alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (SpecializeTypes.scala)

This example Scala source code file (SpecializeTypes.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

annotation, boolean, collection, compiler, defdef, list, nil, nosymbol, nsc, some, symbol, tree, type, typeenv

The SpecializeTypes.scala Scala example source code

/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author Iulian Dragos
 */

package scala
package tools.nsc
package transform

import scala.tools.nsc.symtab.Flags
import scala.collection.{ mutable, immutable }
import scala.language.postfixOps
import scala.language.existentials
import scala.annotation.tailrec

/** Specialize code on types.
 *
 *  Make sure you've read the thesis:
 *
 *    Iulian Dragos: Compiling Scala for Performance (chapter 4)
 *
 *  There are some things worth noting, (possibly) not mentioned there:
 *  0) Make sure you understand the meaning of various `SpecializedInfo` descriptors
 *     defined below.
 *
 *  1) Specializing traits by introducing bridges in specialized methods
 *     of the specialized trait may introduce problems during mixin composition.
 *     Concretely, it may cause cyclic calls and result in a stack overflow.
 *     See ticket #4351.
 *     This was solved by introducing an `Abstract` specialized info descriptor.
 *     Instead of generating a bridge in the trait, an abstract method is generated.
 *
 *  2) Specialized private members sometimes have to be switched to protected.
 *     In some cases, even this is not enough. Example:
 *
 *     {{{
 *       class A[@specialized T](protected val d: T) {
 *         def foo(that: A[T]) = that.d
 *       }
 *     }}}
 *
 *     Specialization will generate a specialized class and a specialized method:
 *
 *     {{{
 *       class A$mcI$sp(protected val d: Int) extends A[Int] {
 *         def foo(that: A[Int]) = foo$mcI$sp(that)
 *         def foo(that: A[Int]) = that.d
 *       }
 *     }}}
 *
 *     Above, `A$mcI$sp` cannot access `d`, so the method cannot be typechecked.
 */
abstract class SpecializeTypes extends InfoTransform with TypingTransformers {
  import global._
  import definitions._
  import Flags._

  private val inlineFunctionExpansion = settings.Ydelambdafy.value == "inline"

  /** the name of the phase: */
  val phaseName: String = "specialize"

  /** The following flags may be set by this phase: */
  override def phaseNewFlags: Long = notPRIVATE | lateFINAL

  /** This phase changes base classes. */
  override def changesBaseClasses = true
  override def keepsTypeParams = true

  type TypeEnv = immutable.Map[Symbol, Type]
  def emptyEnv: TypeEnv = Map[Symbol, Type]()

  private implicit val typeOrdering: Ordering[Type] = Ordering[String] on ("" + _.typeSymbol.name)


  /** TODO - this is a lot of maps.
   */

  /** For a given class and concrete type arguments, give its specialized class */
  val specializedClass = perRunCaches.newMap[(Symbol, TypeEnv), Symbol]

  /** Map a method symbol to a list of its specialized overloads in the same class. */
  private val overloads = perRunCaches.newMap[Symbol, List[Overload]]() withDefaultValue Nil

  /** Map a symbol to additional information on specialization. */
  private val info = perRunCaches.newMap[Symbol, SpecializedInfo]()

  /** Map class symbols to the type environments where they were created. */
  private val typeEnv = perRunCaches.newMap[Symbol, TypeEnv]() withDefaultValue emptyEnv

  //    Key: a specialized class or method
  //  Value: a map from tparams in the original class to tparams in the specialized class.
  private val anyrefSpecCache = perRunCaches.newMap[Symbol, mutable.Map[Symbol, Symbol]]()

  // holds mappings from members to the type variables in the class
  // that they were already specialized for, so that they don't get
  // specialized twice (this is for AnyRef specializations)
  private val wasSpecializedForTypeVars = perRunCaches.newMap[Symbol, Set[Symbol]]() withDefaultValue Set()

  /** Concrete methods that use a specialized type, or override such methods. */
  private val concreteSpecMethods = perRunCaches.newWeakSet[Symbol]()

  private def specializedOn(sym: Symbol): List[Symbol] = {
    val GroupOfSpecializable = currentRun.runDefinitions.GroupOfSpecializable
    sym getAnnotation SpecializedClass match {
      case Some(AnnotationInfo(_, Nil, _)) => specializableTypes.map(_.typeSymbol)
      case Some(ann @ AnnotationInfo(_, args, _)) => {
        args map (_.tpe) flatMap { tp =>
          tp baseType GroupOfSpecializable match {
            case TypeRef(_, GroupOfSpecializable, arg :: Nil) =>
              arg.typeArgs map (_.typeSymbol)
            case _ =>
              tp.typeSymbol :: Nil
          }
        }
      }
      case _ => Nil
    }
  }

  @annotation.tailrec private def findSymbol[T](candidates: List[T], f: T => Symbol): Symbol = {
    if (candidates.isEmpty) NoSymbol
    else f(candidates.head) match {
      case NoSymbol => findSymbol(candidates.tail, f)
      case sym      => sym
    }
  }
  private def hasNewParents(tree: Tree) = {
    val parents = tree.symbol.info.parents
    val prev    = enteringPrevPhase(tree.symbol.info.parents)
    (parents != prev) && {
      debuglog(s"$tree parents changed from: $prev to: $parents")
      true
    }
  }

  // If we replace `isBoundedGeneric` with (tp <:< AnyRefTpe),
  // then pos/spec-List.scala fails - why? Does this kind of check fail
  // for similar reasons? Does `sym.isAbstractType` make a difference?
  private def isSpecializedAnyRefSubtype(tp: Type, sym: Symbol) = {
    specializedOn(sym).exists(s => !isPrimitiveValueClass(s)) &&
    !isPrimitiveValueClass(tp.typeSymbol) &&
    isBoundedGeneric(tp)
    //(tp <:< AnyRefTpe)
  }

  object TypeEnv {
    /** Return a new type environment binding specialized type parameters of sym to
     *  the given args. Expects the lists to have the same length.
     */
    def fromSpecialization(sym: Symbol, args: List[Type]): TypeEnv = {
      ifDebug(assert(sym.info.typeParams.length == args.length, sym + " args: " + args))

      emptyEnv ++ collectMap2(sym.info.typeParams, args)((k, v) => k.isSpecialized)
    }

    /** Does typeenv `t1` include `t2`? All type variables in `t1`
     *  are defined in `t2` and:
     *  - are bound to the same type, or
     *  - are an AnyRef specialization and `t2` is bound to a subtype of AnyRef
     */
    def includes(t1: TypeEnv, t2: TypeEnv) = t1 forall {
      case (sym, tpe) =>
        t2 get sym exists { t2tp =>
          (tpe == t2tp) || !(isPrimitiveValueType(tpe) || isPrimitiveValueType(t2tp)) // u.t.b. (t2tp <:< AnyRefTpe)
        }
    }

    /** Reduce the given environment to contain mappings only for type variables in tps. */
    def restrict(env: TypeEnv, tps: immutable.Set[Symbol]): TypeEnv =
      env filterKeys tps toMap

    /** Is the given environment a valid specialization for sym?
     *  It is valid if each binding is from a @specialized type parameter in sym (or its owner)
     *  to a type for which `sym` is specialized.
     */
    def isValid(env: TypeEnv, sym: Symbol): Boolean = {
      env forall { case (tvar, tpe) =>
        tvar.isSpecialized && (concreteTypes(tvar) contains tpe) && {
          (sym.typeParams contains tvar) ||
          (sym.owner != rootMirror.RootClass && (sym.owner.typeParams contains tvar))
        }
      }
    }
  }

  case class Overload(sym: Symbol, env: TypeEnv) {
    override def toString = "specialized overload " + sym + " in " + env
    def matchesSym(sym1: Symbol)  = sym.info =:= sym1.info
    def matchesEnv(env1: TypeEnv) = TypeEnv.includes(env, env1)
  }
  private def newOverload(method: Symbol, specializedMethod: Symbol, env: TypeEnv) = {
    assert(!specializedMethod.isOverloaded, specializedMethod.defString)
    val om = Overload(specializedMethod, env)
    overloads(method) ::= om
    om
  }

  /** Just to mark uncheckable */
  override def newPhase(prev: scala.tools.nsc.Phase): StdPhase = new SpecializationPhase(prev)
  class SpecializationPhase(prev: scala.tools.nsc.Phase) extends super.Phase(prev) {
    override def checkable = false
  }

  protected def newTransformer(unit: CompilationUnit): Transformer =
    new SpecializationTransformer(unit)

  abstract class SpecializedInfo {
    def target: Symbol

    /** Are type bounds of @specialized type parameters of 'target' now in 'env'? */
    def typeBoundsIn(env: TypeEnv) = false

    /** A degenerated method has @specialized type parameters that appear only in
     *  type bounds of other @specialized type parameters (and not in its result type).
     */
    def degenerate = false
  }

  /** Symbol is a special overloaded method of 'original', in the environment env. */
  case class SpecialOverload(original: Symbol, env: TypeEnv) extends SpecializedInfo {
    def target = original
  }

  /** Symbol is a method that should be forwarded to 't' */
  case class Forward(t: Symbol) extends SpecializedInfo {
    def target = t
  }

  /** Symbol is a specialized abstract method, either specialized or original. The original `t` is abstract. */
  case class Abstract(t: Symbol) extends SpecializedInfo {
    def target = t
  }

  /** Symbol is a special overload of the super accessor. */
  case class SpecialSuperAccessor(t: Symbol) extends SpecializedInfo {
    def target = t
  }

  /** Symbol is a specialized accessor for the `target` field. */
  case class SpecializedAccessor(target: Symbol) extends SpecializedInfo { }

  /** Symbol is a specialized method whose body should be the target's method body. */
  case class Implementation(target: Symbol) extends SpecializedInfo

  /** Symbol is a specialized override paired with `target`. */
  case class SpecialOverride(target: Symbol) extends SpecializedInfo

  /** A specialized inner class that specializes original inner class `target` on a type parameter of the enclosing class, in the typeenv `env`. */
  case class SpecializedInnerClass(target: Symbol, env: TypeEnv) extends SpecializedInfo

  /** Symbol is a normalized member obtained by specializing 'target'. */
  case class NormalizedMember(target: Symbol) extends SpecializedInfo {

    /** Type bounds of a @specialized type var are now in the environment. */
    override def typeBoundsIn(env: TypeEnv): Boolean = {
      target.info.typeParams exists { tvar =>
        tvar.isSpecialized && (specializedTypeVars(tvar.info.bounds) exists env.isDefinedAt)
      }
    }

    override lazy val degenerate = {
      val stvTypeParams = specializedTypeVars(target.info.typeParams map (_.info))
      val stvResult     = specializedTypeVars(target.info.resultType)

      debuglog("degenerate: " + target + " stv tparams: " + stvTypeParams + " stv info: " + stvResult)

      (stvTypeParams -- stvResult).nonEmpty
    }
  }

  /** Has `clazz` any type parameters that need be specialized? */
  def hasSpecializedParams(clazz: Symbol) =
    clazz.info.typeParams exists (_.isSpecialized)

