alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (RefChecks.scala)

This example Scala source code file (RefChecks.scala) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Scala tags/keywords

apply, boolean, int, list, list, nosymbol, position, string, symbol, symbol, tree, tree, type, type

The Scala RefChecks.scala source code

/* NSC -- new Scala compiler
 * Copyright 2005-2011 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package typechecker

import symtab.Flags._
import collection.{ mutable, immutable }
import transform.InfoTransform
import scala.collection.mutable.ListBuffer

/** <p>
 *    Post-attribution checking and transformation.
 *  </p>
 *  <p>
 *    This phase performs the following checks.
 *  </p>
 *  <ul>
 *    <li>All overrides conform to rules.
 *    <li>All type arguments conform to bounds.
 *    <li>All type variable uses conform to variance annotations.
 *    <li>No forward reference to a term symbol extends beyond a value definition.
 *  </ul>
 *  <p>
 *    It performs the following transformations.
 *  </p>
 *  <ul>
 *   <li>Local modules are replaced by variables and classes
 *   <li>Calls to case factory methods are replaced by new's.
 *   <li>Eliminate branches in a conditional if the condition is a constant
 *  </ul>
 *
 *  @author  Martin Odersky
 *  @version 1.0
 *
 *  @todo    Check whether we always check type parameter bounds.
 */
abstract class RefChecks extends InfoTransform {

  import global._
  import definitions._
  import typer.{typed, typedOperator, atOwner}

  /** the following two members override abstract members in Transform */
  val phaseName: String = "refchecks"
  override def phaseNewFlags: Long = lateMETHOD

  def newTransformer(unit: CompilationUnit): RefCheckTransformer =
    new RefCheckTransformer(unit)
  override def changesBaseClasses = false

  def transformInfo(sym: Symbol, tp: Type): Type =
    if (sym.isModule && !sym.isStatic) {
      sym setFlag (lateMETHOD | STABLE)
      NullaryMethodType(tp)
    } else tp

  val toJavaRepeatedParam = new TypeMap {
    def apply(tp: Type) = tp match {
      case TypeRef(pre, RepeatedParamClass, args) =>
        typeRef(pre, JavaRepeatedParamClass, args)
      case _ =>
        mapOver(tp)
    }
  }

  val toScalaRepeatedParam = new TypeMap {
    def apply(tp: Type): Type = tp match {
      case TypeRef(pre, JavaRepeatedParamClass, args) =>
        typeRef(pre, RepeatedParamClass, args)
      case _ =>
        mapOver(tp)
    }
  }
  
  def accessFlagsToString(sym: Symbol) = flagsToString(
    sym getFlag (PRIVATE | PROTECTED),
    if (sym.hasAccessBoundary) "" + sym.privateWithin.name else ""
  )

  class RefCheckTransformer(unit: CompilationUnit) extends Transformer { 

    var localTyper: analyzer.Typer = typer;
    var currentApplication: Tree = EmptyTree
    var inPattern: Boolean = false
    var checkedCombinations = Set[List[Type]]()

    // only one overloaded alternative is allowed to define default arguments
    private def checkOverloadedRestrictions(clazz: Symbol): Unit = {
      // Using the default getters (such as methodName$default$1) as a cheap way of
      // finding methods with default parameters. This way, we can limit the members to
      // those with the DEFAULTPARAM flag, and infer the methods. Looking for the methods
      // directly requires inspecting the parameter list of every one. That modification
      // shaved 95% off the time spent in this method.
      val defaultGetters     = clazz.info.findMember(nme.ANYNAME, 0L, DEFAULTPARAM, false).alternatives
      val defaultMethodNames = defaultGetters map (sym => nme.defaultGetterToMethod(sym.name))

      defaultMethodNames.distinct foreach { name =>
        val methods      = clazz.info.findMember(name, 0L, METHOD, false).alternatives
        val haveDefaults = methods filter (sym => sym.hasParamWhich(_.hasDefaultFlag) && !nme.isProtectedAccessorName(sym.name))

        if (haveDefaults.lengthCompare(1) > 0) {
          val owners = haveDefaults map (_.owner)
           // constructors of different classes are allowed to have defaults
          if (haveDefaults.exists(x => !x.isConstructor) || owners.distinct.size < haveDefaults.size) {
            unit.error(clazz.pos,
              "in "+ clazz +
              ", multiple overloaded alternatives of "+ haveDefaults.head +
              " define default arguments" + (
                if (owners.forall(_ == clazz)) "."
                else ".\nThe members with defaults are defined in "+owners.map(_.fullLocationString).mkString("", " and ", ".")
              )
            )
          }
        }
      }
      clazz.info.decls filter (x => x.isImplicit && x.typeParams.nonEmpty) foreach { sym =>
        val alts = clazz.info.decl(sym.name).alternatives
        if (alts.size > 1)
          alts foreach (x => unit.warning(x.pos, "parameterized overloaded implicit methods are not visible as view bounds"))
      }
    }

