizes specified in brackets are adjacent. The best way of // combining these chunks would be to merge the first pair and merge // the last three to form two chunks, but the algorithm will merge the // three in the middle instead, leaving three chunks in all. // [25000] [25000] [20000] [1000] [20000] // Start by trying to merge the maximum number of adjacent chunks, and // work down from there. for (int numToMerge = maximumRunOfChunks; numToMerge>1; numToMerge--) { // Look at each run of adjacent chunks for (int run = 0; run < numAdjacentRuns; run++) { int runStart = adjacencyRunStart[run]; int runEnd = runStart + adjacencyRunLength[run] - 1; boolean foundChunksToMerge = false; // Within the current run of adjacent chunks, look at all // "subruns" of length numToMerge, until we run out or find // a subrun that can be merged. for (int mergeStart = runStart; mergeStart+numToMerge-1 <= runEnd && !foundChunksToMerge; mergeStart++) { int mergeEnd = mergeStart + numToMerge - 1; int mergeSize = 0; // Find out how big the subrun is for (int j = mergeStart; j <= mergeEnd; j++) { mergeSize = mergeSize + chunks[j].getChunkSize(); } // If the current subrun is small enough to outline, // merge it, and split the remaining chunks in the run if (mergeSize <= TARGET_METHOD_SIZE) { foundChunksToMerge = true; for (int j = mergeStart; j <= mergeEnd; j++) { chunkWasMerged[j] = true; } mergedChunks.add( new Chunk(chunks[mergeStart].getChunkStart(), chunks[mergeEnd].getChunkEnd())); // Adjust the length of the current run of adjacent // chunks to end at the newly merged chunk... adjacencyRunLength[run] = adjacencyRunStart[run] - mergeStart; int trailingRunLength = runEnd - mergeEnd; // and any chunks that follow the newly merged chunk // in the current run of adjacent chunks form another // new run of adjacent chunks if (trailingRunLength >= 2) { adjacencyRunStart[numAdjacentRuns] = mergeEnd + 1; adjacencyRunLength[numAdjacentRuns] = trailingRunLength; numAdjacentRuns++; } } } } } // Make a final pass for any chunk that wasn't merged with a sibling // and include it in the list of chunks after merging. for (int i = 0; i < chunks.length; i++) { if (!chunkWasMerged[i]) { mergedChunks.add(chunks[i]); } } return mergedChunks; } /** * Breaks up the IL for this {@link MethodGenerator} into separate * outlined methods so that no method exceeds the 64KB limit on the length * of the byte code associated with a method. * @param classGen The {@link ClassGen} with which the generated methods * will be associated * @param originalMethodSize The number of bytes of bytecode represented by * the {@link InstructionList} of this method * @return an array of the outlined <code>Methods and the original * method itself */ public Method[] outlineChunks(ClassGenerator classGen, int originalMethodSize) { ArrayList methodsOutlined = new ArrayList(); int currentMethodSize = originalMethodSize; int outlinedCount = 0; boolean moreMethodsOutlined; String originalMethodName = getName(); // Special handling for initialization methods. No other methods can // include the less than and greater than characters in their names, // so we munge the names here. if (originalMethodName.equals("<init>")) { originalMethodName = "$lt$init$gt$"; } else if (originalMethodName.equals("<clinit>")) { originalMethodName = "$lt$clinit$gt$"; } // Loop until the original method comes in under the JVM limit or // the loop was unable to outline any more methods do { // Get all the best candidates for outlining, and sort them in // ascending order of size ArrayList candidateChunks = getCandidateChunks(classGen, currentMethodSize); Collections.sort(candidateChunks); moreMethodsOutlined = false; // Loop over the candidates for outlining, from the largest to the // smallest and outline them one at a time, until the loop has // outlined all or the original method comes in under the JVM // limit on the size of a method. for (int i = candidateChunks.size()-1; i >= 0 && currentMethodSize > TARGET_METHOD_SIZE; i--) { Chunk chunkToOutline = (Chunk)candidateChunks.get(i); methodsOutlined.add(outline(chunkToOutline.getChunkStart(), chunkToOutline.getChunkEnd(), originalMethodName + "$outline$" + outlinedCount, classGen)); outlinedCount++; moreMethodsOutlined = true; InstructionList il = getInstructionList(); InstructionHandle lastInst = il.getEnd(); il.setPositions(); // Check the size of the method now currentMethodSize = lastInst.getPosition() + lastInst.getInstruction().getLength(); } } while (moreMethodsOutlined && currentMethodSize > TARGET_METHOD_SIZE); // Outlining failed to reduce the size of the current method // sufficiently. Throw an internal error. if (currentMethodSize > MAX_METHOD_SIZE) { String msg = (new ErrorMsg(ErrorMsg.OUTLINE_ERR_METHOD_TOO_BIG)) .toString(); throw new InternalError(msg); } Method[] methodsArr = new Method[methodsOutlined.size() + 1]; methodsOutlined.toArray(methodsArr); methodsArr[methodsOutlined.size()] = getThisMethod(); return methodsArr; } /** * Given an outlineable chunk of code in the current {@link MethodGenerator} * move ("outline") the chunk to a new method, and replace the chunk in the * old method with a reference to that new method. No * {@link OutlineableChunkStart} or {@link OutlineableChunkEnd} instructions * are copied. * @param first The {@link InstructionHandle} of the first instruction in * the chunk to outline * @param last The <code>InstructionHandle of the last instruction in * the chunk to outline * @param outlinedMethodName The name of the new method * @param classGen The {@link ClassGenerator} of which the original * and new methods will be members * @return The new {@link Method} containing the outlined code. */ private Method outline(InstructionHandle first, InstructionHandle last, String outlinedMethodName, ClassGenerator classGen) { // We're not equipped to deal with exception handlers yet. Bail out! if (getExceptionHandlers().length != 0) { String msg = (new ErrorMsg(ErrorMsg.OUTLINE_ERR_TRY_CATCH)) .toString(); throw new InternalError(msg); } int outlineChunkStartOffset = first.getPosition(); int outlineChunkEndOffset = last.getPosition() + last.getInstruction().getLength(); ConstantPoolGen cpg = getConstantPool(); // Create new outlined method with signature: // // private final outlinedMethodName(CopyLocals copyLocals); // // CopyLocals is an object that is used to copy-in/copy-out local // variables that are used by the outlined method. Only locals whose // value is potentially set or referenced outside the range of the // chunk that is being outlined will be represented in CopyLocals. The // type of the variable for copying local variables is actually // generated to be unique - it is not named CopyLocals. // // The outlined method never needs to be referenced outside of this // class, and will never be overridden, so we mark it private final. final InstructionList newIL = new InstructionList(); final XSLTC xsltc = classGen.getParser().getXSLTC(); final String argTypeName = xsltc.getHelperClassName(); final Type[] argTypes = new Type[] {(new ObjectType(argTypeName)).toJCType()}; final String argName = "copyLocals"; final String[] argNames = new String[] {argName}; int methodAttributes = ACC_PRIVATE | ACC_FINAL; final boolean isStaticMethod = (getAccessFlags() & ACC_STATIC) != 0; if (isStaticMethod) { methodAttributes = methodAttributes | ACC_STATIC; } final MethodGenerator outlinedMethodGen = new MethodGenerator(methodAttributes, com.sun.org.apache.bcel.internal.generic.Type.VOID, argTypes, argNames, outlinedMethodName, getClassName(), newIL, cpg); // Create class for copying local variables to the outlined method. // The fields the class will need to contain will be determined as the // code in the outlineable chunk is examined. ClassGenerator copyAreaCG = new ClassGenerator(argTypeName, OBJECT_CLASS, argTypeName+".java", ACC_FINAL | ACC_PUBLIC | ACC_SUPER, null, classGen.getStylesheet()) { public boolean isExternal() { return true; } }; ConstantPoolGen copyAreaCPG = copyAreaCG.getConstantPool(); copyAreaCG.addEmptyConstructor(ACC_PUBLIC); // Number of fields in the copy class int copyAreaFieldCount = 0; // The handle for the instruction after the last one to be outlined. // Note that this should never end up being null. An outlineable chunk // won't contain a RETURN instruction or other branch out of the chunk, // and the JVM specification prohibits code in a method from just // "falling off the end" so this should always point to a valid handle. InstructionHandle limit = last.getNext(); // InstructionLists for copying values into and out of an instance of // CopyLocals: // oldMethCoypInIL - from locals in old method into an instance // of the CopyLocals class (oldMethCopyInIL) // oldMethCopyOutIL - from CopyLocals back into locals in the old // method // newMethCopyInIL - from CopyLocals into locals in the new // method // newMethCopyOutIL - from locals in new method into the instance // of the CopyLocals class InstructionList oldMethCopyInIL = new InstructionList(); InstructionList oldMethCopyOutIL = new InstructionList(); InstructionList