alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (PrecisionDecimalDV.java)

This example Java source code file (PrecisionDecimalDV.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

equal, greater_than, inf, invaliddatatypevalueexception, less_than, nan, numberformatexception, object, override, string, stringbuffer, stringbuilder, validationcontext, xprecisiondecimal

The PrecisionDecimalDV.java Java example source code

/*
 * reserved comment block
 * DO NOT REMOVE OR ALTER!
 */
/*
 * Copyright 2004 The Apache Software Foundation.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.sun.org.apache.xerces.internal.impl.dv.xs;

import com.sun.org.apache.xerces.internal.impl.dv.InvalidDatatypeValueException;
import com.sun.org.apache.xerces.internal.impl.dv.ValidationContext;

/**
 * Validator for <precisionDecimal> datatype (W3C Schema 1.1)
 *
 * @xerces.experimental
 *
 * @author Ankit Pasricha, IBM
 *
 */
class PrecisionDecimalDV extends TypeValidator {

    static final class XPrecisionDecimal {

        // sign: 0 for absent; 1 for positive values; -1 for negative values (except in case of INF, -INF)
        int sign = 1;
        // total digits. >= 1
        int totalDigits = 0;
        // integer digits when sign != 0
        int intDigits = 0;
        // fraction digits when sign != 0
        int fracDigits = 0;
        //precision
        //int precision = 0;
        // the string representing the integer part
        String ivalue = "";
        // the string representing the fraction part
        String fvalue = "";

        int pvalue = 0;


        XPrecisionDecimal(String content) throws NumberFormatException {
            if(content.equals("NaN")) {
                ivalue = content;
                sign = 0;
            }
            if(content.equals("+INF") || content.equals("INF") || content.equals("-INF")) {
                ivalue = content.charAt(0) == '+' ? content.substring(1) : content;
                return;
            }
            initD(content);
        }

        void initD(String content) throws NumberFormatException {
            int len = content.length();
            if (len == 0)
                throw new NumberFormatException();

            // these 4 variables are used to indicate where the integre/fraction
            // parts start/end.
            int intStart = 0, intEnd = 0, fracStart = 0, fracEnd = 0;

            // Deal with leading sign symbol if present
            if (content.charAt(0) == '+') {
                // skip '+', so intStart should be 1
                intStart = 1;
            }
            else if (content.charAt(0) == '-') {
                intStart = 1;
                sign = -1;
            }

            // skip leading zeroes in integer part
            int actualIntStart = intStart;
            while (actualIntStart < len && content.charAt(actualIntStart) == '0') {
                actualIntStart++;
            }

            // Find the ending position of the integer part
            for (intEnd = actualIntStart; intEnd < len && TypeValidator.isDigit(content.charAt(intEnd)); intEnd++);

            // Not reached the end yet
            if (intEnd < len) {
                // the remaining part is not ".DDD" or "EDDD" or "eDDD", error
                if (content.charAt(intEnd) != '.' && content.charAt(intEnd) != 'E' && content.charAt(intEnd) != 'e')
                    throw new NumberFormatException();

                if(content.charAt(intEnd) == '.') {
                    // fraction part starts after '.', and ends at the end of the input
                    fracStart = intEnd + 1;

                    // find location of E or e (if present)
                    // Find the ending position of the fracion part
                    for (fracEnd = fracStart;
                    fracEnd < len && TypeValidator.isDigit(content.charAt(fracEnd));
                    fracEnd++);
                }
                else {
                    pvalue = Integer.parseInt(content.substring(intEnd + 1, len));
                }
            }

            // no integer part, no fraction part, error.
            if (intStart == intEnd && fracStart == fracEnd)
                throw new NumberFormatException();

            // ignore trailing zeroes in fraction part
            /*while (fracEnd > fracStart && content.charAt(fracEnd-1) == '0') {
             fracEnd--;
             }*/

            // check whether there is non-digit characters in the fraction part
            for (int fracPos = fracStart; fracPos < fracEnd; fracPos++) {
                if (!TypeValidator.isDigit(content.charAt(fracPos)))
                    throw new NumberFormatException();
            }

            intDigits = intEnd - actualIntStart;
            fracDigits = fracEnd - fracStart;

            if (intDigits > 0) {
                ivalue = content.substring(actualIntStart, intEnd);
            }

            if (fracDigits > 0) {
                fvalue = content.substring(fracStart, fracEnd);
                if(fracEnd < len) {
                    pvalue = Integer.parseInt(content.substring(fracEnd + 1, len));
                }
            }
            totalDigits = intDigits + fracDigits;
        }