  /** Return specialized type parameters. */
  def specializedParams(sym: Symbol): List[Symbol] =
    sym.info.typeParams filter (_.isSpecialized)

  /** Given an original class symbol and a list of types its type parameters are instantiated at
   *  returns a list of type parameters that should remain in the TypeRef when instantiating a
   *  specialized type.
   */
  def survivingArgs(sym: Symbol, args: List[Type]): List[Type] =
    for ((tvar, tpe) <- sym.info.typeParams.zip(args) if !tvar.isSpecialized || !isPrimitiveValueType(tpe))
      yield tpe

  val specializedType = new TypeMap {
    override def apply(tp: Type): Type = tp match {
      case TypeRef(pre, sym, args) if args.nonEmpty =>
        val pre1 = this(pre)
        // when searching for a specialized class, take care to map all
        // type parameters that are subtypes of AnyRef to AnyRef
        val args1 = map2(args, sym.info.typeParams)((tp, orig) =>
          if (isSpecializedAnyRefSubtype(tp, orig)) AnyRefTpe
          else tp
        )
        specializedClass.get((sym, TypeEnv.fromSpecialization(sym, args1))) match {
          case Some(sym1) => typeRef(pre1, sym1, survivingArgs(sym, args))
          case None       => typeRef(pre1, sym, args)
        }
      case _ => tp
    }
  }

  /** Return the specialized name of 'sym' in the given environment. It
   *  guarantees the same result regardless of the map order by sorting
   *  type variables alphabetically.
   *
   *  !!! Is this safe in the face of the following?
   *    scala> trait T { def foo[A] = 0}; object O extends T { override def foo[B] = 0 }
   */
  private def specializedName(sym: Symbol, env: TypeEnv): TermName = {
    val tvars = (
      if (sym.isClass) env.keySet
      else specializedTypeVars(sym).intersect(env.keySet)
    )
    val (methparams, others) = tvars.toList sortBy ("" + _.name) partition (_.owner.isMethod)
    // debuglog("specName(" + sym + ") env: " + env + " tvars: " + tvars)

    specializedName(sym.name, methparams map env, others map env)
  }

  /** Specialize name for the two list of types. The first one denotes
   *  specialization on method type parameters, the second on outer environment.
   */
  private def specializedName(name: Name, types1: List[Type], types2: List[Type]): TermName = (
    if (name == nme.CONSTRUCTOR || (types1.isEmpty && types2.isEmpty))
      name.toTermName
    else if (nme.isSetterName(name))
      specializedName(name.getterName, types1, types2).setterName
    else if (nme.isLocalName(name))
      specializedName(name.getterName, types1, types2).localName
    else {
      val (base, cs, ms) = nme.splitSpecializedName(name)
      newTermName(base.toString + "$"
                  + "m" + ms + types1.map(t => abbrvTag(t.typeSymbol)).mkString("", "", "")
                  + "c" + cs + types2.map(t => abbrvTag(t.typeSymbol)).mkString("", "", "$sp"))
    }
  )

  lazy val specializableTypes = ScalaValueClasses map (_.tpe) sorted

  /** If the symbol is the companion of a value class, the value class.
   *  Otherwise, AnyRef.
   */
  def specializesClass(sym: Symbol): Symbol = {
    val c = sym.companionClass
    if (isPrimitiveValueClass(c)) c else AnyRefClass
  }

  /** Return the types `sym` should be specialized at. This may be some of the primitive types
   *  or AnyRef. AnyRef means that a new type parameter T will be generated later, known to be a
   *  subtype of AnyRef (T <: AnyRef).
   *  These are in a meaningful order for stability purposes.
   */
  def concreteTypes(sym: Symbol): List[Type] = {
    val types = if (!sym.isSpecialized)
      Nil // no @specialized Annotation
    else
      specializedOn(sym) map (s => specializesClass(s).tpe) sorted

    if (isBoundedGeneric(sym.tpe) && (types contains AnyRefClass))
      reporter.warning(sym.pos, sym + " is always a subtype of " + AnyRefTpe + ".")

    types
  }

  /** Return a list of all type environments for all specializations
   *  of @specialized types in `tps`.
   */
  private def specializations(tps: List[Symbol]): List[TypeEnv] = {
    // the keys in each TypeEnv
    val keys: List[Symbol] = tps filter (_.isSpecialized)
    // creating each permutation of concrete types
    def loop(ctypes: List[List[Type]]): List[List[Type]] = ctypes match {
      case Nil         => Nil
      case set :: Nil  => set map (_ :: Nil)
      case set :: sets => for (x <- set ; xs <- loop(sets)) yield x :: xs
    }
    // zip the keys with each permutation to create a TypeEnv.
    // If we don't exclude the "all AnyRef" specialization, we will
    // incur duplicate members and crash during mixin.
    loop(keys map concreteTypes) filterNot (_ forall (_ <:< AnyRefTpe)) map (xss => Map(keys zip xss: _*))
  }

  /** Does the given 'sym' need to be specialized in the environment 'env'?
   *  Specialization is needed for
   *    - members with specialized type parameters found in the given environment
   *    - constructors of specialized classes
   *    - normalized members whose type bounds appear in the environment
   *  But suppressed for:
   *    - any member with the @unspecialized annotation, or which has an
   *      enclosing member with the annotation.
   */
  private def needsSpecialization(env: TypeEnv, sym: Symbol): Boolean = (
    !hasUnspecializableAnnotation(sym) && (
         specializedTypeVars(sym).intersect(env.keySet).diff(wasSpecializedForTypeVars(sym)).nonEmpty
      || sym.isClassConstructor && (sym.enclClass.typeParams exists (_.isSpecialized))
      || isNormalizedMember(sym) && info(sym).typeBoundsIn(env)
    )
  )

  private def hasUnspecializableAnnotation(sym: Symbol): Boolean =
    sym.ownerChain.exists(_ hasAnnotation UnspecializedClass)

  def isNormalizedMember(m: Symbol) = m.isSpecialized && (info get m exists {
    case NormalizedMember(_)  => true
    case _                    => false
  })
  def specializedTypeVars(tpes: List[Type]): immutable.Set[Symbol] = {
    @tailrec def loop(result: immutable.Set[Symbol], xs: List[Type]): immutable.Set[Symbol] = {
      if (xs.isEmpty) result
      else loop(result ++ specializedTypeVars(xs.head), xs.tail)
    }
    loop(immutable.Set.empty, tpes)
  }
  def specializedTypeVars(sym: Symbol): immutable.Set[Symbol] = (
    if (neverHasTypeParameters(sym)) immutable.Set.empty
    else enteringTyper(specializedTypeVars(sym.info))
  )

  /** Return the set of @specialized type variables mentioned by the given type.
   *  It only counts type variables that appear:
   *    - naked
   *    - as arguments to type constructors in @specialized positions
   *      (arrays are considered as Array[@specialized T])
   */
  def specializedTypeVars(tpe: Type): immutable.Set[Symbol] = tpe match {
    case TypeRef(pre, sym, args) =>
      if (sym.isAliasType)
        specializedTypeVars(tpe.dealiasWiden)
      else if (sym.isTypeParameter && sym.isSpecialized || (sym.isTypeSkolem && sym.deSkolemize.isSpecialized))
        Set(sym)
      else if (sym == ArrayClass)
        specializedTypeVars(args)
      else if (args.isEmpty)
        Set()
      else
        specializedTypeVars(sym.typeParams zip args collect { case (tp, arg) if tp.isSpecialized => arg })

    case PolyType(tparams, resTpe)   => specializedTypeVars(resTpe :: mapList(tparams)(symInfo)) // OPT
    // since this method may be run at phase typer (before uncurry, where NMTs are eliminated)
    case NullaryMethodType(resTpe)   => specializedTypeVars(resTpe)
    case MethodType(argSyms, resTpe) => specializedTypeVars(resTpe :: mapList(argSyms)(symTpe))  // OPT
    case ExistentialType(_, res)     => specializedTypeVars(res)
    case AnnotatedType(_, tp)        => specializedTypeVars(tp)
    case TypeBounds(lo, hi)          => specializedTypeVars(lo :: hi :: Nil)
    case RefinedType(parents, _)     => parents flatMap specializedTypeVars toSet
    case _                           => immutable.Set.empty
  }

  /** Returns the type parameter in the specialized class `sClass` that corresponds to type parameter
   *  `tparam` in the original class. It will create it if needed or use the one from the cache.
   */
  private def typeParamSubAnyRef(tparam: Symbol, sClass: Symbol): Type = {
    val sClassMap = anyrefSpecCache.getOrElseUpdate(sClass, mutable.Map[Symbol, Symbol]())

    sClassMap.getOrElseUpdate(tparam,
      tparam.cloneSymbol(sClass, tparam.flags, tparam.name append tpnme.SPECIALIZED_SUFFIX)
        modifyInfo (info => TypeBounds(info.bounds.lo, AnyRefTpe))
    ).tpe
  }

  /** Cleans the anyrefSpecCache of all type parameter symbols of a class.
   */
  private def cleanAnyRefSpecCache(clazz: Symbol, decls: List[Symbol]) {
    // remove class type parameters and those of normalized members.
    clazz :: decls foreach (anyrefSpecCache remove _)
  }

  /** Type parameters that survive when specializing in the specified environment. */
  def survivingParams(params: List[Symbol], env: TypeEnv) =
    params filter {
      p =>
      !p.isSpecialized ||
      !env.contains(p) ||
      !isPrimitiveValueType(env(p))
    }

  /** Produces the symbols from type parameters `syms` of the original owner,
   *  in the given type environment `env`. The new owner is `nowner`.
   *
   *  Non-specialized type parameters are cloned into new ones.
   *  Type parameters specialized on AnyRef have preexisting symbols.
   *
   *  For instance, a @specialized(AnyRef) T, will become T$sp <: AnyRef.
   */
  def produceTypeParameters(syms: List[Symbol], nowner: Symbol, env: TypeEnv) = {
    val cloned = for (s <- syms) yield if (!env.contains(s)) s.cloneSymbol(nowner) else env(s).typeSymbol
    // log("producing type params: " + cloned.map(t => (t, t.tpe.bounds.hi)))
    foreach2(syms, cloned) { (orig, cln) =>
      cln.removeAnnotation(SpecializedClass)
      if (env.contains(orig))
        cln modifyInfo (info => TypeBounds(info.bounds.lo, AnyRefTpe))
    }
    cloned map (_ substInfo (syms, cloned))
  }

  /** Maps AnyRef bindings from a raw environment (holding AnyRefs) into type parameters from
   *  the specialized symbol (class (specialization) or member (normalization)), leaves everything else as-is.
   */
  private def mapAnyRefsInSpecSym(env: TypeEnv, origsym: Symbol, specsym: Symbol): TypeEnv = env map {
    case (sym, AnyRefTpe) if sym.owner == origsym => (sym, typeParamSubAnyRef(sym, specsym))
    case x => x
  }

  /** Maps AnyRef bindings from a raw environment (holding AnyRefs) into type parameters from
   *  the original class, leaves everything else as-is.
   */
  private def mapAnyRefsInOrigCls(env: TypeEnv, origcls: Symbol): TypeEnv = env map {
    case (sym, AnyRefTpe) if sym.owner == origcls => (sym, sym.tpe)
    case x                                        => x
  }