newMethCopyInIL = new InstructionList(); InstructionList newMethCopyOutIL = new InstructionList(); // Allocate instance of class in which we'll copy in or copy out locals // and make two copies: last copy is used to invoke constructor; // other two are used for references to fields in the CopyLocals object InstructionHandle outlinedMethodCallSetup = oldMethCopyInIL.append(new NEW(cpg.addClass(argTypeName))); oldMethCopyInIL.append(InstructionConstants.DUP); oldMethCopyInIL.append(InstructionConstants.DUP); oldMethCopyInIL.append( new INVOKESPECIAL(cpg.addMethodref(argTypeName, "<init>", "()V"))); // Generate code to invoke the new outlined method, and place the code // on oldMethCopyOutIL InstructionHandle outlinedMethodRef; if (isStaticMethod) { outlinedMethodRef = oldMethCopyOutIL.append( new INVOKESTATIC(cpg.addMethodref( classGen.getClassName(), outlinedMethodName, outlinedMethodGen.getSignature()))); } else { oldMethCopyOutIL.append(InstructionConstants.THIS); oldMethCopyOutIL.append(InstructionConstants.SWAP); outlinedMethodRef = oldMethCopyOutIL.append( new INVOKEVIRTUAL(cpg.addMethodref( classGen.getClassName(), outlinedMethodName, outlinedMethodGen.getSignature()))); } // Used to keep track of the first in a sequence of // OutlineableChunkStart instructions boolean chunkStartTargetMappingsPending = false; InstructionHandle pendingTargetMappingHandle = null; // Used to keep track of the last instruction that was copied InstructionHandle lastCopyHandle = null; // Keeps track of the mapping from instruction handles in the old // method to instruction handles in the outlined method. Only need // to track instructions that are targeted by something else in the // generated BCEL HashMap targetMap = new HashMap(); // Keeps track of the mapping from local variables in the old method // to local variables in the outlined method. HashMap localVarMap = new HashMap(); HashMap revisedLocalVarStart = new HashMap(); HashMap revisedLocalVarEnd = new HashMap(); // Pass 1: Make copies of all instructions, append them to the new list // and associate old instruction references with the new ones, i.e., // a 1:1 mapping. The special marker instructions are not copied. // Also, identify local variables whose values need to be copied into or // out of the new outlined method, and builds up targetMap and // localVarMap as described above. The code identifies those local // variables first so that they can have fixed slots in the stack // frame for the outlined method assigned them ahead of all those // variables that don't need to exist for the entirety of the outlined // method invocation. for (InstructionHandle ih = first; ih != limit; ih = ih.getNext()) { Instruction inst = ih.getInstruction(); // MarkerInstructions are not copied, so if something else targets // one, the targetMap will point to the nearest copied sibling // InstructionHandle: for an OutlineableChunkEnd, the nearest // preceding sibling; for an OutlineableChunkStart, the nearest // following sibling. if (inst instanceof MarkerInstruction) { if (ih.hasTargeters()) { if (inst instanceof OutlineableChunkEnd) { targetMap.put(ih, lastCopyHandle); } else { if (!chunkStartTargetMappingsPending) { chunkStartTargetMappingsPending = true; pendingTargetMappingHandle = ih; } } } } else { // Copy the instruction and append it to the outlined method's // InstructionList. Instruction c = inst.copy(); // Use clone for shallow copy if (c instanceof BranchInstruction) { lastCopyHandle = newIL.append((BranchInstruction)c); } else { lastCopyHandle = newIL.append(c); } if (c instanceof LocalVariableInstruction || c instanceof RET) { // For any instruction that touches a local variable, // check whether the local variable's value needs to be // copied into or out of the outlined method. If so, // generate the code to perform the necessary copying, and // use localVarMap to map the variable in the original // method to the variable in the new method. IndexedInstruction lvi = (IndexedInstruction)c; int oldLocalVarIndex = lvi.getIndex(); LocalVariableGen oldLVG = getLocalVariableRegistry() .lookupRegisteredLocalVariable(oldLocalVarIndex, ih.getPosition()); LocalVariableGen newLVG = (LocalVariableGen)localVarMap.get(oldLVG); // Has the code already mapped this local variable to a // local in the new method? if (localVarMap.get(oldLVG) == null) { // Determine whether the local variable needs to be // copied into or out of the outlined by checking // whether the range of instructions in which the // variable is accessible is