// Override checking ------------------------------------------------------------

    def hasRepeatedParam(tp: Type): Boolean = tp match {
      case MethodType(formals, restpe) => isScalaVarArgs(formals) || hasRepeatedParam(restpe)
      case PolyType(_, restpe)         => hasRepeatedParam(restpe)
      case _                           => false
    }

    /** Add bridges for vararg methods that extend Java vararg methods
     */
    def addVarargBridges(clazz: Symbol): List[Tree] = {
      val self = clazz.thisType
      val bridges = new ListBuffer[Tree]

      def varargBridge(member: Symbol, bridgetpe: Type): Tree = {
        val bridge = member.cloneSymbolImpl(clazz)
          .setPos(clazz.pos).setFlag(member.flags | VBRIDGE)
        bridge.setInfo(bridgetpe.cloneInfo(bridge))
        clazz.info.decls enter bridge
        val List(params) = bridge.paramss
        val TypeRef(_, JavaRepeatedParamClass, List(elemtp)) = params.last.tpe
        val (initargs, List(lastarg0)) = (params map Ident) splitAt (params.length - 1)
        val lastarg = gen.wildcardStar(gen.mkWrapArray(lastarg0, elemtp))
        val body = Apply(Select(This(clazz), member), initargs ::: List(lastarg))
        localTyper.typed {
          /*util.trace("generating varargs bridge")*/(DefDef(bridge, body))
        }
      }

      // For all concrete non-private members that have a (Scala) repeated parameter:
      //   compute the corresponding method type `jtpe` with a Java repeated parameter
      //   if a method with type `jtpe` exists and that method is not a varargs bridge
      //   then create a varargs bridge of type `jtpe` that forwards to the
      //   member method with the Scala vararg type.
      for (member <- clazz.info.nonPrivateMembers) {
        if (!(member hasFlag DEFERRED) && hasRepeatedParam(member.info)) {
          val jtpe = toJavaRepeatedParam(self.memberType(member))
          val inherited = clazz.info.nonPrivateMemberAdmitting(member.name, VBRIDGE) filter (
            sym => (self.memberType(sym) matches jtpe) && !(sym hasFlag VBRIDGE)
            // this is a bit tortuous: we look for non-private members or bridges
            // if we find a bridge everything is OK. If we find another member,
            // we need to create a bridge
          )
          if (inherited.exists) {
            bridges += varargBridge(member, jtpe)
          }
        }
      }

      bridges.toList
    }

    /** 1. Check all members of class `clazz' for overriding conditions.
     *  That is for overriding member M and overridden member O:
     *
     *    1.1. M must have the same or stronger access privileges as O.
     *    1.2. O must not be final.
     *    1.3. O is deferred, or M has `override' modifier.
     *    1.4. If O is stable, then so is M.
     *     // @M: LIFTED 1.5. Neither M nor O are a parameterized type alias
     *    1.6. If O is a type alias, then M is an alias of O. 
     *    1.7. If O is an abstract type then 
     *       1.7.1 either M is an abstract type, and M's bounds are sharper than O's bounds.
     *             or M is a type alias or class which conforms to O's bounds.
     *       1.7.2 higher-order type arguments must respect bounds on higher-order type parameters  -- @M
     *              (explicit bounds and those implied by variance annotations) -- @see checkKindBounds
     *    1.8. If O and M are values, then 
     *    1.8.1  M's type is a subtype of O's type, or
     *    1.8.2  M is of type []S, O is of type ()T and S <: T, or
     *    1.8.3  M is of type ()S, O is of type []T and S <: T, or
     *  2. Check that only abstract classes have deferred members
     *  3. Check that concrete classes do not have deferred definitions
     *     that are not implemented in a subclass.
     *  4. Check that every member with an `override' modifier
     *     overrides some other member.
     */
    private def checkAllOverrides(clazz: Symbol, typesOnly: Boolean = false) {

      case class MixinOverrideError(member: Symbol, msg: String)

      var mixinOverrideErrors = new ListBuffer[MixinOverrideError]()