  /** Specialize 'clazz', in the environment `outerEnv`. The outer
   *  environment contains bindings for specialized types of enclosing
   *  classes.
   *
   *  A class C is specialized w.r.t to its own specialized type params
   *  `stps`, by specializing its members, and creating a new class for
   *  each combination of `stps`.
   */
  def specializeClass(clazz: Symbol, outerEnv: TypeEnv): List[Symbol] = {
    def specializedClass(env0: TypeEnv, normMembers: List[Symbol]): Symbol = {
      /* It gets hard to follow all the clazz and cls, and specializedClass
       * was both already used for a map and mucho long.  So "sClass" is the
       * specialized subclass of "clazz" throughout this file.
       */

      // SI-5545: Eliminate classes with the same name loaded from the bytecode already present - all we need to do is
      // to force .info on them, as their lazy type will be evaluated and the symbols will be eliminated. Unfortunately
      // evaluating the info after creating the specialized class will mess the specialized class signature, so we'd
      // better evaluate it before creating the new class symbol
      val clazzName = specializedName(clazz, env0).toTypeName
      val bytecodeClazz = clazz.owner.info.decl(clazzName)
      // debuglog("Specializing " + clazz + ", but found " + bytecodeClazz + " already there")
      bytecodeClazz.info

      val sClass = clazz.owner.newClass(clazzName, clazz.pos, (clazz.flags | SPECIALIZED) & ~CASE)
      sClass.setAnnotations(clazz.annotations) // SI-8574 important that the subclass picks up @SerialVersionUID, @strictfp, etc.

      def cloneInSpecializedClass(member: Symbol, flagFn: Long => Long, newName: Name = null) =
        member.cloneSymbol(sClass, flagFn(member.flags | SPECIALIZED), newName)

      sClass.associatedFile = clazz.sourceFile
      currentRun.symSource(sClass) = clazz.sourceFile // needed later on by mixin

      val env = mapAnyRefsInSpecSym(env0, clazz, sClass)
      typeEnv(sClass) = env
      this.specializedClass((clazz, env0)) = sClass

      val decls1                        = newScope  // declarations of the newly specialized class 'sClass'
      var oldClassTParams: List[Symbol] = Nil       // original unspecialized type parameters
      var newClassTParams: List[Symbol] = Nil       // unspecialized type parameters of 'specializedClass' (cloned)

      // has to be a val in order to be computed early. It is later called
      // within 'enteringPhase(next)', which would lead to an infinite cycle otherwise
      val specializedInfoType: Type = {
        oldClassTParams = survivingParams(clazz.info.typeParams, env)
        newClassTParams = produceTypeParameters(oldClassTParams, sClass, env) map subst(env)
        // log("new tparams " + newClassTParams.zip(newClassTParams map {s => (s.tpe, s.tpe.bounds.hi)}) + ", in env: " + env)

        def applyContext(tpe: Type) =
          subst(env, tpe).instantiateTypeParams(oldClassTParams, newClassTParams map (_.tpe))

        /* Return a list of specialized parents to be re-mixed in a specialized subclass.
         * Assuming env = [T -> Int] and
         *   class Integral[@specialized T] extends Numeric[T]
         * and Numeric[U] is specialized on U, this produces List(Numeric$mcI).
         *
         * so that class Integral$mci extends Integral[Int] with Numeric$mcI.
         */
        def specializedParents(parents: List[Type]): List[Type] = {
          var res: List[Type] = Nil
          // log(specializedClass + ": seeking specialized parents of class with parents: " + parents.map(_.typeSymbol))
          for (p <- parents) {
            val stp = exitingSpecialize(specializedType(p))
            if (stp != p)
              if (p.typeSymbol.isTrait) res ::= stp
              else if (currentRun.compiles(clazz))
                reporter.warning(clazz.pos, p.typeSymbol + " must be a trait. Specialized version of "
                  + clazz + " will inherit generic " + p)  // TODO change to error
          }
          res
        }

        var parents = List(applyContext(enteringTyper(clazz.tpe_*)))
        // log("!!! Parents: " + parents + ", sym: " + parents.map(_.typeSymbol))
        if (parents.head.typeSymbol.isTrait)
          parents = parents.head.parents.head :: parents
        val extraSpecializedMixins = specializedParents(clazz.info.parents map applyContext)
        if (extraSpecializedMixins.nonEmpty)
          debuglog("extra specialized mixins for %s: %s".format(clazz.name.decode, extraSpecializedMixins.mkString(", ")))
        // If the class being specialized has a self-type, the self type may
        // require specialization.  First exclude classes whose self types have
        // the same type constructor as the class itself, since they will
        // already be covered.  Then apply the current context to the self-type
        // as with the parents and assign it to typeOfThis.
        if (clazz.typeOfThis.typeConstructor ne clazz.typeConstructor) {
          sClass.typeOfThis = applyContext(clazz.typeOfThis)
          debuglog("Rewriting self-type for specialized class:\n" +
              "    " +  clazz.defStringSeenAs(clazz.typeOfThis) + "\n" +
              " => " + sClass.defStringSeenAs(sClass.typeOfThis)
          )
        }
        GenPolyType(newClassTParams, ClassInfoType(parents ::: extraSpecializedMixins, decls1, sClass))
      }

      exitingSpecialize(sClass setInfo specializedInfoType)
      val fullEnv = outerEnv ++ env

      /* Enter 'sym' in the scope of the current specialized class. It's type is
       * mapped through the active environment, binding type variables to concrete
       * types. The existing typeEnv for `sym` is composed with the current active
       * environment
       */
      def enterMember(sym: Symbol): Symbol = {
        typeEnv(sym) = fullEnv ++ typeEnv(sym) // append the full environment
        sym modifyInfo (_.substThis(clazz, sClass).instantiateTypeParams(oldClassTParams, newClassTParams map (_.tpe)))
        // we remove any default parameters. At this point, they have been all
        // resolved by the type checker. Later on, erasure re-typechecks everything and
        // chokes if it finds default parameters for specialized members, even though
        // they are never needed.
        mapParamss(sym)(_ resetFlag DEFAULTPARAM)
        decls1 enter subst(fullEnv)(sym)
      }

      /* Create and enter in scope an overridden symbol m1 for `m` that forwards
       * to `om`. `om` is a fresh, special overload of m1 that is an implementation
       * of `m`. For example, for a
       *
       * class Foo[@specialized A] {
       *   def m(x: A) = <body> // m
       * }
       * , for class Foo$I extends Foo[Int], this method enters two new symbols in
       * the scope of Foo$I:
       *
       *   def m(x: Int) = m$I(x) // m1
       *   def m$I(x: Int) = <body>/adapted to env {A -> Int} // om
       */
      def forwardToOverload(m: Symbol): Symbol = {
        val specMember = enterMember(cloneInSpecializedClass(m, f => (f | OVERRIDE) & ~(DEFERRED | CASEACCESSOR)))
        val om         = specializedOverload(sClass, m, env).setFlag(OVERRIDE)
        val original = info.get(m) match {
          case Some(NormalizedMember(tg)) => tg
          case _                          => m
        }
        info(specMember) = Forward(om)
        info(om)         = if (original.isDeferred) Forward(original) else Implementation(original)
        typeEnv(om)      = env ++ typeEnv(m) // add the environment for any method tparams

        newOverload(specMember, om, typeEnv(om))
        enterMember(om)
      }

      for (m <- normMembers ; if needsSpecialization(outerEnv ++ env, m) && satisfiable(fullEnv)) {
        if (!m.isDeferred)
          addConcreteSpecMethod(m)
        // specialized members have to be overridable.
        if (m.isPrivate)
          m.resetFlag(PRIVATE).setFlag(PROTECTED)

        if (m.isConstructor) {
          val specCtor = enterMember(cloneInSpecializedClass(m, x => x))
          info(specCtor) = Forward(m)
        }
        else if (isNormalizedMember(m)) {  // methods added by normalization
          val NormalizedMember(original) = info(m)
          if (nonConflicting(env ++ typeEnv(m))) {
            if (info(m).degenerate) {
              debuglog("degenerate normalized member " + m.defString)
              val specMember = enterMember(cloneInSpecializedClass(m, _ & ~DEFERRED))

              info(specMember)    = Implementation(original)
              typeEnv(specMember) = env ++ typeEnv(m)
            } else {
              val om = forwardToOverload(m)
              debuglog("normalizedMember " + m + " om: " + om + " " + pp(typeEnv(om)))
            }
          }
          else
            debuglog("conflicting env for " + m + " env: " + env)
        }
        else if (m.isDeferred) { // abstract methods
          val specMember = enterMember(cloneInSpecializedClass(m, _ | DEFERRED))
          // debuglog("deferred " + specMember.fullName + " remains abstract")

          info(specMember) = new Abstract(specMember)
          // was: new Forward(specMember) {
          //   override def target = m.owner.info.member(specializedName(m, env))
          // }
        } else if (m.isMethod && !m.hasAccessorFlag) { // other concrete methods
          // log("other concrete " + m)
          forwardToOverload(m)

        } else if (m.isMethod && m.hasFlag(LAZY)) {
          forwardToOverload(m)

        } else if (m.isValue && !m.isMethod && !m.hasFlag(LAZY)) { // concrete value definition
          def mkAccessor(field: Symbol, name: Name) = {
            val newFlags = (SPECIALIZED | m.getter(clazz).flags) & ~(LOCAL | CASEACCESSOR | PARAMACCESSOR)
            // we rely on the super class to initialize param accessors
            val sym = sClass.newMethod(name.toTermName, field.pos, newFlags)
            info(sym) = SpecializedAccessor(field)
            sym
          }
          def overrideIn(clazz: Symbol, sym: Symbol) = {
            val newFlags = (sym.flags | OVERRIDE | SPECIALIZED) & ~(DEFERRED | CASEACCESSOR | PARAMACCESSOR)
            val sym1     = sym.cloneSymbol(clazz, newFlags)
            sym1 modifyInfo (_ asSeenFrom (clazz.tpe, sym1.owner))
          }
          val specVal = specializedOverload(sClass, m, env)

          addConcreteSpecMethod(m)
          specVal.asInstanceOf[TermSymbol].setAlias(m)

          enterMember(specVal)
          // create accessors

          if (nme.isLocalName(m.name)) {
            val specGetter = mkAccessor(specVal, specVal.getterName) setInfo MethodType(Nil, specVal.info)
            val origGetter = overrideIn(sClass, m.getter(clazz))
            info(origGetter) = Forward(specGetter)
            enterMember(specGetter)
            enterMember(origGetter)
            debuglog("specialize accessor in %s: %s -> %s".format(sClass.name.decode, origGetter.name.decode, specGetter.name.decode))

            clazz.caseFieldAccessors.find(_.name.startsWith(m.name)) foreach { cfa =>
              val cfaGetter = overrideIn(sClass, cfa)
              info(cfaGetter) = SpecializedAccessor(specVal)
              enterMember(cfaGetter)
              debuglog("override case field accessor %s -> %s".format(m.name.decode, cfaGetter.name.decode))
            }