outside the range of // instructions in the outlineable chunk. // Special case a chunk start offset of zero: a local // variable live at that position must be a method // parameter, so the code doesn't need to check whether // the variable is live before that point; being live // at offset zero is sufficient to know that the value // must be copied in to the outlined method. boolean copyInLocalValue = offsetInLocalVariableGenRange(oldLVG, (outlineChunkStartOffset != 0) ? outlineChunkStartOffset-1 : 0); boolean copyOutLocalValue = offsetInLocalVariableGenRange(oldLVG, outlineChunkEndOffset+1); // For any variable that needs to be copied into or out // of the outlined method, create a field in the // CopyLocals class, and generate the necessary code for // copying the value. if (copyInLocalValue || copyOutLocalValue) { String varName = oldLVG.getName(); Type varType = oldLVG.getType(); newLVG = outlinedMethodGen.addLocalVariable(varName, varType, null, null); int newLocalVarIndex = newLVG.getIndex(); String varSignature = varType.getSignature(); // Record the mapping from the old local to the new localVarMap.put(oldLVG, newLVG); copyAreaFieldCount++; String copyAreaFieldName = "field" + copyAreaFieldCount; copyAreaCG.addField( new Field(ACC_PUBLIC, copyAreaCPG.addUtf8(copyAreaFieldName), copyAreaCPG.addUtf8(varSignature), null, copyAreaCPG.getConstantPool())); int fieldRef = cpg.addFieldref(argTypeName, copyAreaFieldName, varSignature); if (copyInLocalValue) { // Generate code for the old method to store the // value of the local into the correct field in // CopyLocals prior to invocation of the // outlined method. oldMethCopyInIL.append( InstructionConstants.DUP); InstructionHandle copyInLoad = oldMethCopyInIL.append( loadLocal(oldLocalVarIndex, varType)); oldMethCopyInIL.append(new PUTFIELD(fieldRef)); // If the end of the live range of the old // variable was in the middle of the outlined // chunk. Make the load of its value the new // end of its range. if (!copyOutLocalValue) { revisedLocalVarEnd.put(oldLVG, copyInLoad); } // Generate code for start of the outlined // method to copy the value from a field in // CopyLocals to the new local in the outlined // method newMethCopyInIL.append( InstructionConstants.ALOAD_1); newMethCopyInIL.append(new GETFIELD(fieldRef)); newMethCopyInIL.append( storeLocal(newLocalVarIndex, varType)); } if (copyOutLocalValue) { // Generate code for the end of the outlined // method to copy the value from the new local // variable into a field in CopyLocals // method newMethCopyOutIL.append( InstructionConstants.ALOAD_1); newMethCopyOutIL.append( loadLocal(newLocalVarIndex, varType)); newMethCopyOutIL.append(new PUTFIELD(fieldRef)); // Generate code to copy the value from a field // in CopyLocals into a local in the original // method following invocation of the outlined // method. oldMethCopyOutIL.append( InstructionConstants.DUP); oldMethCopyOutIL.append(new GETFIELD(fieldRef)); InstructionHandle copyOutStore = oldMethCopyOutIL.append( storeLocal(oldLocalVarIndex, varType)); // If the start of the live range of the old // variable was in the middle of the outlined // chunk. Make this store into it the new start // of its range. if (!copyInLocalValue) { revisedLocalVarStart.put(oldLVG, copyOutStore); } } } } } if (ih.hasTargeters()) { targetMap.put(ih, lastCopyHandle); } // If this is the first instruction copied following a sequence // of OutlineableChunkStart instructions, indicate that the // sequence of old instruction all map to this newly created // instruction if (chunkStartTargetMappingsPending) { do { targetMap.put(pendingTargetMappingHandle, lastCopyHandle); pendingTargetMappingHandle = pendingTargetMappingHandle.getNext(); } while(pendingTargetMappingHandle != ih); chunkStartTargetMappingsPending = false; } } } // Pass 2: Walk old and new instruction lists, updating branch targets // and local variable references in the new list InstructionHandle ih = first; InstructionHandle ch = newIL.getStart(); while (ch != null) { // i == old instruction; c == copied instruction Instruction i = ih.getInstruction(); Instruction c = ch.getInstruction(); if (i instanceof BranchInstruction) { BranchInstruction bc = (BranchInstruction)c; BranchInstruction bi = (BranchInstruction)i; InstructionHandle itarget = bi.getTarget(); // old target // New target must be in targetMap InstructionHandle newTarget = (InstructionHandle)targetMap.get(itarget); bc.setTarget(newTarget); // Handle LOOKUPSWITCH or TABLESWITCH which may have many // target