      def printMixinOverrideErrors() {
        mixinOverrideErrors.toList match {
          case List() => 
          case List(MixinOverrideError(_, msg)) =>
            unit.error(clazz.pos, msg)
          case MixinOverrideError(member, msg) :: others =>
            val others1 = others.map(_.member.name.decode).filter(member.name.decode != _).distinct
            unit.error(
              clazz.pos, 
              msg+(if (others1.isEmpty) "" 
                   else ";\n other members with override errors are: "+(others1 mkString ", ")))
        }
      }

      val self = clazz.thisType
 
      def isAbstractTypeWithoutFBound(sym: Symbol) = // (part of DEVIRTUALIZE) 
        sym.isAbstractType && !isFBounded(sym)

      def isFBounded(tsym: Symbol) =
        tsym.info.baseTypeSeq exists (_ contains tsym)

      def infoString(sym: Symbol) = infoString0(sym, sym.owner != clazz)
      def infoStringWithLocation(sym: Symbol) = infoString0(sym, true)

      def infoString0(sym: Symbol, showLocation: Boolean) = {
        val sym1 = analyzer.underlying(sym)
        sym1.toString() + 
        (if (showLocation) 
          sym1.locationString + 
          (if (sym1.isAliasType) ", which equals "+self.memberInfo(sym1)
           else if (sym1.isAbstractType) " with bounds "+self.memberInfo(sym1)
           else if (sym1.isTerm) " of type "+self.memberInfo(sym1)
           else "")
         else "")
      }

      def overridesType(tp1: Type, tp2: Type): Boolean = (tp1.normalize, tp2.normalize) match {
        case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) => 
          rtp1 <:< rtp2
        case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) => 
          rtp1 <:< rtp2
        case (TypeRef(_, sym, _),  _) if (sym.isModuleClass) => 
          overridesType(NullaryMethodType(tp1), tp2)
        case _ => 
          tp1 <:< tp2
      }

      /** Check that all conditions for overriding `other` by `member`
       *  of class `clazz` are met.
       */
      def checkOverride(clazz: Symbol, member: Symbol, other: Symbol) {
        def noErrorType = other.tpe != ErrorType && member.tpe != ErrorType
        def isRootOrNone(sym: Symbol) = sym == RootClass || sym == NoSymbol

        def overrideError(msg: String) {
          if (noErrorType) {
            val fullmsg = 
              "overriding "+infoStringWithLocation(other)+";\n "+
              infoString(member)+" "+msg+
              (if ((other.owner isSubClass member.owner) && other.isDeferred && !member.isDeferred) 
                ";\n (Note that "+infoStringWithLocation(other)+" is abstract,"+
               "\n  and is therefore overridden by concrete "+infoStringWithLocation(member)+")"
               else "")
            if (member.owner == clazz) unit.error(member.pos, fullmsg)
            else mixinOverrideErrors += new MixinOverrideError(member, fullmsg)
          }
        }

        def overrideTypeError() {
          if (noErrorType) {
            overrideError("has incompatible type")
          }
        }

        def overrideAccessError() {
          val otherAccess = accessFlagsToString(other)
          overrideError("has weaker access privileges; it should be "+ (if (otherAccess == "") "public" else "at least "+otherAccess))
        }

        //Console.println(infoString(member) + " overrides " + infoString(other) + " in " + clazz);//DEBUG

        // return if we already checked this combination elsewhere
        if (member.owner != clazz) {
          if ((member.owner isSubClass other.owner) && (member.isDeferred || !other.isDeferred)) {
            //Console.println(infoString(member) + " shadows1 " + infoString(other) " in " + clazz);//DEBUG
            return; 
          }
          if (clazz.info.parents exists (parent =>
            (parent.typeSymbol isSubClass other.owner) && (parent.typeSymbol isSubClass member.owner) &&
            (member.isDeferred || !other.isDeferred))) {
              //Console.println(infoString(member) + " shadows2 " + infoString(other) + " in " + clazz);//DEBUG
                return; 
            }
          if (clazz.info.parents forall (parent =>
            (parent.typeSymbol isSubClass other.owner) == (parent.typeSymbol isSubClass member.owner))) {
              //Console.println(infoString(member) + " shadows " + infoString(other) + " in " + clazz);//DEBUG
              return;
            }
        }