            if (specVal.isVariable && m.setter(clazz) != NoSymbol) {
              val specSetter = mkAccessor(specVal, specGetter.setterName)
                .resetFlag(STABLE)
              specSetter.setInfo(MethodType(specSetter.newSyntheticValueParams(List(specVal.info)),
                                            UnitTpe))
              val origSetter = overrideIn(sClass, m.setter(clazz))
              info(origSetter) = Forward(specSetter)
              enterMember(specSetter)
              enterMember(origSetter)
            }
          }
          else { // if there are no accessors, specialized methods will need to access this field in specialized subclasses
            m.resetFlag(PRIVATE)
            specVal.resetFlag(PRIVATE)
            debuglog("no accessors for %s/%s, specialized methods must access field in subclass".format(
              m.name.decode, specVal.name.decode))
          }
        }
        else if (m.isClass) {
          val specClass: Symbol = cloneInSpecializedClass(m, x => x)
          typeEnv(specClass) = fullEnv
          specClass setName specializedName(specClass, fullEnv).toTypeName
          enterMember(specClass)
          debuglog("entered specialized class " + specClass.fullName)
          info(specClass) = SpecializedInnerClass(m, fullEnv)
        }
      }
      sClass
    }

    val decls1 = clazz.info.decls.toList flatMap { m: Symbol =>
      if (m.isAnonymousClass) List(m) else {
        normalizeMember(m.owner, m, outerEnv) flatMap { normalizedMember =>
          val ms = specializeMember(m.owner, normalizedMember, outerEnv, clazz.info.typeParams)
          // interface traits have concrete members now
          if (ms.nonEmpty && clazz.isTrait && clazz.isInterface)
            clazz.resetFlag(INTERFACE)

          if (normalizedMember.isMethod) {
            val newTpe = subst(outerEnv, normalizedMember.info)
            // only do it when necessary, otherwise the method type might be at a later phase already
            if (newTpe != normalizedMember.info) {
              normalizedMember updateInfo newTpe
            }
          }
          normalizedMember :: ms
        }
      }
    }

    val subclasses = specializations(clazz.info.typeParams) filter satisfiable
    subclasses foreach {
      env =>
      val spc      = specializedClass(env, decls1)
      val existing = clazz.owner.info.decl(spc.name)

      // a symbol for the specialized class already exists if there's a classfile for it.
      // keeping both crashes the compiler on test/files/pos/spec-Function1.scala
      if (existing != NoSymbol)
        clazz.owner.info.decls.unlink(existing)

      exitingSpecialize(clazz.owner.info.decls enter spc) //!!! assumes fully specialized classes
    }
    if (subclasses.nonEmpty) clazz.resetFlag(FINAL)
    cleanAnyRefSpecCache(clazz, decls1)
    decls1
  }

  /** Expand member `sym` to a set of normalized members. Normalized members
   *  are monomorphic or polymorphic only in non-specialized types.
   *
   *  Given method m[@specialized T, U](x: T, y: U) it returns
   *     m[T, U](x: T, y: U),
   *     m$I[ U](x: Int, y: U),
   *     m$D[ U](x: Double, y: U)
   *     // etc.
   */
  private def normalizeMember(owner: Symbol, sym: Symbol, outerEnv: TypeEnv): List[Symbol] = {
    sym :: (
      if (!sym.isMethod || enteringTyper(sym.typeParams.isEmpty)) Nil
      else if (sym.hasDefault) {
        /* Specializing default getters is useless, also see SI-7329 . */
        sym.resetFlag(SPECIALIZED)
        Nil
      } else {
        // debuglog("normalizeMember: " + sym.fullNameAsName('.').decode)
        var specializingOn = specializedParams(sym)
        val unusedStvars   = specializingOn filterNot specializedTypeVars(sym.info)

        // I think the last condition should be !sym.isArtifact, but that made the
        // compiler start warning about Tuple1.scala and Tuple2.scala claiming
        // their type parameters are used in non-specializable positions.  Why is
        // unusedStvars.nonEmpty for these classes???
        if (unusedStvars.nonEmpty && currentRun.compiles(sym) && !sym.isSynthetic) {
          reporter.warning(sym.pos,
            "%s %s unused or used in non-specializable positions.".format(
              unusedStvars.mkString("", ", ", ""),
              if (unusedStvars.length == 1) "is" else "are")
          )
          unusedStvars foreach (_ removeAnnotation SpecializedClass)
          specializingOn = specializingOn filterNot (unusedStvars contains)
        }
        for (env0 <- specializations(specializingOn) if needsSpecialization(env0, sym)) yield {
          // !!! Can't this logic be structured so that the new symbol's name is
          // known when the symbol is cloned? It is much cleaner not to be mutating
          // names after the fact.  And it adds about a billion lines of
          // "Renaming value _1 in class Tuple2 to _1$mcZ$sp" to obscure the small
          // number of other (important) actual symbol renamings.
          val tps          = survivingParams(sym.info.typeParams, env0)
          val specMember   = sym.cloneSymbol(owner, (sym.flags | SPECIALIZED) & ~DEFERRED)  // <-- this needs newName = ...
          val env          = mapAnyRefsInSpecSym(env0, sym, specMember)
          val (keys, vals) = env.toList.unzip

          specMember setName specializedName(sym, env)  // <-- but the name is calculated based on the cloned symbol
          // debuglog("%s normalizes to %s%s".format(sym, specMember,
          //   if (tps.isEmpty) "" else " with params " + tps.mkString(", ")))

          typeEnv(specMember) = outerEnv ++ env
          val tps1 = produceTypeParameters(tps, specMember, env)
          tps1 foreach (_ modifyInfo (_.instantiateTypeParams(keys, vals)))

          // the cloneInfo is necessary so that method parameter symbols are cloned at the new owner
          val methodType = sym.info.resultType.instantiateTypeParams(keys ++ tps, vals ++ tps1.map(_.tpe)).cloneInfo(specMember)
          specMember setInfo GenPolyType(tps1, methodType)

          debuglog("%s expands to %s in %s".format(sym, specMember.name.decode, pp(env)))
          info(specMember) = NormalizedMember(sym)
          newOverload(sym, specMember, env)
          // if this is a class, we insert the normalized member in scope,
          // if this is a method, there's no attached scope for it (EmptyScope)
          val decls = owner.info.decls
          if (decls != EmptyScope)
            decls.enter(specMember)
          specMember
        }
      }
    )
  }

  // concise printing of type env
  private def pp(env: TypeEnv): String = {
    env.toList.sortBy(_._1.name) map {
      case (k, v) =>
        val vsym = v.typeSymbol
        if (k == vsym) "" + k.name
        else k.name + ":" + vsym.name

    } mkString ("env(", ", ", ")")
  }

  /** Specialize member `m` w.r.t. to the outer environment and the type
   *  parameters of the innermost enclosing class.
   *
   *  Turns 'private' into 'protected' for members that need specialization.
   *
   *  Return a list of symbols that are specializations of 'sym', owned by 'owner'.
   */
  private def specializeMember(owner: Symbol, sym: Symbol, outerEnv: TypeEnv, tps: List[Symbol]): List[Symbol] = {
    def specializeOn(tparams: List[Symbol]): List[Symbol] = specializations(tparams) map { spec0 =>
      val spec = mapAnyRefsInOrigCls(spec0, owner)
      if (sym.isPrivate) {
        sym.resetFlag(PRIVATE).setFlag(PROTECTED)
        debuglog("Set %s to private[%s]".format(sym, sym.enclosingPackage))
      }

      val specMember = subst(outerEnv)(specializedOverload(owner, sym, spec))
      owner.info.decls.enter(specMember)
      typeEnv(specMember) = typeEnv(sym) ++ outerEnv ++ spec
      wasSpecializedForTypeVars(specMember) ++= spec collect { case (s, tp) if s.tpe == tp => s }

      val wasSpec = wasSpecializedForTypeVars(specMember)
      if (wasSpec.nonEmpty)
        debuglog("specialized overload for %s in %s".format(specMember, pp(typeEnv(specMember))))

      newOverload(sym, specMember, spec)
      info(specMember) = SpecialOverload(sym, typeEnv(specMember))
      specMember
    }

    if (sym.isMethod) {
      if (hasUnspecializableAnnotation(sym)) {
        List()
      } else {
        val stvars = specializedTypeVars(sym)
        if (stvars.nonEmpty)
          debuglog("specialized %s on %s".format(sym.fullLocationString, stvars.map(_.name).mkString(", ")))

        val tps1 = if (sym.isConstructor) tps filter (sym.info.paramTypes contains _) else tps
        val tps2 = tps1 filter stvars
        if (!sym.isDeferred)
          addConcreteSpecMethod(sym)

        specializeOn(tps2)
      }
    }
    else Nil
  }

  /** Return the specialized overload of `m`, in the given environment. */
  private def specializedOverload(owner: Symbol, sym: Symbol, env: TypeEnv, nameSymbol: Symbol = NoSymbol): Symbol = {
    val newFlags = (sym.flags | SPECIALIZED) & ~(DEFERRED | CASEACCESSOR | LAZY)
    // this method properly duplicates the symbol's info
    val specname = specializedName(nameSymbol orElse sym, env)
    ( sym.cloneSymbol(owner, newFlags, newName = specname)
        modifyInfo (info => subst(env, info.asSeenFrom(owner.thisType, sym.owner)))
    )
  }

  /** For each method m that overrides an inherited method m', add a special
   *  overload method `om` that overrides the corresponding overload in the
   *  superclass. For the following example:
   *
   *  class IntFun extends Function1[Int, Int] {
   *    def apply(x: Int): Int = ..
   *  }
   *
   *  this method will return List('apply$mcII$sp')
   */
  private def specialOverrides(clazz: Symbol) = logResultIf[List[Symbol]]("specialized overrides in " + clazz, _.nonEmpty) {
    /* Return the overridden symbol in syms that needs a specialized overriding symbol,
     * together with its specialization environment. The overridden symbol may not be
     * the closest to 'overriding', in a given hierarchy.
     *
     * An method m needs a special override if
     *   * m overrides a method whose type contains specialized type variables
     *   * there is a valid specialization environment that maps the overridden method type to m's type.
     */
    def needsSpecialOverride(overriding: Symbol): (Symbol, TypeEnv) = {
      def checkOverriddenTParams(overridden: Symbol) {
        foreach2(overridden.info.typeParams, overriding.info.typeParams) { (baseTvar, derivedTvar) =>
          val missing = concreteTypes(baseTvar).toSet -- concreteTypes(derivedTvar).toSet
          if (missing.nonEmpty) {
            reporter.error(derivedTvar.pos,
              "Type parameter has to be specialized at least for the same types as in the overridden method. Missing "
              + "types: " + missing.mkString("", ", ", "")
            )
          }
        }
      }
      if (!overriding.isParamAccessor) {
        for (overridden <- overriding.allOverriddenSymbols) {
          val stvars = specializedTypeVars(overridden.info)
          if (stvars.nonEmpty) {
            debuglog("specialized override of %s by %s%s".format(overridden.fullLocationString, overriding.fullLocationString,
              if (stvars.isEmpty) "" else stvars.map(_.name).mkString("(", ", ", ")")))

            if (currentRun compiles overriding)
              checkOverriddenTParams(overridden)