instructions if (bi instanceof Select) { InstructionHandle[] itargets = ((Select)bi).getTargets(); InstructionHandle[] ctargets = ((Select)bc).getTargets(); // Update all targets for (int j=0; j < itargets.length; j++) { ctargets[j] = (InstructionHandle)targetMap.get(itargets[j]); } } } else if (i instanceof LocalVariableInstruction || i instanceof RET) { // For any instruction that touches a local variable, // map the location of the variable in the original // method to its location in the new method. IndexedInstruction lvi = (IndexedInstruction)c; int oldLocalVarIndex = lvi.getIndex(); LocalVariableGen oldLVG = getLocalVariableRegistry() .lookupRegisteredLocalVariable(oldLocalVarIndex, ih.getPosition()); LocalVariableGen newLVG = (LocalVariableGen)localVarMap.get(oldLVG); int newLocalVarIndex; if (newLVG == null) { // Create new variable based on old variable - use same // name and type, but we will let the variable be active // for the entire outlined method. // LocalVariableGen oldLocal = oldLocals[oldLocalVarIndex]; String varName = oldLVG.getName(); Type varType = oldLVG.getType(); newLVG = outlinedMethodGen.addLocalVariable(varName, varType, null, null); newLocalVarIndex = newLVG.getIndex(); localVarMap.put(oldLVG, newLVG); // The old variable's live range was wholly contained in // the outlined chunk. There should no longer be stores // of values into it or loads of its value, so we can just // mark its live range as the reference to the outlined // method. revisedLocalVarStart.put(oldLVG, outlinedMethodRef); revisedLocalVarEnd.put(oldLVG, outlinedMethodRef); } else { newLocalVarIndex = newLVG.getIndex(); } lvi.setIndex(newLocalVarIndex); } // If the old instruction marks the end of the range of a local // variable, make sure that any slots on the stack reserved for // local variables are made available for reuse by calling // MethodGenerator.removeLocalVariable if (ih.hasTargeters()) { InstructionTargeter[] targeters = ih.getTargeters(); for (int idx = 0; idx < targeters.length; idx++) { InstructionTargeter targeter = targeters[idx]; if (targeter instanceof LocalVariableGen && ((LocalVariableGen)targeter).getEnd()==ih) { Object newLVG = localVarMap.get(targeter); if (newLVG != null) { outlinedMethodGen.removeLocalVariable( (LocalVariableGen)newLVG); } } } } // If the current instruction in the original list was a marker, // it wasn't copied, so don't advance through the list of copied // instructions yet. if (!(i instanceof MarkerInstruction)) { ch = ch.getNext(); } ih = ih.getNext(); } // POP the reference to the CopyLocals object from the stack oldMethCopyOutIL.append(InstructionConstants.POP); // Now that the generation of the outlined code is complete, update // the old local variables with new start and end ranges, as required. Iterator revisedLocalVarStartPairIter = revisedLocalVarStart.entrySet() .iterator(); while (revisedLocalVarStartPairIter.hasNext()) { Map.Entry lvgRangeStartPair = (Map.Entry)revisedLocalVarStartPairIter.next(); LocalVariableGen lvg = (LocalVariableGen)lvgRangeStartPair.getKey(); InstructionHandle startInst = (InstructionHandle)lvgRangeStartPair.getValue(); lvg.setStart(startInst); } Iterator revisedLocalVarEndPairIter = revisedLocalVarEnd.entrySet() .iterator(); while (revisedLocalVarEndPairIter.hasNext()) { Map.Entry lvgRangeEndPair = (Map.Entry)revisedLocalVarEndPairIter.next(); LocalVariableGen lvg = (LocalVariableGen)lvgRangeEndPair.getKey(); InstructionHandle endInst = (InstructionHandle)lvgRangeEndPair.getValue(); lvg.setEnd(endInst); } xsltc.dumpClass(copyAreaCG.getJavaClass()); // Assemble the instruction lists so that the old method invokes the // new outlined method InstructionList oldMethodIL = getInstructionList(); oldMethodIL.insert(first, oldMethCopyInIL); oldMethodIL.insert(first, oldMethCopyOutIL); // Insert the copying code into the outlined method newIL.insert(newMethCopyInIL); newIL.append(newMethCopyOutIL); newIL.append(InstructionConstants.RETURN); // Discard instructions in outlineable chunk from old method try { oldMethodIL.delete(first, last); } catch (TargetLostException e) { InstructionHandle[] targets = e.getTargets(); // If there were still references to old instructions lingering, // clean those up. The only instructions targetting the deleted // instructions should have been part of the chunk that was just // deleted, except that instructions might branch to the start of // the outlined chunk; similarly, all the live ranges of local // variables should have been adjusted, except for unreferenced // variables. for (int i = 0; i < targets.length; i++) { InstructionHandle lostTarget = targets[i]; InstructionTargeter[] targeters = lostTarget.getTargeters(); for (int j = 0; j < targeters.length; j++) { if (targeters[j] instanceof LocalVariableGen) { LocalVariableGen lvgTargeter = (LocalVariableGen) targeters[j]; // In the case of any lingering variable references, // just make the live range point to the outlined // function reference. Such variables should be unused // anyway. if (lvgTargeter.getStart() == lostTarget) { lvgTargeter.setStart(outlinedMethodRef); } if (lvgTargeter.getEnd() == lostTarget) { lvgTargeter.setEnd(outlinedMethodRef); } } else { targeters[j].updateTarget(lostTarget, outlinedMethodCallSetup); } } } } // Make a copy for the new method of all exceptions that might be thrown String[] exceptions = getExceptions(); for (int i = 0; i < exceptions.length; i++) { outlinedMethodGen.addException(exceptions[i]); } return outlinedMethodGen.getThisMethod(); } /** * Helper method to generate an instance of a subclass of * {@link LoadInstruction} based on the specified {@link Type} that will * load the specified local variable * @param index the JVM stack frame index of the variable that is to be * loaded * @param type the {@link Type} of the variable * @return the generated {@link LoadInstruction} */ private static Instruction loadLocal(int index, Type type) { if (type == Type.BOOLEAN) { return new ILOAD(index); } else if (type == Type.INT) { return new ILOAD(index); } else if (type == Type.SHORT) { return new ILOAD(index); } else if (type == Type.LONG) { return new LLOAD(index); } else if (type == Type.BYTE) { return new ILOAD(index); } else if (type == Type.CHAR) { return new ILOAD(index); } else if (type == Type.FLOAT) { return new FLOAD(index); } else if (type == Type.DOUBLE) { return new DLOAD(index); } else { return new ALOAD(index); } } /** * Helper method to generate an instance of a subclass of * {@link StoreInstruction} based on the specified {@link Type} that will * store a value in the specified local variable * @param index the JVM stack frame index of the variable that is to be * stored * @param type the {@link Type} of the variable * @return the generated {@link StoredInstruction} */ private static Instruction storeLocal(int index, Type type) { if (type == Type.BOOLEAN) { return new ISTORE(index); } else if (type == Type.INT) { return new ISTORE(index); } else if (type == Type.SHORT) { return new ISTORE(index); } else if (type == Type.LONG) { return new LSTORE(index); } else if (type == Type.BYTE) { return new ISTORE(index); } else if (type == Type.CHAR) { return new ISTORE(index); } else if (type == Type.FLOAT) { return new FSTORE(index); } else if (type == Type.DOUBLE) { return new DSTORE(index); } else { return new ASTORE(index); } } /** * Track the number of outlineable chunks seen. */ private int m_totalChunks = 0; /** * Track the number of outlineable chunks started but not yet ended. Used * to detect imbalances in byte code generation. */ private int m_openChunks = 0; /** * Mark the end of the method's * {@link InstructionList} as the start of an outlineable chunk of code. * The outlineable chunk begins after the {@link InstructionHandle} that is * at the end of the method's {@link InstructionList}, or at the start of * the method if the <code>InstructionList is empty. * See {@link OutlineableChunkStart} for more information. */ public void markChunkStart() { // m_chunkTree.markChunkStart(); getInstructionList() .append(OutlineableChunkStart.OUTLINEABLECHUNKSTART); m_totalChunks++; m_openChunks++; } /** * Mark the end of an outlineable chunk of code. See * {@link OutlineableChunkStart} for more information. */ public void markChunkEnd() { // m_chunkTree.markChunkEnd(); getInstructionList() .append(OutlineableChunkEnd.OUTLINEABLECHUNKEND); m_openChunks--; if (m_openChunks < 0) { String msg = (new ErrorMsg(ErrorMsg.OUTLINE_ERR_UNBALANCED_MARKERS)) .toString(); throw new InternalError(msg); } } /** * <p>Get all {@link Method}s generated by this {@link MethodGenerator}. * The {@link MethodGen#getMethod()} only returns a single * <code>Method object. This method takes into account the Java * Virtual Machine Specification limit of 64KB on the size of a method, and * may return more than one <code>Method.

* <p>If the code associated with the MethodGenerator would * exceed the 64KB limit, this method will attempt to split the code in * the {@link InstructionList} associated with this * <code>MethodGenerator into several methods.