        /** Is the intersection between given two lists of overridden symbols empty?
         */
        def intersectionIsEmpty(syms1: List[Symbol], syms2: List[Symbol]) =
          !(syms1 exists (syms2 contains))

        if (typesOnly) checkOverrideTypes()
        else {
          // o: public | protected        | package-protected  (aka java's default access)
          // ^-may be overridden by member with access privileges-v
          // m: public | public/protected | public/protected/package-protected-in-same-package-as-o

          if (member.isPrivate) // (1.1)
            overrideError("has weaker access privileges; it should not be private")
          
          // todo: align accessibility implication checking with isAccessible in Contexts
          val ob = other.accessBoundary(member.owner)
          val mb = member.accessBoundary(member.owner)          
          def isOverrideAccessOK = member.isPublic || {      // member is public, definitely same or relaxed access
            (!other.isProtected || member.isProtected) &&    // if o is protected, so is m
            ((!isRootOrNone(ob) && ob.hasTransOwner(mb)) ||  // m relaxes o's access boundary
              other.isJavaDefined)                           // overriding a protected java member, see #3946
          }
          if (!isOverrideAccessOK) {
            overrideAccessError()
          } else if (other.isClass || other.isModule) {
            overrideError("cannot be used here - classes and objects cannot be overridden");
          } else if (!other.isDeferred && (member.isClass || member.isModule)) {
            overrideError("cannot be used here - classes and objects can only override abstract types");
          } else if (other hasFlag FINAL) { // (1.2)
            overrideError("cannot override final member");
          } else if (!other.isDeferred && !(member hasFlag (OVERRIDE | ABSOVERRIDE | SYNTHETIC))) { // (1.3), SYNTHETIC because of DEVIRTUALIZE
            overrideError("needs `override' modifier");
          } else if ((other hasFlag ABSOVERRIDE) && other.isIncompleteIn(clazz) && !(member hasFlag ABSOVERRIDE)) {
            overrideError("needs `abstract override' modifiers")
          } else if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) && 
                     (other hasFlag ACCESSOR) && other.accessed.isVariable && !other.accessed.isLazy) {
            overrideError("cannot override a mutable variable")
          } else if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) && 
                     !(member.owner.thisType.baseClasses exists (_ isSubClass other.owner)) && 
                     !member.isDeferred && !other.isDeferred && 
                     intersectionIsEmpty(member.extendedOverriddenSymbols, other.extendedOverriddenSymbols)) {
            overrideError("cannot override a concrete member without a third member that's overridden by both "+
                          "(this rule is designed to prevent ``accidental overrides'')")
          } else if (other.isStable && !member.isStable) { // (1.4)
            overrideError("needs to be a stable, immutable value")
          } else if (member.isValue && (member hasFlag LAZY) &&
                     other.isValue && !other.isSourceMethod && !other.isDeferred && !(other hasFlag LAZY)) {
            overrideError("cannot override a concrete non-lazy value")
          } else if (other.isValue && (other hasFlag LAZY) && !other.isSourceMethod && !other.isDeferred &&
                     member.isValue && !(member hasFlag LAZY)) {
            overrideError("must be declared lazy to override a concrete lazy value")
          } else {
            checkOverrideTypes()
            if (settings.warnNullaryOverride.value) {
              if (other.paramss.isEmpty && !member.paramss.isEmpty) {
                unit.warning(member.pos, "non-nullary method overrides nullary method")
              }
            }
          }
        }

        def checkOverrideTypes() {
          if (other.isAliasType) {  
            //if (!member.typeParams.isEmpty) (1.5)  @MAT
            //  overrideError("may not be parameterized");
            //if (!other.typeParams.isEmpty)  (1.5)   @MAT
            //  overrideError("may not override parameterized type");
            // @M: substSym

            if( !(sameLength(member.typeParams, other.typeParams) && (self.memberType(member).substSym(member.typeParams, other.typeParams) =:= self.memberType(other))) ) // (1.6)
              overrideTypeError();
          } else if (other.isAbstractType) {
            //if (!member.typeParams.isEmpty) // (1.7)  @MAT
            //  overrideError("may not be parameterized");

            val memberTp = self.memberType(member)
            val otherTp = self.memberInfo(other)
            if (!(otherTp.bounds containsType memberTp)) { // (1.7.1)
              overrideTypeError(); // todo: do an explaintypes with bounds here
              explainTypes(_.bounds containsType _, otherTp, memberTp)
            }
            