            val env    = unify(overridden.info, overriding.info, emptyEnv, false, true)
            def atNext = exitingSpecialize(overridden.owner.info.decl(specializedName(overridden, env)))

            if (TypeEnv.restrict(env, stvars).nonEmpty && TypeEnv.isValid(env, overridden) && atNext != NoSymbol) {
              debuglog("  " + pp(env) + " found " + atNext)
              return (overridden, env)
            }
          }
        }
      }
      (NoSymbol, emptyEnv)
    }
    (clazz.info.decls flatMap { overriding =>
      needsSpecialOverride(overriding) match {
        case (NoSymbol, _)     =>
          if (overriding.isSuperAccessor) {
            val alias = overriding.alias
            debuglog("checking special overload for super accessor: %s, alias for %s".format(overriding.fullName, alias.fullName))
            needsSpecialOverride(alias) match {
              case nope @ (NoSymbol, _) => None
              case (overridden, env) =>
                val om = specializedOverload(clazz, overriding, env, overridden)
                om.setName(nme.superName(om.name))
                om.asInstanceOf[TermSymbol].setAlias(info(alias).target)
                om.owner.info.decls.enter(om)
                info(om) = SpecialSuperAccessor(om)
                om.makeNotPrivate(om.owner)
                newOverload(overriding, om, env)
                Some(om)
            }
          } else None
        case (overridden, env) =>
          val om = specializedOverload(clazz, overridden, env)
          clazz.info.decls.enter(om)
          foreachWithIndex(om.paramss) { (params, i) =>
            foreachWithIndex(params) { (param, j) =>
              param.name = overriding.paramss(i)(j).name // SI-6555 Retain the parameter names from the subclass.
            }
          }
          debuglog("specialized overload %s for %s in %s: %s".format(om, overriding.name.decode, pp(env), om.info))
          if (overriding.isAbstractOverride) om.setFlag(ABSOVERRIDE)
          typeEnv(om) = env
          addConcreteSpecMethod(overriding)
          if (overriding.isDeferred) { // abstract override
            debuglog("abstract override " + overriding.fullName + " with specialized " + om.fullName)
            info(om) = Forward(overriding)
          }
          else {
            // if the override is a normalized member, 'om' gets the
            // implementation from its original target, and adds the
            // environment of the normalized member (that is, any
            // specialized /method/ type parameter bindings)
            info get overriding match {
              case Some(NormalizedMember(target)) =>
                typeEnv(om) = env ++ typeEnv(overriding)
                info(om) = Forward(target)
              case _ =>
                info(om) = SpecialOverride(overriding)
            }
            info(overriding) = Forward(om setPos overriding.pos)
          }

          newOverload(overriding, om, env)
          ifDebug(exitingSpecialize(assert(
            overridden.owner.info.decl(om.name) != NoSymbol,
            "Could not find " + om.name + " in " + overridden.owner.info.decls))
          )
          Some(om)
      }
    }).toList
  }

  case object UnifyError extends scala.util.control.ControlThrowable
  private[this] def unifyError(tp1: Any, tp2: Any): Nothing = {
    log("unifyError" + ((tp1, tp2)))
    throw UnifyError
  }

  /** Return the most general type environment that specializes tp1 to tp2.
   *  It only allows binding of type parameters annotated with @specialized.
   *  Fails if such an environment cannot be found.
   *
   *  If `strict` is true, a UnifyError is thrown if unification is impossible.
   *
   *  If `tparams` is true, then the methods tries to unify over type params in polytypes as well.
   */
  private def unify(tp1: Type, tp2: Type, env: TypeEnv, strict: Boolean, tparams: Boolean = false): TypeEnv = (tp1, tp2) match {
    case (TypeRef(_, sym1, _), _) if sym1.isSpecialized =>
      debuglog("Unify " + tp1 + ", " + tp2)
      if (isPrimitiveValueClass(tp2.typeSymbol) || isSpecializedAnyRefSubtype(tp2, sym1))
        env + ((sym1, tp2))
      else if (isSpecializedAnyRefSubtype(tp2, sym1))
        env + ((sym1, tp2))
      else if (strict)
        unifyError(tp1, tp2)
      else
        env
    case (TypeRef(_, sym1, args1), TypeRef(_, sym2, args2)) =>
      if (args1.nonEmpty || args2.nonEmpty)
        debuglog("Unify types " + tp1 + " and " + tp2)

      if (strict && args1.length != args2.length) unifyError(tp1, tp2)
      val e = unify(args1, args2, env, strict)
      if (e.nonEmpty) debuglog("unified to: " + e)
      e
    case (TypeRef(_, sym1, _), _) if sym1.isTypeParameterOrSkolem =>
      env
    case (MethodType(params1, res1), MethodType(params2, res2)) =>
      if (strict && params1.length != params2.length) unifyError(tp1, tp2)
      debuglog("Unify methods " + tp1 + " and " + tp2)
      unify(res1 :: (params1 map (_.tpe)), res2 :: (params2 map (_.tpe)), env, strict)
    case (PolyType(tparams1, res1), PolyType(tparams2, res2)) =>
      debuglog("Unify polytypes " + tp1 + " and " + tp2)
      if (strict && tparams1.length != tparams2.length)
        unifyError(tp1, tp2)
      else if (tparams && tparams1.length == tparams2.length)
        unify(res1 :: tparams1.map(_.info), res2 :: tparams2.map(_.info), env, strict)
      else
        unify(res1, res2, env, strict)
    case (PolyType(_, res), other)                    => unify(res, other, env, strict)
    case (ThisType(_), ThisType(_))                   => env
    case (_, SingleType(_, _))                        => unify(tp1, tp2.underlying, env, strict)
    case (SingleType(_, _), _)                        => unify(tp1.underlying, tp2, env, strict)
    case (ThisType(_), _)                             => unify(tp1.widen, tp2, env, strict)
    case (_, ThisType(_))                             => unify(tp1, tp2.widen, env, strict)
    case (RefinedType(_, _), RefinedType(_, _))       => env
    case (AnnotatedType(_, tp1), tp2)                 => unify(tp2, tp1, env, strict)
    case (ExistentialType(_, res1), _)                => unify(tp2, res1, env, strict)
    case (TypeBounds(lo1, hi1), TypeBounds(lo2, hi2)) => unify(List(lo1, hi1), List(lo2, hi2), env, strict)
    case _ =>
      debuglog("don't know how to unify %s [%s] with %s [%s]".format(tp1, tp1.getClass, tp2, tp2.getClass))
      env
  }

  private def unify(tp1: List[Type], tp2: List[Type], env: TypeEnv, strict: Boolean): TypeEnv = {
    if (tp1.isEmpty || tp2.isEmpty) env
    else (tp1 zip tp2).foldLeft(env) { (env, args) =>
      if (!strict) unify(args._1, args._2, env, strict)
      else {
        val nenv = unify(args._1, args._2, emptyEnv, strict)
        if (env.keySet intersect nenv.keySet isEmpty) env ++ nenv
        else {
          debuglog("could not unify: u(" + args._1 + ", " + args._2 + ") yields " + nenv + ", env: " + env)
          unifyError(tp1, tp2)
        }
      }
    }
  }

  /** Apply the type environment 'env' to the given type. All type
   *  bindings are supposed to be to primitive types. A type variable
   *  that is annotated with 'uncheckedVariance' is mapped to the corresponding
   *  primitive type losing the annotation.
   */
  private def subst(env: TypeEnv, tpe: Type): Type = {
    class FullTypeMap(from: List[Symbol], to: List[Type]) extends SubstTypeMap(from, to) with AnnotationFilter {
      def keepAnnotation(annot: AnnotationInfo) = !(annot matches uncheckedVarianceClass)

      override def mapOver(tp: Type): Type = tp match {
        case ClassInfoType(parents, decls, clazz) =>
          val parents1  = parents mapConserve this
          val decls1    = mapOver(decls)

          if ((parents1 eq parents) && (decls1 eq decls)) tp
          else ClassInfoType(parents1, decls1, clazz)
        case _ =>
          super.mapOver(tp)
      }
    }
    val (keys, values) = env.toList.unzip
    (new FullTypeMap(keys, values))(tpe)
  }

  private def subst(env: TypeEnv)(decl: Symbol): Symbol =
    decl modifyInfo (info =>
      if (decl.isConstructor) MethodType(subst(env, info).params, decl.owner.tpe_*)
      else subst(env, info)
    )

  private def unspecializableClass(tp: Type) = (
       isRepeatedParamType(tp)  // ???
    || tp.typeSymbol.isJavaDefined
    || tp.typeSymbol.isPackageClass
  )

  /** Type transformation. It is applied to all symbols, compiled or loaded.
   *  If it is a 'no-specialization' run, it is applied only to loaded symbols.
   */
  override def transformInfo(sym: Symbol, tpe: Type): Type = {
    if (settings.nospecialization && currentRun.compiles(sym)) tpe
    else tpe.resultType match {
      case cinfo @ ClassInfoType(parents, decls, clazz) if !unspecializableClass(cinfo) =>
        val tparams  = tpe.typeParams
        if (tparams.isEmpty)
          exitingSpecialize(parents map (_.typeSymbol.info))

        val parents1 = parents mapConserve specializedType
        if (parents ne parents1) {
          debuglog("specialization transforms %s%s parents to %s".format(
            if (tparams.nonEmpty) "(poly) " else "", clazz, parents1)
          )
        }
        val newScope = newScopeWith(specializeClass(clazz, typeEnv(clazz)) ++ specialOverrides(clazz): _*)
        // If tparams.isEmpty, this is just the ClassInfoType.
        GenPolyType(tparams, ClassInfoType(parents1, newScope, clazz))
      case _ =>
        tpe
    }
  }

  /** Is any type variable in `env` conflicting with any if its type bounds, when
   *  type bindings in `env` are taken into account?
   *
   *  A conflicting type environment could still be satisfiable.
   */
  def nonConflicting(env: TypeEnv) = env forall { case (tvar, tpe) =>
    (subst(env, tvar.info.bounds.lo) <:< tpe) && (tpe <:< subst(env, tvar.info.bounds.hi))
  }