        // Construct a canonical String representation of this number
        // for the purpose of deriving a hashCode value compliant with
        // equals.
        // The toString representation will be:
        // NaN for NaN, INF for +infinity, -INF for -infinity, 0 for zero,
        // and [1-9].[0-9]*[1-9]?(E[1-9][0-9]*)? for other numbers.
        private static String canonicalToStringForHashCode(String ivalue, String fvalue, int sign, int pvalue) {
            if ("NaN".equals(ivalue)) {
                return "NaN";
            }
            if ("INF".equals(ivalue)) {
                return sign < 0 ? "-INF" : "INF";
            }
            final StringBuilder builder = new StringBuilder();
            final int ilen = ivalue.length();
            final int flen0 = fvalue.length();
            int lastNonZero;
            for (lastNonZero = flen0; lastNonZero > 0 ; lastNonZero--) {
                if (fvalue.charAt(lastNonZero -1 ) != '0') break;
            }
            final int flen = lastNonZero;
            int iStart;
            int exponent = pvalue;
            for (iStart = 0; iStart < ilen; iStart++) {
                if (ivalue.charAt(iStart) != '0') break;
            }
            int fStart = 0;
            if (iStart < ivalue.length()) {
                builder.append(sign == -1 ? "-" : "");
                builder.append(ivalue.charAt(iStart));
                iStart++;
            } else {
                if (flen > 0) {
                    for (fStart = 0; fStart < flen; fStart++) {
                        if (fvalue.charAt(fStart) != '0') break;
                    }
                    if (fStart < flen) {
                        builder.append(sign == -1 ? "-" : "");
                        builder.append(fvalue.charAt(fStart));
                        exponent -= ++fStart;
                    } else {
                        return "0";
                    }
                } else {
                    return "0";
                }
            }

            if (iStart < ilen || fStart < flen) {
                builder.append('.');
            }
            while (iStart < ilen) {
                builder.append(ivalue.charAt(iStart++));
                exponent++;
            }
            while (fStart < flen) {
                builder.append(fvalue.charAt(fStart++));
            }
            if (exponent != 0) {
                builder.append("E").append(exponent);
            }
            return builder.toString();
        }

        @Override
        public boolean equals(Object val) {
            if (val == this)
                return true;

            if (!(val instanceof XPrecisionDecimal))
                return false;
            XPrecisionDecimal oval = (XPrecisionDecimal)val;

            return this.compareTo(oval) == EQUAL;
        }

        @Override
        public int hashCode() {
            // There's nothing else we can use easily, because equals could
            // return true for widely different representation of the
            // same number - and we don't have any canonical representation.
            // The problem here is that we must ensure that if two numbers
            // are equals then their hash code must also be equals.
            // hashCode for 1.01E1 should be the same as hashCode for 0.101E2
            // So we call cannonicalToStringForHashCode - which implements an
            // algorithm that invents a normalized string representation
            // for this number, and we return a hash for that.
            return canonicalToStringForHashCode(ivalue, fvalue, sign, pvalue).hashCode();
        }

        /**
         * @return
         */
        private int compareFractionalPart(XPrecisionDecimal oval) {
            if(fvalue.equals(oval.fvalue))
                return EQUAL;

            StringBuffer temp1 = new StringBuffer(fvalue);
            StringBuffer temp2 = new StringBuffer(oval.fvalue);

            truncateTrailingZeros(temp1, temp2);
            return temp1.toString().compareTo(temp2.toString());
        }

        private void truncateTrailingZeros(StringBuffer fValue, StringBuffer otherFValue) {
            for(int i = fValue.length() - 1;i >= 0; i--)
                if(fValue.charAt(i) == '0')
                    fValue.deleteCharAt(i);
                else
                    break;

            for(int i = otherFValue.length() - 1;i >= 0; i--)
                if(otherFValue.charAt(i) == '0')
                    otherFValue.deleteCharAt(i);
                else
                    break;
        }

        public int compareTo(XPrecisionDecimal val) {

            // seen NaN
            if(sign == 0)
                return INDETERMINATE;

            //INF is greater than everything and equal to itself
            if(ivalue.equals("INF") || val.ivalue.equals("INF")) {
                if(ivalue.equals(val.ivalue))
                    return EQUAL;
                else if(ivalue.equals("INF"))
                    return GREATER_THAN;
                return LESS_THAN;
            }

            //-INF is smaller than everything and equal itself
            if(ivalue.equals("-INF") || val.ivalue.equals("-INF")) {
                if(ivalue.equals(val.ivalue))
                    return EQUAL;
                else if(ivalue.equals("-INF"))
                    return LESS_THAN;
                return GREATER_THAN;
            }

            if (sign != val.sign)
                return sign > val.sign ? GREATER_THAN : LESS_THAN;

            return sign * compare(val);
        }

        // To enable comparison - the exponent part of the decimal will be limited
        // to the max value of int.
        private int compare(XPrecisionDecimal val) {

            if(pvalue != 0 || val.pvalue != 0) {
                if(pvalue == val.pvalue)
                    return intComp(val);
                else {

                    if(intDigits + pvalue != val.intDigits + val.pvalue)
                        return intDigits + pvalue > val.intDigits + val.pvalue ? GREATER_THAN : LESS_THAN;