            // check overriding (abstract type --> abstract type or abstract type --> concrete type member (a type alias))
            // making an abstract type member concrete is like passing a type argument
            val kindErrors = typer.infer.checkKindBounds(List(other), List(memberTp), self, member.owner) // (1.7.2)
           
            if(!kindErrors.isEmpty)
              unit.error(member.pos, 
                "The kind of "+member.keyString+" "+member.varianceString + member.nameString+
                " does not conform to the expected kind of " + other.defString + other.locationString + "." +
                kindErrors.toList.mkString("\n", ", ", "")) 
            
            // check a type alias's RHS corresponds to its declaration
            // this overlaps somewhat with validateVariance
            if(member.isAliasType) {
              val kindErrors = typer.infer.checkKindBounds(List(member), List(memberTp.normalize), self, member.owner)

              if(!kindErrors.isEmpty)
                unit.error(member.pos, 
                  "The kind of the right-hand side "+memberTp.normalize+" of "+member.keyString+" "+
                  member.varianceString + member.nameString+ " does not conform to its expected kind."+
                  kindErrors.toList.mkString("\n", ", ", "")) 
            } else if (member.isAbstractType) {
              if (memberTp.isVolatile && !otherTp.bounds.hi.isVolatile)
                overrideError("is a volatile type; cannot override a type with non-volatile upper bound")
            }
          } else if (other.isTerm) {
            other.cookJavaRawInfo() // #2454
            val memberTp = self.memberType(member)
            val otherTp = self.memberType(other)
            if (!overridesType(memberTp, otherTp)) { // 8
              overrideTypeError()
              explainTypes(memberTp, otherTp)
            }

            if (member.isStable && !otherTp.isVolatile) {
	          if (memberTp.isVolatile)
                overrideError("has a volatile type; cannot override a member with non-volatile type")
              else memberTp.normalize.resultType match {
                case rt: RefinedType if !(rt =:= otherTp) && !(checkedCombinations contains rt.parents) => 
                  // might mask some inconsistencies -- check overrides 
                  checkedCombinations += rt.parents
                  val tsym = rt.typeSymbol;
                  if (tsym.pos == NoPosition) tsym setPos member.pos
                  checkAllOverrides(tsym, typesOnly = true)
                case _ =>
              }
            }
          }
        }
      }
      
      val opc = new overridingPairs.Cursor(clazz)
      while (opc.hasNext) {
        //Console.println(opc.overriding/* + ":" + opc.overriding.tpe*/ + " in "+opc.overriding.fullName + " overrides " + opc.overridden/* + ":" + opc.overridden.tpe*/ + " in "+opc.overridden.fullName + "/"+ opc.overridden.hasFlag(DEFERRED));//debug
        if (!opc.overridden.isClass) checkOverride(clazz, opc.overriding, opc.overridden);
        
        opc.next
      }
      printMixinOverrideErrors() 

      // Verifying a concrete class has nothing unimplemented.
      if (clazz.isClass && !clazz.isTrait && !(clazz hasFlag ABSTRACT) && !typesOnly) {
        val abstractErrors = new ListBuffer[String]
        def abstractErrorMessage =
          // a little formatting polish
          if (abstractErrors.size <= 2) abstractErrors mkString " "
          else abstractErrors.tail.mkString(abstractErrors.head + ":\n", "\n", "")
         
        def abstractClassError(mustBeMixin: Boolean, msg: String) {
          def prelude = (
            if (clazz.isAnonymousClass || clazz.isModuleClass) "object creation impossible"
            else if (mustBeMixin) clazz + " needs to be a mixin"
            else clazz + " needs to be abstract"
          ) + ", since"
          
          if (abstractErrors.isEmpty) abstractErrors ++= List(prelude, msg)
          else abstractErrors += msg
        }

        def javaErasedOverridingSym(sym: Symbol): Symbol = 
          clazz.tpe.nonPrivateMemberAdmitting(sym.name, BRIDGE).filter(other =>
            !other.isDeferred && other.isJavaDefined && {
              def uncurryAndErase(tp: Type) = erasure.erasure(uncurry.transformInfo(sym, tp)) // #3622: erasure operates on uncurried types -- note on passing sym in both cases: only sym.isType is relevant for uncurry.transformInfo
              val tp1 = uncurryAndErase(clazz.thisType.memberType(sym))
              val tp2 = uncurryAndErase(clazz.thisType.memberType(other))
              atPhase(currentRun.erasurePhase.next)(tp1 matches tp2)
            })

        def ignoreDeferred(member: Symbol) =
          isAbstractTypeWithoutFBound(member) ||
          (member.isJavaDefined && 
           (currentRun.erasurePhase == NoPhase || // the test requires atPhase(erasurePhase.next) so shouldn't be done if the compiler has no erasure phase available
            javaErasedOverridingSym(member) != NoSymbol))