  /** The type environment is sound w.r.t. to all type bounds or only soft
   *  conflicts appear. An environment is sound if all bindings are within
   *  the bounds of the given type variable. A soft conflict is a binding
   *  that does not fall within the bounds, but whose bounds contain
   *  type variables that are @specialized, (that could become satisfiable).
   */
  def satisfiable(env: TypeEnv): Boolean = satisfiable(env, false)
  def satisfiable(env: TypeEnv, warnings: Boolean): Boolean = {
    def matches(tpe1: Type, tpe2: Type): Boolean = {
      val t1 = subst(env, tpe1)
      val t2 = subst(env, tpe2)
      ((t1 <:< t2)
        || specializedTypeVars(t1).nonEmpty
        || specializedTypeVars(t2).nonEmpty)
     }

    env forall { case (tvar, tpe) =>
      matches(tvar.info.bounds.lo, tpe) && matches(tpe, tvar.info.bounds.hi) || {
        if (warnings)
          reporter.warning(tvar.pos, "Bounds prevent specialization of " + tvar)

        debuglog("specvars: " +
          tvar.info.bounds.lo + ": " +
          specializedTypeVars(tvar.info.bounds.lo) + " " +
          subst(env, tvar.info.bounds.hi) + ": " +
          specializedTypeVars(subst(env, tvar.info.bounds.hi))
        )
        false
      }
    }
  }

  def satisfiabilityConstraints(env: TypeEnv): Option[TypeEnv] = {
    val noconstraints = Some(emptyEnv)
    def matches(tpe1: Type, tpe2: Type): Option[TypeEnv] = {
      val t1 = subst(env, tpe1)
      val t2 = subst(env, tpe2)
      // log("---------> " + tpe1 + " matches " + tpe2)
      // log(t1 + ", " + specializedTypeVars(t1))
      // log(t2 + ", " + specializedTypeVars(t2))
      // log("unify: " + unify(t1, t2, env, false, false) + " in " + env)
      if (t1 <:< t2) noconstraints
      else if (specializedTypeVars(t1).nonEmpty) Some(unify(t1, t2, env, false, false) -- env.keys)
      else if (specializedTypeVars(t2).nonEmpty) Some(unify(t2, t1, env, false, false) -- env.keys)
      else None
    }

    env.foldLeft[Option[TypeEnv]](noconstraints) {
      case (constraints, (tvar, tpe)) =>
        val loconstraints = matches(tvar.info.bounds.lo, tpe)
        val hiconstraints = matches(tpe, tvar.info.bounds.hi)
        val allconstraints = for (c <- constraints; l <- loconstraints; h <- hiconstraints) yield c ++ l ++ h
        allconstraints
    }
  }

  /** This duplicator additionally performs casts of expressions if that is allowed by the `casts` map. */
  class Duplicator(casts: Map[Symbol, Type]) extends {
    val global: SpecializeTypes.this.global.type = SpecializeTypes.this.global
  } with typechecker.Duplicators {
    private val (castfrom, castto) = casts.unzip
    private object CastMap extends SubstTypeMap(castfrom.toList, castto.toList)

    class BodyDuplicator(_context: Context) extends super.BodyDuplicator(_context) {
      override def castType(tree: Tree, pt: Type): Tree = {
        tree modifyType fixType
        // log(" tree type: " + tree.tpe)
        val ntree = if (tree.tpe != null && !(tree.tpe <:< pt)) {
          val casttpe = CastMap(tree.tpe)
          if (casttpe <:< pt) gen.mkCast(tree, casttpe)
          else if (casttpe <:< CastMap(pt)) gen.mkCast(tree, pt)
          else tree
        } else tree

        ntree.clearType()
      }
    }

    protected override def newBodyDuplicator(context: Context) = new BodyDuplicator(context)
  }

  /** Introduced to fix SI-7343: Phase ordering problem between Duplicators and Specialization.
   * brief explanation: specialization rewires class parents during info transformation, and
   * the new info then guides the tree changes. But if a symbol is created during duplication,
   * which runs after specialization, its info is not visited and thus the corresponding tree
   * is not specialized. One manifestation is the following:
   * ```
   * object Test {
   *   class Parent[@specialized(Int) T]
   *
   *   def spec_method[@specialized(Int) T](t: T, expectedXSuper: String) = {
   *     class X extends Parent[T]()
   *     // even in the specialized variant, the local X class
   *     // doesn't extend Parent$mcI$sp, since its symbol has
   *     // been created after specialization and was not seen
   *     // by specialzation's info transformer.
   *     ...
   *   }
   * }
   * ```
   * We fix this by forcing duplication to take place before specialization.
   *
   * Note: The constructors phase (which also uses duplication) comes after erasure and uses the
   * post-erasure typer => we must protect it from the beforeSpecialization phase shifting.
   */
  class SpecializationDuplicator(casts: Map[Symbol, Type]) extends Duplicator(casts) {
    override def retyped(context: Context, tree: Tree, oldThis: Symbol, newThis: Symbol, env: scala.collection.Map[Symbol, Type]): Tree =
      enteringSpecialize(super.retyped(context, tree, oldThis, newThis, env))
  }

  /** A tree symbol substituter that substitutes on type skolems.
   *  If a type parameter is a skolem, it looks for the original
   *  symbol in the 'from' and maps it to the corresponding new
   *  symbol. The new symbol should probably be a type skolem as
   *  well (not enforced).
   *
   *  All private members are made protected in order to be accessible from
   *  specialized classes.
   */
  class ImplementationAdapter(from: List[Symbol],
                              to: List[Symbol],
                              targetClass: Symbol,
                              addressFields: Boolean) extends TreeSymSubstituter(from, to) {
    override val symSubst = new SubstSymMap(from, to) {
      override def matches(sym1: Symbol, sym2: Symbol) =
        if (sym2.isTypeSkolem) sym2.deSkolemize eq sym1
        else sym1 eq sym2
    }

    private def isAccessible(sym: Symbol): Boolean =
      if (currentOwner.isAnonymousFunction) {
        if (inlineFunctionExpansion) devWarning("anonymous function made it to specialization even though inline expansion is set.")
        false
      }
      else (currentClass == sym.owner.enclClass) && (currentClass != targetClass)

    private def shouldMakePublic(sym: Symbol): Boolean =
      sym.hasFlag(PRIVATE | PROTECTED) && (addressFields || !nme.isLocalName(sym.name))

    /** All private members that are referenced are made protected,
     *  in order to be accessible from specialized subclasses.
     */
    override def transform(tree: Tree): Tree = tree match {
      case Select(qual, name) =>
        val sym = tree.symbol
        if (sym.isPrivate) debuglog(
          "seeing private member %s, currentClass: %s, owner: %s, isAccessible: %b, isLocalName: %b".format(
            sym, currentClass, sym.owner.enclClass, isAccessible(sym), nme.isLocalName(sym.name))
          )
        if (shouldMakePublic(sym) && !isAccessible(sym)) {
          debuglog("changing private flag of " + sym)
          sym.makeNotPrivate(sym.owner)
        }
        super.transform(tree)

      case _ =>
        super.transform(tree)
    }
  }

  /** Return the generic class corresponding to this specialized class. */
  def originalClass(clazz: Symbol): Symbol =
    if (clazz.isSpecialized) {
      val (originalName, _, _) = nme.splitSpecializedName(clazz.name)
      clazz.owner.info.decl(originalName).suchThat(_.isClass)
    } else NoSymbol

  def illegalSpecializedInheritance(clazz: Symbol): Boolean = (
       clazz.isSpecialized
    && originalClass(clazz).parentSymbols.exists(p => hasSpecializedParams(p) && !p.isTrait)
  )

  def specializeCalls(unit: CompilationUnit) = new TypingTransformer(unit) {
    /** Map a specializable method to it's rhs, when not deferred. */
    val body = perRunCaches.newMap[Symbol, Tree]()

    /** Map a specializable method to its value parameter symbols. */
    val parameters = perRunCaches.newMap[Symbol, List[Symbol]]()

    /** Collect method bodies that are concrete specialized methods.
     */
    class CollectMethodBodies extends Traverser {
      override def traverse(tree: Tree) = tree match {
        case DefDef(_, _, _, vparams :: Nil, _, rhs) =>
          if (concreteSpecMethods(tree.symbol) || tree.symbol.isConstructor) {
            // debuglog("!!! adding body of a defdef %s, symbol %s: %s".format(tree, tree.symbol, rhs))
            body(tree.symbol) = rhs
            //          body(tree.symbol) = tree // whole method
            parameters(tree.symbol) = vparams.map(_.symbol)
            concreteSpecMethods -= tree.symbol
          } // no need to descend further down inside method bodies

        case ValDef(mods, name, tpt, rhs) if concreteSpecMethods(tree.symbol) =>
          body(tree.symbol) = rhs
          // log("!!! adding body of a valdef " + tree.symbol + ": " + rhs)
          //super.traverse(tree)
        case _ =>
          super.traverse(tree)
      }
    }

    def doesConform(origSymbol: Symbol, treeType: Type, memberType: Type, env: TypeEnv) = {
      (treeType =:= memberType) || { // anyref specialization
        memberType match {
          case PolyType(_, resTpe) =>
            debuglog("Conformance for anyref - polytype with result type: " + resTpe + " and " + treeType + "\nOrig. sym.: " + origSymbol)
            try {
              val e = unify(origSymbol.tpe, memberType, emptyEnv, true)
              debuglog("obtained env: " + e)
              e.keySet == env.keySet
            } catch {
              case _: Throwable =>
                debuglog("Could not unify.")
                false
            }
          case _ => false
        }
      }
    }

    def reportError[T](body: =>T)(handler: TypeError => T): T =
      try body
      catch {
        case te: TypeError =>
          reporter.error(te.pos, te.msg)
          handler(te)
      }

    override def transform(tree: Tree): Tree =
      reportError { transform1(tree) } {_ => tree}

    def transform1(tree: Tree) = {
      val symbol = tree.symbol
      /* The specialized symbol of 'tree.symbol' for tree.tpe, if there is one */
      def specSym(qual: Tree): Symbol = {
        val env = unify(symbol.tpe, tree.tpe, emptyEnv, false)
        def isMatch(member: Symbol) = {
          val memberType = qual.tpe memberType member

          val residualTreeType = tree match {
            case TypeApply(fun, targs) if fun.symbol == symbol =>
              // SI-6308 Handle methods with only some type parameters specialized.
              //         drop the specialized type parameters from the PolyType, and
              //         substitute in the type environment.
              val GenPolyType(tparams, tpe) = fun.tpe
              val (from, to) = env.toList.unzip
              val residualTParams = tparams.filterNot(env.contains)
              GenPolyType(residualTParams, tpe).substituteTypes(from, to)
            case _ => tree.tpe
          }

          (
               doesConform(symbol, residualTreeType, memberType, env)
            && TypeEnv.includes(typeEnv(member), env)
          )
        }
        if (env.isEmpty) NoSymbol
        else qual.tpe member specializedName(symbol, env) suchThat isMatch
      }

      def matchingSymbolInPrefix(pre: Type, member: Symbol, env: TypeEnv): Symbol = {
        pre member specializedName(member, env) suchThat (_.tpe matches subst(env, member.tpe))
      }

      def transformSelect(sel: Select) = {
        val Select(qual, name) = sel
        debuglog(s"specializing Select(sym=${symbol.defString}, tree.tpe=${tree.tpe})")

        val qual1                     = transform(qual)
        def copySelect                = treeCopy.Select(tree, qual1, name)
        def newSelect(member: Symbol) = atPos(tree.pos)(Select(qual1, member))
        def typedOp(member: Symbol)   = localTyper typedOperator newSelect(member)
        def typedTree(member: Symbol) = localTyper typed newSelect(member)

        val ignoreEnv = specializedTypeVars(symbol.info).isEmpty || name == nme.CONSTRUCTOR
        if (ignoreEnv) overloads(symbol) find (_ matchesSym symbol) match {
          case Some(Overload(member, _)) => typedOp(member)
          case _                         => copySelect
        }
        else {
          val env = unify(symbol.tpe, tree.tpe, emptyEnv, false)
          overloads(symbol) find (_ matchesEnv env) match {
            case Some(Overload(member, _)) => typedOp(member)
            case _ =>
              matchingSymbolInPrefix(qual1.tpe, symbol, env) match {
                case NoSymbol                  => copySelect
                case member if member.isMethod => typedOp(member)
                case member                    => typedTree(member)
              }
          }
        }
      }