* @param classGen the {@link ClassGenerator} of which these methods are * members * @return an array of all the <code>Methods generated */ Method[] getGeneratedMethods(ClassGenerator classGen) { Method[] generatedMethods; InstructionList il = getInstructionList(); InstructionHandle last = il.getEnd(); il.setPositions(); int instructionListSize = last.getPosition() + last.getInstruction().getLength(); // Need to look for any branch target offsets that exceed the range // [-32768,32767] if (instructionListSize > MAX_BRANCH_TARGET_OFFSET) { boolean ilChanged = widenConditionalBranchTargetOffsets(); // If any branch instructions needed widening, recompute the size // of the byte code for the method if (ilChanged) { il.setPositions(); last = il.getEnd(); instructionListSize = last.getPosition() + last.getInstruction().getLength(); } } if (instructionListSize > MAX_METHOD_SIZE) { generatedMethods = outlineChunks(classGen, instructionListSize); } else { generatedMethods = new Method[] {getThisMethod()}; } return generatedMethods; } protected Method getThisMethod() { stripAttributes(true); setMaxLocals(); setMaxStack(); removeNOPs(); return getMethod(); } /** * <p>Rewrites branches to avoid the JVM limits of relative branch * offsets. There is no need to invoke this method if the bytecode for the * {@link MethodGenerator} does not exceed 32KB.</p> * <p>The Java Virtual Machine Specification permits the code portion of a * method to be up to 64KB in length. However, some control transfer * instructions specify relative offsets as a signed 16-bit quantity, * limiting the range to a subset of the instructions that might be in a * method.</p> * <p>The TABLESWITCH and LOOKUPSWITCH * instructions always use 32-bit signed relative offsets, so they are * immune to this problem.</p> * <p>The GOTO and JSR * instructions come in two forms, one of which uses 16-bit relative * offsets, and the other of which uses 32-bit relative offsets. The BCEL * library decides whether to use the wide form of <code>GOTO or * <code>JSRinstructions based on the relative offset of the target * of the instruction without any intervention by the user of the * library.</p> * <p>This leaves the various conditional branch instructions, * <code>IFEQ, IFNULL, IF_ICMPEQ, * <em>et al., all of which use 16-bit signed relative offsets, with no * 32-bit wide form available.</p> * <p>This method scans the {@link InstructionList} associated with this * {@link MethodGenerator} and finds all conditional branch instructions * that might exceed the 16-bit limitation for relative branch offsets. * The logic of each such instruction is inverted, and made to target the * instruction which follows it. An unconditional branch to the original * target of the instruction is then inserted between the conditional * branch and the instruction which previously followed it. The * unconditional branch is permitted to have a 16-bit or a 32-bit relative * offset, as described above. For example, * <code> * 1234: NOP * ... * 55278: IFEQ -54044 * 55280: NOP * </code> * is rewritten as * <code> * 1234: NOP * ... * 55278: IFNE 7 * 55280: GOTO_W -54046 * 55285: NOP * </code>

* <p>Preconditions: * <ul>
  • The {@link InstructionList#setPositions()} has been called for * the <code>InstructionList associated with this * <code>MethodGenerator. * </li>

    * <p>Postconditions: * <ul>
  • Any further changes to the InstructionList for this * <code>MethodGenerator will invalidate the changes made by this * method.</li> * </p> * @return <code>true if the InstructionList was * modified; <code>false otherwise * @see The Java Virtual Machine Specification, Second Edition */ boolean widenConditionalBranchTargetOffsets() { boolean ilChanged = false; int maxOffsetChange = 0; InstructionList il = getInstructionList(); // Loop through all the instructions, finding those that would be // affected by inserting new instructions in the InstructionList, and // calculating the maximum amount by which the relative offset between // two instructions could possibly change. // In part this loop duplicates code in // org.apache.bcel.generic.InstructionList.setPosition(), which does // this to determine whether to use 16-bit or 32-bit offsets for GOTO // and JSR instructions. Ideally, that method would do the same for // conditional branch instructions, but it doesn't, so we duplicate the // processing here. for (InstructionHandle ih = il.getStart(); ih != null; ih = ih.getNext()) { Instruction inst = ih.getInstruction(); switch (inst.getOpcode()) { // Instructions that may have 16-bit or 32-bit branch targets. // The size of the branch offset might increase by two bytes. case Constants.GOTO: case Constants.JSR: maxOffsetChange = maxOffsetChange + 2; break; // Instructions that contain padding for alignment purposes // Up to three bytes of padding might be needed. For greater // accuracy, we should be able to discount any padding already // added to