        // 2. Check that only abstract classes have deferred members
        def checkNoAbstractMembers() = {
          // Avoid spurious duplicates: first gather any missing members.
          def memberList = clazz.tpe.nonPrivateMembersAdmitting(VBRIDGE)
          val (missing, rest) = memberList partition (m => m.isDeferred && !ignoreDeferred(m))
          // Group missing members by the underlying symbol.
          val grouped = missing groupBy (analyzer underlying _ name)

          for (member <- missing) {
            def undefined(msg: String) = abstractClassError(false, infoString(member) + " is not defined" + msg)
            val underlying = analyzer.underlying(member)

            // Give a specific error message for abstract vars based on why it fails:
            // It could be unimplemented, have only one accessor, or be uninitialized.
            if (underlying.isVariable) {
              // If both getter and setter are missing, squelch the setter error.
              val isMultiple = grouped(underlying.name).size > 1
              // TODO: messages shouldn't be spread over two files, and varNotice is not a clear name
              if (member.isSetter && isMultiple) ()
              else undefined(
                if (member.isSetter) "\n(Note that an abstract var requires a setter in addition to the getter)"
                else if (member.isGetter && !isMultiple) "\n(Note that an abstract var requires a getter in addition to the setter)"
                else analyzer.varNotice(member)
              )
            }
            else if (underlying.isMethod) {

              // If there is a concrete method whose name matches the unimplemented
              // abstract method, and a cursory examination of the difference reveals
              // something obvious to us, let's make it more obvious to them.
              val abstractParams   = underlying.tpe.paramTypes
              val matchingName     = clazz.tpe.nonPrivateMembersAdmitting(VBRIDGE)
              val matchingArity    = matchingName filter { m =>
                !m.isDeferred && 
                (m.name == underlying.name) &&
                (m.tpe.paramTypes.size == underlying.tpe.paramTypes.size) &&
                (m.tpe.typeParams.size == underlying.tpe.typeParams.size)
              }
              
              matchingArity match {
                // So far so good: only one candidate method
                case concrete :: Nil   =>
                  val mismatches  = abstractParams zip concrete.tpe.paramTypes filterNot { case (x, y) => x =:= y }
                  mismatches match {
                    // Only one mismatched parameter: say something useful.
                    case (pa, pc) :: Nil  =>
                      val addendum =
                        if (pa.typeSymbol == pc.typeSymbol) {
                          // TODO: what is the optimal way to test for a raw type at this point?
                          // Compilation has already failed so we shouldn't have to worry overmuch
                          // about forcing types.
                          if (underlying.isJavaDefined && pa.typeArgs.isEmpty && pa.typeSymbol.typeParams.nonEmpty)
                            ". To implement a raw type, use %s[_]".format(pa)
                          else if (pa.prefix =:= pc.prefix)
                            ": their type parameters differ"
                          else
                            ": their prefixes (i.e. enclosing instances) differ"
                        }
                        else ""

                      undefined("\n(Note that %s does not match %s%s)".format(pa, pc, addendum))
                    case xs =>
                      undefined("")
                  }
                case _ =>
                  undefined("")
              }
            }
            else undefined("")
          }
        
          // Check the remainder for invalid absoverride.
          for (member <- rest ; if ((member hasFlag ABSOVERRIDE) && member.isIncompleteIn(clazz))) {
            val other = member.superSymbol(clazz)
            val explanation =
              if (other != NoSymbol) " and overrides incomplete superclass member " + infoString(other)
              else ", but no concrete implementation could be found in a base class"
          
            abstractClassError(true, infoString(member) + " is marked `abstract' and `override'" + explanation)
          }
        }

        // 3. Check that concrete classes do not have deferred definitions
        // that are not implemented in a subclass.
        // Note that this is not the same as (2); In a situation like
        //
        // class C { def m: Int = 0}
        // class D extends C { def m: Int }
        // 
        // (3) is violated but not (2).
        def checkNoAbstractDecls(bc: Symbol) {
          for (decl <- bc.info.decls.iterator) {
            if (decl.isDeferred && !ignoreDeferred(decl)) { 
              val impl = decl.matchingSymbol(clazz.thisType, admit = VBRIDGE)
              if (impl == NoSymbol || (decl.owner isSubClass impl.owner)) {
                abstractClassError(false, "there is a deferred declaration of "+infoString(decl)+
                                   " which is not implemented in a subclass"+analyzer.varNotice(decl))
              }
            }
          }
          val parents = bc.info.parents
          if (!parents.isEmpty && parents.head.typeSymbol.hasFlag(ABSTRACT)) 
            checkNoAbstractDecls(parents.head.typeSymbol)
        }
        