      /** Computes residual type parameters after rewiring, like "String" in the following example:
       *  ```
       *    def specMe[@specialized T, U](t: T, u: U) = ???
       *    specMe[Int, String](1, "2") => specMe$mIc$sp[String](1, "2")
       *  ```
       */
      def computeResidualTypeVars(baseTree: Tree, specMember: Symbol, specTree: Tree, baseTargs: List[Tree], env: TypeEnv): Tree = {
        val residualTargs = symbol.info.typeParams zip baseTargs collect {
          case (tvar, targ) if !env.contains(tvar) || !isPrimitiveValueClass(env(tvar).typeSymbol) => targ
        }
        // See SI-5583.  Don't know why it happens now if it didn't before.
        if (specMember.info.typeParams.isEmpty && residualTargs.nonEmpty) {
          devWarning("Type args to be applied, but symbol says no parameters: " + ((specMember.defString, residualTargs)))
          baseTree
        }
        else {
          ifDebug(assert(residualTargs.length == specMember.info.typeParams.length,
            "residual: %s, tparams: %s, env: %s".format(residualTargs, specMember.info.typeParams, env))
          )

          val tree1 = gen.mkTypeApply(specTree, residualTargs)
          debuglog("rewrote " + tree + " to " + tree1)
          localTyper.typedOperator(atPos(tree.pos)(tree1)) // being polymorphic, it must be a method
        }
      }

      curTree = tree
      tree match {
        case Apply(Select(New(tpt), nme.CONSTRUCTOR), args) =>
          def transformNew = {
            debuglog("Attempting to specialize new %s(%s)".format(tpt, args.mkString(", ")))
            val found = specializedType(tpt.tpe)
            if (found.typeSymbol ne tpt.tpe.typeSymbol) { // the ctor can be specialized
              val inst = New(found, transformTrees(args): _*)
              reportError(localTyper.typedPos(tree.pos)(inst))(_ => super.transform(tree))
            }
            else
              super.transform(tree)
          }
          transformNew

        case Apply(sel @ Select(sup @ Super(qual, name), name1), args) if hasNewParents(sup) =>
          def transformSuperApply = {
            val sup1  = Super(qual, name) setPos sup.pos
            val tree1 = Apply(Select(sup1, name1) setPos sel.pos, transformTrees(args))
            val res   = localTyper.typedPos(tree.pos)(tree1)
            debuglog(s"retyping call to super, from: $symbol to ${res.symbol}")
            res
          }
          transformSuperApply

        // This rewires calls to specialized methods defined in a class (which have a receiver)
        // class C {
        //   def foo[@specialized T](t: T): T = t
        //   C.this.foo(3) // TypeApply(Select(This(C), foo), List(Int)) => C.this.foo$mIc$sp(3)
        // }
        case TypeApply(sel @ Select(qual, name), targs)
                if (specializedTypeVars(symbol.info).nonEmpty && name != nme.CONSTRUCTOR) =>
          debuglog("checking typeapp for rerouting: " + tree + " with sym.tpe: " + symbol.tpe + " tree.tpe: " + tree.tpe)
          val qual1 = transform(qual)
          log(">>> TypeApply: " + tree + ", qual1: " + qual1)
          specSym(qual1) match {
            case NoSymbol =>
              // See pos/exponential-spec.scala - can't call transform on the whole tree again.
              treeCopy.TypeApply(tree, treeCopy.Select(sel, qual1, name), transformTrees(targs))
            case specMember =>
              debuglog("found " + specMember.fullName)
              ifDebug(assert(symbol.info.typeParams.length == targs.length, symbol.info.typeParams + " / " + targs))

              val env = typeEnv(specMember)
              computeResidualTypeVars(tree, specMember, gen.mkAttributedSelect(qual1, specMember), targs, env)
          }

        // This rewires calls to specialized methods defined in the local scope. For example:
        // def outerMethod = {
        //   def foo[@specialized T](t: T): T = t
        //   foo(3) // TypeApply(Ident(foo), List(Int)) => foo$mIc$sp(3)
        // }
        case TypeApply(sel @ Ident(name), targs) if name != nme.CONSTRUCTOR =>
          val env = unify(symbol.tpe, tree.tpe, emptyEnv, false)
          if (env.isEmpty) super.transform(tree)
          else {
            overloads(symbol) find (_ matchesEnv env) match {
              case Some(Overload(specMember, _)) => computeResidualTypeVars(tree, specMember, Ident(specMember), targs, env)
              case _ => super.transform(tree)
            }
          }

        case Select(Super(_, _), _) if illegalSpecializedInheritance(currentClass) =>
          val pos = tree.pos
          debuglog(pos.source.file.name+":"+pos.line+": not specializing call to super inside illegal specialized inheritance class.\n" + pos.lineContent)
          tree

        case sel @ Select(_, _) =>
          transformSelect(sel)

        case PackageDef(pid, stats) =>
          tree.symbol.info // make sure specializations have been performed
          atOwner(tree, symbol) {
            val specMembers = implSpecClasses(stats) map localTyper.typed
            treeCopy.PackageDef(tree, pid, transformStats(stats ::: specMembers, symbol.moduleClass))
          }

        case Template(parents, self, body) =>
          def transformTemplate = {
          val specMembers = makeSpecializedMembers(tree.symbol.enclClass) ::: (implSpecClasses(body) map localTyper.typed)
          if (!symbol.isPackageClass)
            (new CollectMethodBodies)(tree)
          val parents1 = map2(currentOwner.info.parents, parents)((tpe, parent) =>
            TypeTree(tpe) setPos parent.pos)

          treeCopy.Template(tree,
            parents1    /*currentOwner.info.parents.map(tpe => TypeTree(tpe) setPos parents.head.pos)*/ ,
            self,
            atOwner(currentOwner)(transformTrees(body ::: specMembers)))
          }
          transformTemplate

        case ddef @ DefDef(_, _, _, vparamss, _, _) if info.isDefinedAt(symbol) =>
        def transformDefDef = {
          if (symbol.isConstructor) {
            val t = atOwner(symbol)(forwardCtorCall(tree.pos, gen.mkSuperInitCall, vparamss, symbol.owner))
            if (symbol.isPrimaryConstructor)
              localTyper.typedPos(symbol.pos)(deriveDefDef(tree)(_ => Block(List(t), Literal(Constant(())))))
            else // duplicate the original constructor
              reportError(duplicateBody(ddef, info(symbol).target))(_ => ddef)
          }
          else info(symbol) match {
            case Implementation(target) =>
              assert(body.isDefinedAt(target), "sym: " + symbol.fullName + " target: " + target.fullName)
              // we have an rhs, specialize it
              val tree1 = reportError(duplicateBody(ddef, target))(_ => ddef)
              debuglog("implementation: " + tree1)
              deriveDefDef(tree1)(transform)

            case NormalizedMember(target) =>
              logResult("constraints")(satisfiabilityConstraints(typeEnv(symbol))) match {
                case Some(constraint) if !target.isDeferred =>
                  // we have an rhs, specialize it
                  val tree1 = reportError(duplicateBody(ddef, target, constraint))(_ => ddef)
                  debuglog("implementation: " + tree1)
                  deriveDefDef(tree1)(transform)
                case _ =>
                  deriveDefDef(tree)(_ => localTyper typed gen.mkSysErrorCall("Fatal error in code generation: this should never be called."))
              }

            case SpecialOverride(target) =>
              assert(body.isDefinedAt(target), "sym: " + symbol.fullName + " target: " + target.fullName)
              //debuglog("moving implementation, body of target " + target + ": " + body(target))
              log("%s is param accessor? %b".format(ddef.symbol, ddef.symbol.isParamAccessor))
              // we have an rhs, specialize it
              val tree1 = addBody(ddef, target)
              (new ChangeOwnerTraverser(target, tree1.symbol))(tree1.rhs)
              debuglog("changed owners, now: " + tree1)
              deriveDefDef(tree1)(transform)

            case SpecialOverload(original, env) =>
              debuglog("completing specialized " + symbol.fullName + " calling " + original)
              debuglog("special overload " + original + " -> " + env)
              val t = DefDef(symbol, { vparamss: List[List[Symbol]] =>
                val fun = Apply(Select(This(symbol.owner), original),
                                makeArguments(original, vparamss.head))

                debuglog("inside defdef: " + symbol + "; type: " + symbol.tpe + "; owner: " + symbol.owner)
                gen.maybeMkAsInstanceOf(fun,
                  symbol.owner.thisType.memberType(symbol).finalResultType,
                  symbol.owner.thisType.memberType(original).finalResultType)
              })
              debuglog("created special overload tree " + t)
              debuglog("created " + t)
              reportError {
                localTyper.typed(t)
              } {
                _ => super.transform(tree)
              }

            case fwd @ Forward(_) =>
              debuglog("forward: " + fwd + ", " + ddef)
              val rhs1 = forwardCall(tree.pos, gen.mkAttributedRef(symbol.owner.thisType, fwd.target), vparamss)
              debuglog("-->d completed forwarder to specialized overload: " + fwd.target + ": " + rhs1)
              reportError {
                localTyper.typed(deriveDefDef(tree)(_ => rhs1))
              } {
                _ => super.transform(tree)
              }

            case SpecializedAccessor(target) =>
              val rhs1 = if (symbol.isGetter)
                gen.mkAttributedRef(target)
              else
                Assign(gen.mkAttributedRef(target), Ident(vparamss.head.head.symbol))
              debuglog("specialized accessor: " + target + " -> " + rhs1)
              localTyper.typed(deriveDefDef(tree)(_ => rhs1))

            case Abstract(targ) =>
              debuglog("abstract: " + targ)
              localTyper.typed(deriveDefDef(tree)(rhs => rhs))

            case SpecialSuperAccessor(targ) =>
              debuglog("special super accessor: " + targ + " for " + tree)
              localTyper.typed(deriveDefDef(tree)(rhs => rhs))
          }
          }
          expandInnerNormalizedMembers(transformDefDef)

        case ddef @ DefDef(_, _, _, _, _, _) =>
          val tree1 = expandInnerNormalizedMembers(tree)
          super.transform(tree1)

        case ValDef(_, _, _, _) if symbol.hasFlag(SPECIALIZED) && !symbol.isParamAccessor =>
          def transformValDef = {
          assert(body.isDefinedAt(symbol.alias), body)
          val tree1 = deriveValDef(tree)(_ => body(symbol.alias).duplicate)
          debuglog("now typing: " + tree1 + " in " + tree.symbol.owner.fullName)

          val d = new SpecializationDuplicator(emptyEnv)
          val newValDef = d.retyped(
            localTyper.context1.asInstanceOf[d.Context],
            tree1,
            symbol.alias.enclClass,
            symbol.enclClass,
            typeEnv(symbol.alias) ++ typeEnv(tree.symbol)
          )
          deriveValDef(newValDef)(transform)
          }
          transformValDef
        case _ =>
          super.transform(tree)
      }
    }