                    //otherwise the 2 combined values are the same
                    if(pvalue > val.pvalue) {
                        int expDiff = pvalue - val.pvalue;
                        StringBuffer buffer = new StringBuffer(ivalue);
                        StringBuffer fbuffer = new StringBuffer(fvalue);
                        for(int i = 0;i < expDiff; i++) {
                            if(i < fracDigits) {
                                buffer.append(fvalue.charAt(i));
                                fbuffer.deleteCharAt(i);
                            }
                            else
                                buffer.append('0');
                        }
                        return compareDecimal(buffer.toString(), val.ivalue, fbuffer.toString(), val.fvalue);
                    }
                    else {
                        int expDiff = val.pvalue - pvalue;
                        StringBuffer buffer = new StringBuffer(val.ivalue);
                        StringBuffer fbuffer = new StringBuffer(val.fvalue);
                        for(int i = 0;i < expDiff; i++) {
                            if(i < val.fracDigits) {
                                buffer.append(val.fvalue.charAt(i));
                                fbuffer.deleteCharAt(i);
                            }
                            else
                                buffer.append('0');
                        }
                        return compareDecimal(ivalue, buffer.toString(), fvalue, fbuffer.toString());
                    }
                }
            }
            else {
                return intComp(val);
            }
        }

        /**
         * @param val
         * @return
         */
        private int intComp(XPrecisionDecimal val) {
            if (intDigits != val.intDigits)
                return intDigits > val.intDigits ? GREATER_THAN : LESS_THAN;

            return compareDecimal(ivalue, val.ivalue, fvalue, val.fvalue);
        }

        /**
         * @param val
         * @return
         */
        private int compareDecimal(String iValue, String fValue, String otherIValue, String otherFValue) {
            int ret = iValue.compareTo(otherIValue);
            if (ret != 0)
                return ret > 0 ? GREATER_THAN : LESS_THAN;

            if(fValue.equals(otherFValue))
                return EQUAL;

            StringBuffer temp1=new StringBuffer(fValue);
            StringBuffer temp2=new StringBuffer(otherFValue);

            truncateTrailingZeros(temp1, temp2);
            ret = temp1.toString().compareTo(temp2.toString());
            return ret == 0 ? EQUAL : (ret > 0 ? GREATER_THAN : LESS_THAN);
        }

        private String canonical;

        @Override
        public synchronized String toString() {
            if (canonical == null) {
                makeCanonical();
            }
            return canonical;
        }

        private void makeCanonical() {
            // REVISIT: to be determined by working group
            canonical = "TBD by Working Group";
        }

        /**
         * @param decimal
         * @return
         */
        public boolean isIdentical(XPrecisionDecimal decimal) {
            if(ivalue.equals(decimal.ivalue) && (ivalue.equals("INF") || ivalue.equals("-INF") || ivalue.equals("NaN")))
                return true;

            if(sign == decimal.sign && intDigits == decimal.intDigits && fracDigits == decimal.fracDigits && pvalue == decimal.pvalue
                    && ivalue.equals(decimal.ivalue) && fvalue.equals(decimal.fvalue))
                return true;
            return false;
        }

    }
    /* (non-Javadoc)
     * @see com.sun.org.apache.xerces.internal.impl.dv.xs.TypeValidator#getAllowedFacets()
     */
    @Override
    public short getAllowedFacets() {
        return ( XSSimpleTypeDecl.FACET_PATTERN | XSSimpleTypeDecl.FACET_WHITESPACE | XSSimpleTypeDecl.FACET_ENUMERATION |XSSimpleTypeDecl.FACET_MAXINCLUSIVE |XSSimpleTypeDecl.FACET_MININCLUSIVE | XSSimpleTypeDecl.FACET_MAXEXCLUSIVE  | XSSimpleTypeDecl.FACET_MINEXCLUSIVE | XSSimpleTypeDecl.FACET_TOTALDIGITS | XSSimpleTypeDecl.FACET_FRACTIONDIGITS);
    }

    /* (non-Javadoc)
     * @see com.sun.org.apache.xerces.internal.impl.dv.xs.TypeValidator#getActualValue(java.lang.String, com.sun.org.apache.xerces.internal.impl.dv.ValidationContext)
     */
    @Override
    public Object getActualValue(String content, ValidationContext context)
    throws InvalidDatatypeValueException {
        try {
            return new XPrecisionDecimal(content);
        } catch (NumberFormatException nfe) {
            throw new InvalidDatatypeValueException("cvc-datatype-valid.1.2.1", new Object[]{content, "precisionDecimal"});
        }
    }

    @Override
    public int compare(Object value1, Object value2) {
        return ((XPrecisionDecimal)value1).compareTo((XPrecisionDecimal)value2);
    }

    @Override
    public int getFractionDigits(Object value) {
        return ((XPrecisionDecimal)value).fracDigits;
    }

    @Override
    public int getTotalDigits(Object value) {
        return ((XPrecisionDecimal)value).totalDigits;
    }

    @Override
    public boolean isIdentical(Object value1, Object value2) {
        if(!(value2 instanceof XPrecisionDecimal) || !(value1 instanceof XPrecisionDecimal))
            return false;
        return ((XPrecisionDecimal)value1).isIdentical((XPrecisionDecimal)value2);
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java PrecisionDecimalDV.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.