        checkNoAbstractMembers()
        if (abstractErrors.isEmpty)
          checkNoAbstractDecls(clazz)

        if (abstractErrors.nonEmpty)
          unit.error(clazz.pos, abstractErrorMessage)
      } else if (clazz.isTrait) {
        // prevent abstract methods in interfaces that override final members in Object; see #4431
        for (decl <- clazz.info.decls.iterator) {
          val overridden = decl.overriddenSymbol(ObjectClass)
          if (overridden.isFinal)
            unit.error(decl.pos, "trait cannot redefine final method from class AnyRef")
        }
      }

      /** Returns whether there is a symbol declared in class `inclazz`
       *  (which must be different from `clazz`) whose name and type
       *  seen as a member of `class.thisType` matches `member`'s.
       */
      def hasMatchingSym(inclazz: Symbol, member: Symbol): Boolean = {
        val isVarargs = hasRepeatedParam(member.tpe)
        lazy val varargsType = toJavaRepeatedParam(member.tpe)
        
        def isSignatureMatch(sym: Symbol) = !sym.isTerm || {
          val symtpe            = clazz.thisType memberType sym
          def matches(tp: Type) = tp matches symtpe
          
          matches(member.tpe) || (isVarargs && matches(varargsType))
        }
        /** The rules for accessing members which have an access boundary are more
         *  restrictive in java than scala.  Since java has no concept of package nesting,
         *  a member with "default" (package-level) access can only be accessed by members
         *  in the exact same package.  Example:
         *
         *    package a.b;
         *    public class JavaClass { void foo() { } }
         *
         *  The member foo() can be accessed only from members of package a.b, and not
         *  nested packages like a.b.c.  In the analogous scala class:
         *
         *    package a.b
         *    class ScalaClass { private[b] def foo() = () }
         *
         *  The member IS accessible to classes in package a.b.c.  The javaAccessCheck logic
         *  is restricting the set of matching signatures according to the above semantics.
         */
        def javaAccessCheck(sym: Symbol) = (
             !inclazz.isJavaDefined                             // not a java defined member
          || !sym.hasAccessBoundary                             // no access boundary
          || sym.isProtected                                    // marked protected in java, thus accessible to subclasses
          || sym.privateWithin == member.enclosingPackageClass  // exact package match
        )        
        def classDecls   = inclazz.info.nonPrivateDecl(member.name)
        def matchingSyms = classDecls filter (sym => isSignatureMatch(sym) && javaAccessCheck(sym))
        
        (inclazz != clazz) && (matchingSyms != NoSymbol)
      }

      // 4. Check that every defined member with an `override' modifier overrides some other member.
      for (member <- clazz.info.decls.toList)
        if ((member hasFlag (OVERRIDE | ABSOVERRIDE)) &&
            !(clazz.thisType.baseClasses exists (hasMatchingSym(_, member)))) {
          // for (bc <- clazz.info.baseClasses.tail) Console.println("" + bc + " has " + bc.info.decl(member.name) + ":" + bc.info.decl(member.name).tpe);//DEBUG
          unit.error(member.pos, member.toString() + " overrides nothing");
          member resetFlag OVERRIDE
        }
    }

  // Basetype Checking --------------------------------------------------------

    /** <ol>
     *    <li> 
     *      Check that later type instances in the base-type sequence
     *      are subtypes of earlier type instances of the same mixin.
     *    </li>
     *  </ol>
     */
    private def validateBaseTypes(clazz: Symbol) {
      val seenParents = mutable.HashSet[Type]()
      val seenTypes = new Array[List[Type]](clazz.info.baseTypeSeq.length)
      for (i <- 0 until seenTypes.length)
        seenTypes(i) = Nil