these instructions by InstructionList.setPosition(), // their APIs do not expose that information. case Constants.TABLESWITCH: case Constants.LOOKUPSWITCH: maxOffsetChange = maxOffsetChange + 3; break; // Instructions that might be rewritten by this method as a // conditional branch followed by an unconditional branch. // The unconditional branch would require five bytes. case Constants.IF_ACMPEQ: case Constants.IF_ACMPNE: case Constants.IF_ICMPEQ: case Constants.IF_ICMPGE: case Constants.IF_ICMPGT: case Constants.IF_ICMPLE: case Constants.IF_ICMPLT: case Constants.IF_ICMPNE: case Constants.IFEQ: case Constants.IFGE: case Constants.IFGT: case Constants.IFLE: case Constants.IFLT: case Constants.IFNE: case Constants.IFNONNULL: case Constants.IFNULL: maxOffsetChange = maxOffsetChange + 5; break; } } // Now that the maximum number of bytes by which the method might grow // has been determined, look for conditional branches to see which // might possibly exceed the 16-bit relative offset. for (InstructionHandle ih = il.getStart(); ih != null; ih = ih.getNext()) { Instruction inst = ih.getInstruction(); if (inst instanceof IfInstruction) { IfInstruction oldIfInst = (IfInstruction)inst; BranchHandle oldIfHandle = (BranchHandle)ih; InstructionHandle target = oldIfInst.getTarget(); int relativeTargetOffset = target.getPosition() - oldIfHandle.getPosition(); // Consider the worst case scenario in which the conditional // branch and its target are separated by all the instructions // in the method that might increase in size. If that results // in a relative offset that cannot be represented as a 32-bit // signed quantity, rewrite the instruction as described above. if ((relativeTargetOffset - maxOffsetChange < MIN_BRANCH_TARGET_OFFSET) || (relativeTargetOffset + maxOffsetChange > MAX_BRANCH_TARGET_OFFSET)) { // Invert the logic of the IF instruction, and append // that to the InstructionList following the original IF // instruction InstructionHandle nextHandle = oldIfHandle.getNext(); IfInstruction invertedIfInst = oldIfInst.negate(); BranchHandle invertedIfHandle = il.append(oldIfHandle, invertedIfInst); // Append an unconditional branch to the target of the // original IF instruction after the new IF instruction BranchHandle gotoHandle = il.append(invertedIfHandle, new GOTO(target)); // If the original IF was the last instruction in // InstructionList, add a new no-op to act as the target // of the new IF if (nextHandle == null) { nextHandle = il.append(gotoHandle, NOP); } // Make the new IF instruction branch around the GOTO invertedIfHandle.updateTarget(target, nextHandle); // If anything still "points" to the old IF instruction, // make adjustments to refer to either the new IF or GOTO // instruction if (oldIfHandle.hasTargeters()) { InstructionTargeter[] targeters = oldIfHandle.getTargeters(); for (int i = 0; i < targeters.length; i++) { InstructionTargeter targeter = targeters[i]; // Ideally, one should simply be able to use // InstructionTargeter.updateTarget to change // references to the old IF instruction to the new // IF instruction. However, if a LocalVariableGen // indicated the old IF marked the end of the range // in which the IF variable is in use, the live // range of the variable must extend to include the // newly created GOTO instruction. The need for // this sort of specific knowledge of an // implementor of the InstructionTargeter interface // makes the code more fragile. Future implementors // of the interface might have similar requirements // which wouldn't be accommodated seemlessly. if (targeter instanceof LocalVariableGen) { LocalVariableGen lvg = (LocalVariableGen) targeter; if (lvg.getStart() == oldIfHandle) { lvg.setStart(invertedIfHandle); } else if (lvg.getEnd() == oldIfHandle) { lvg.setEnd(gotoHandle); } } else { targeter.updateTarget(oldIfHandle, invertedIfHandle); } } } try { il.delete(oldIfHandle); } catch (TargetLostException tle) { // This can never happen - we updated the list of // instructions that target the deleted instruction // prior to deleting it. String msg = new ErrorMsg(ErrorMsg.OUTLINE_ERR_DELETED_TARGET, tle.getMessage()).toString(); throw new InternalError(msg); } // Adjust the pointer in the InstructionList to point after // the newly inserted IF instruction ih = gotoHandle; // Indicate that this method rewrote at least one IF ilChanged = true; } } } // Did this method rewrite any IF instructions? return ilChanged; } }
  • Other Java examples (source code examples)

    Here is a short list of links related to this Java MethodGenerator.java source code file:

    ... this post is sponsored by my books ...

    #1 New Release!

    FP Best Seller

     

    new blog posts

     

    Copyright 1998-2021 Alvin Alexander, alvinalexander.com
    All Rights Reserved.

    A percentage of advertising revenue from
    pages under the /java/jwarehouse URI on this website is
    paid back to open source projects.