    /**
     * This performs method specialization inside a scope other than a {class, trait, object}: could be another method
     * or a value. This specialization is much simpler, since there is no need to record the new members in the class
     * signature, their signatures are only visible locally. It works according to the usual logic:
     *  - we use normalizeMember to create the specialized symbols
     *  - we leave DefDef stubs in the tree that are later filled in by tree duplication and adaptation
     * @see duplicateBody
     */
    private def expandInnerNormalizedMembers(tree: Tree) = tree match {
      case ddef @ DefDef(_, _, _, vparams :: Nil, _, rhs)
           if ddef.symbol.owner.isMethod &&
           specializedTypeVars(ddef.symbol.info).nonEmpty &&
           !ddef.symbol.hasFlag(SPECIALIZED) =>

        val sym = ddef.symbol
        val owner = sym.owner
        val norm = normalizeMember(owner, sym, emptyEnv)

        if (norm.length > 1) {
          // record the body for duplication
          body(sym) = rhs
          parameters(sym) = vparams.map(_.symbol)
          // to avoid revisiting the member, we can set the SPECIALIZED
          // flag. nobody has to see this anyway :)
          sym.setFlag(SPECIALIZED)
          // create empty bodies for specializations
          localTyper.typed(Block(norm.tail.map(sym => DefDef(sym, { vparamss: List[List[Symbol]] => EmptyTree })), ddef))
        } else
          tree
      case _ =>
        tree
    }

    /** Duplicate the body of the given method `tree` to the new symbol `source`.
     *
     *  Knowing that the method can be invoked only in the `castmap` type environment,
     *  this method will insert casts for all the expressions of types mappend in the
     *  `castmap`.
     */
    private def duplicateBody(tree: DefDef, source: Symbol, castmap: TypeEnv = emptyEnv) = {
      val symbol = tree.symbol
      val meth   = addBody(tree, source)

      val d = new SpecializationDuplicator(castmap)
      debuglog("-->d DUPLICATING: " + meth)
      d.retyped(
        localTyper.context1.asInstanceOf[d.Context],
        meth,
        source.enclClass,
        symbol.enclClass,
        typeEnv(source) ++ typeEnv(symbol)
      )
    }

    /** Put the body of 'source' as the right hand side of the method 'tree'.
     *  The destination method gets fresh symbols for type and value parameters,
     *  and the body is updated to the new symbols, and owners adjusted accordingly.
     *  However, if the same source tree is used in more than one place, full re-typing
     *  is necessary. @see method duplicateBody
     */
    private def addBody(tree: DefDef, source: Symbol): DefDef = {
      val symbol = tree.symbol
      debuglog("specializing body of" + symbol.defString)
      val DefDef(_, _, tparams, vparams :: Nil, tpt, _) = tree
      val env = typeEnv(symbol)
      val boundTvars = env.keySet
      val origtparams = source.typeParams.filter(tparam => !boundTvars(tparam) || !isPrimitiveValueType(env(tparam)))
      if (origtparams.nonEmpty || symbol.typeParams.nonEmpty)
        debuglog("substituting " + origtparams + " for " + symbol.typeParams)

      // skolemize type parameters
      val oldtparams = tparams map (_.symbol)
      val newtparams = deriveFreshSkolems(oldtparams)
      map2(tparams, newtparams)(_ setSymbol _)

      // create fresh symbols for value parameters to hold the skolem types
      val newSyms = cloneSymbolsAtOwnerAndModify(vparams map (_.symbol), symbol, _.substSym(oldtparams, newtparams))

      // replace value and type parameters of the old method with the new ones
      // log("Adding body for " + tree.symbol + " - origtparams: " + origtparams + "; tparams: " + tparams)
      // log("Type vars of: " + source + ": " + source.typeParams)
      // log("Type env of: " + tree.symbol + ": " + boundTvars)
      // log("newtparams: " + newtparams)
      val symSubstituter = new ImplementationAdapter(
        parameters(source) ::: origtparams,
        newSyms ::: newtparams,
        source.enclClass,
        false) // don't make private fields public

      val newBody = symSubstituter(body(source).duplicate)
      tpt modifyType (_.substSym(oldtparams, newtparams))
      copyDefDef(tree)(vparamss = List(newSyms map ValDef.apply), rhs = newBody)
    }

    /** Create trees for specialized members of 'sClass', based on the
     *  symbols that are already there.
     */
    private def makeSpecializedMembers(sClass: Symbol): List[Tree] = {
      // add special overrides first
//      if (!specializedClass.hasFlag(SPECIALIZED))
//        for (m <- specialOverrides(specializedClass)) specializedClass.info.decls.enter(m)
      val mbrs = new mutable.ListBuffer[Tree]
      var hasSpecializedFields = false

      for (m <- sClass.info.decls
             if m.hasFlag(SPECIALIZED)
                 && (m.sourceFile ne null)
                 && satisfiable(typeEnv(m), !sClass.hasFlag(SPECIALIZED))) {
        debuglog("creating tree for " + m.fullName)
        if (m.isMethod)  {
          if (info(m).target.hasAccessorFlag) hasSpecializedFields = true
          if (m.isClassConstructor) {
            val origParams = parameters(info(m).target)
            val vparams = (
              map2(m.info.paramTypes, origParams)((tp, sym) =>
                m.newValue(specializedName(sym, typeEnv(sClass)), sym.pos, sym.flags) setInfo tp
              )
            )
            // param accessors for private members (the others are inherited from the generic class)
            if (m.isPrimaryConstructor) {
              for (param <- vparams ; if sClass.info.nonPrivateMember(param.name) == NoSymbol) {
                val acc = param.cloneSymbol(sClass, param.flags | PARAMACCESSOR | PRIVATE)
                sClass.info.decls.enter(acc)
                mbrs += ValDef(acc, EmptyTree).setType(NoType).setPos(m.pos)
              }
            }

            // ctor
            mbrs += DefDef(m, Modifiers(m.flags), mmap(List(vparams))(ValDef.apply), EmptyTree)
          } else {
            mbrs += DefDef(m, { paramss: List[List[Symbol]] => EmptyTree })
          }
        } else if (m.isValue) {
          mbrs += ValDef(m).setType(NoType)
        } else if (m.isClass) {
//           mbrs  +=
//              ClassDef(m, Template(m.info.parents map TypeTree, noSelfType, List())
//                         .setSymbol(m.newLocalDummy(m.pos)))
//            log("created synthetic class: " + m.fullName)
        }
      }
      if (hasSpecializedFields) {
        val isSpecializedInstance = sClass :: sClass.parentSymbols exists (_ hasFlag SPECIALIZED)
        val sym = sClass.newMethod(nme.SPECIALIZED_INSTANCE, sClass.pos) setInfoAndEnter MethodType(Nil, BooleanTpe)

        mbrs += DefDef(sym, Literal(Constant(isSpecializedInstance)).setType(BooleanTpe)).setType(NoType)
      }
      mbrs.toList
    }

    /** Create specialized class definitions */
    def implSpecClasses(trees: List[Tree]): List[Tree] = {
      trees flatMap {
        case tree @ ClassDef(_, _, _, impl) =>
          tree.symbol.info // force specialization
          for (((sym1, env), specCls) <- specializedClass if sym1 == tree.symbol) yield {
            debuglog("created synthetic class: " + specCls + " of " + sym1 + " in " + pp(env))
            val parents = specCls.info.parents.map(TypeTree)
            ClassDef(specCls, atPos(impl.pos)(Template(parents, noSelfType, List()))
              .setSymbol(specCls.newLocalDummy(sym1.pos))) setPos tree.pos
          }
        case _ => Nil
      } sortBy (_.name.decoded)
    }
  }

  private def forwardCall(pos: scala.reflect.internal.util.Position, receiver: Tree, paramss: List[List[ValDef]]): Tree = {
    val argss = mmap(paramss)(x => Ident(x.symbol))
    atPos(pos) { (receiver /: argss) (Apply.apply) }
  }

  /** Forward to the generic class constructor. If the current class initializes
   *  specialized fields corresponding to parameters, it passes null to the superclass
   *  constructor. This saves the boxing cost for initializing generic fields that are
   *  never used.
   *
   *  For example:
   *  {{{
   *    case class Tuple2[T, U](x: T, y: U)
   *
   *    class Tuple2$II {
   *      val _x$I: Int = ..
   *      def x = _x$I
   *      // same for y
   *      def this(x: Int, y: Int) {
   *        super.this(null.asInstanceOf[Int], null.asInstanceOf[Int])
   *      }
   *    }
   *  }}
   */
  private def forwardCtorCall(pos: scala.reflect.internal.util.Position, receiver: Tree, paramss: List[List[ValDef]], clazz: Symbol): Tree = {
    log(s"forwardCtorCall($pos, $receiver, $paramss, $clazz)")

    /* A constructor parameter `f` initializes a specialized field
     * iff:
     *   - it is specialized itself
     *   - there is a getter for the original (non-specialized) field in the same class
     *   - there is a getter for the specialized field in the same class
     */
    def initializesSpecializedField(f: Symbol) = (
         (f.name endsWith nme.SPECIALIZED_SUFFIX)
      && clazz.info.member(f.unexpandedName).isPublic
      && clazz.info.decl(f.name).suchThat(_.isGetter) != NoSymbol
    )

    val argss = mmap(paramss)(x =>
      if (initializesSpecializedField(x.symbol))
        gen.mkAsInstanceOf(Literal(Constant(null)), x.symbol.tpe)
      else
        Ident(x.symbol)
    )
    atPos(pos) { (receiver /: argss) (Apply.apply) }
  }

  /** Add method m to the set of symbols for which we need an implementation tree
   *  in the tree transformer.
   *
   *  @note This field is part of the specializeTypes subcomponent, so any symbols
   *        that here are not garbage collected at the end of a compiler run!
   */
  def addConcreteSpecMethod(m: Symbol) {
    if (currentRun.compiles(m)) concreteSpecMethods += m
  }

  private def makeArguments(fun: Symbol, vparams: List[Symbol]): List[Tree] = (
    //! TODO: make sure the param types are seen from the right prefix
    map2(fun.info.paramTypes, vparams)((tp, arg) => gen.maybeMkAsInstanceOf(Ident(arg), tp, arg.tpe))
  )

  class SpecializationTransformer(unit: CompilationUnit) extends Transformer {
    informProgress("specializing " + unit)
    override def transform(tree: Tree) = {
      val resultTree = if (settings.nospecialization) tree
      else exitingSpecialize(specializeCalls(unit).transform(tree))

      // Remove the final modifier and @inline annotation from anything in the
      // original class (since it's being overridden in at least onesubclass).
      //
      // We do this here so that the specialized subclasses will correctly copy
      // final and @inline.
      info.foreach {
        case (sym, SpecialOverload(target, _)) => {
          sym.resetFlag(FINAL)
          target.resetFlag(FINAL)
          sym.removeAnnotation(ScalaInlineClass)
          target.removeAnnotation(ScalaInlineClass)
        }
        case _ => {}
      }

      resultTree
    }  }
}

Other Scala source code examples

Here is a short list of links related to this Scala SpecializeTypes.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.