      /** validate all base types of a class in reverse linear order. */
      def register(tp: Type): Unit = {
//        if (clazz.fullName.endsWith("Collection.Projection"))
//            println("validate base type "+tp)
        val baseClass = tp.typeSymbol
        if (baseClass.isClass) {
          val index = clazz.info.baseTypeIndex(baseClass)
          if (index >= 0) {
            if (seenTypes(index) forall (tp1 => !(tp1 <:< tp)))
              seenTypes(index) = 
                tp :: (seenTypes(index) filter (tp1 => !(tp <:< tp1)))
          }
        }
        val remaining = tp.parents filterNot seenParents
        seenParents ++= remaining
        remaining foreach register
      }
      register(clazz.tpe)
      for (i <- 0 until seenTypes.length) {
        val baseClass = clazz.info.baseTypeSeq(i).typeSymbol
        seenTypes(i) match {
          case List() =>
            println("??? base "+baseClass+" not found in basetypes of "+clazz)
          case List(_) =>
            ;// OK
          case tp1 :: tp2 :: _ =>
            unit.error(clazz.pos, "illegal inheritance;\n " + clazz + 
                       " inherits different type instances of " + baseClass + 
                       ":\n" + tp1 + " and " + tp2);
            explainTypes(tp1, tp2)
            explainTypes(tp2, tp1)
        }
      }
    }

  // Variance Checking --------------------------------------------------------

    private val ContraVariance = -1
    private val NoVariance = 0
    private val CoVariance = 1
    private val AnyVariance = 2

    private val escapedPrivateLocals = new mutable.HashSet[Symbol]

    val varianceValidator = new Traverser {

      /** Validate variance of info of symbol `base` */
      private def validateVariance(base: Symbol) {

        def varianceString(variance: Int): String =
          if (variance == 1) "covariant"
          else if (variance == -1) "contravariant"
          else "invariant";

        /** The variance of a symbol occurrence of `tvar`
         *  seen at the level of the definition of `base`.
         *  The search proceeds from `base` to the owner of `tvar`.
         *  Initially the state is covariant, but it might change along the search.
         */
        def relativeVariance(tvar: Symbol): Int = {
          val clazz = tvar.owner
          var sym = base
          var state = CoVariance
          while (sym != clazz && state != AnyVariance) {
            //Console.println("flip: " + sym + " " + sym.isParameter());//DEBUG
            // Flip occurrences of type parameters and parameters, unless
            //  - it's a constructor, or case class factory or extractor
            //  - it's a type parameter of tvar's owner.
            if (sym.isParameter && !sym.owner.isConstructor && !sym.owner.isCaseApplyOrUnapply &&
                !(tvar.isTypeParameterOrSkolem && sym.isTypeParameterOrSkolem &&
                  tvar.owner == sym.owner)) state = -state;
            else if (!sym.owner.isClass || 
                     sym.isTerm && ((sym.isPrivateLocal || sym.isProtectedLocal || sym.isSuperAccessor /* super accessors are implicitly local #4345*/) && !(escapedPrivateLocals contains sym))) {
              // return AnyVariance if `sym` is local to a term
              // or is private[this] or protected[this]
              state = AnyVariance
            } else if (sym.isAliasType) {
              // return AnyVariance if `sym` is an alias type
              // that does not override anything. This is OK, because we always
              // expand aliases for variance checking.
              // However, if `sym` does override a type in a base class
              // we have to assume NoVariance, as there might then be
              // references to the type parameter that are not variance checked.
              state = if (sym.allOverriddenSymbols.isEmpty) AnyVariance
                      else NoVariance
            }
            sym = sym.owner
          }
          state
        }

        /** Validate that the type `tp` is variance-correct, assuming
         *  the type occurs itself at variance position given by `variance`
         */
        def validateVariance(tp: Type, variance: Int): Unit = tp match {
          case ErrorType => ;
          case WildcardType => ;
          case NoType => ;
          case NoPrefix => ;
          case ThisType(_) => ;
          case ConstantType(_) => ;
          // case DeBruijnIndex(_, _) => ;
          case SingleType(pre, sym) =>
            validateVariance(pre, variance)
          case TypeRef(pre, sym, args) =>
//            println("validate "+sym+" at "+relativeVariance(sym))
            if (sym.isAliasType/* && relativeVariance(sym) == AnyVariance*/)
              validateVariance(tp.normalize, variance)
            else if (sym.variance != NoVariance) {
              val v = relativeVariance(sym)
              if (v != AnyVariance && sym.variance != v * variance) {
                //Console.println("relativeVariance(" + base + "," + sym + ") = " + v);//DEBUG
                def tpString(tp: Type) = tp match {
                  case ClassInfoType(parents, _, clazz) => "supertype "+intersectionType(parents, clazz.owner)
                  case _ => "type "+tp
                }
                unit.error(base.pos,
                           varianceString(sym.variance) + " " + sym + 
                           " occurs in " + varianceString(v * variance) + 
                           " position in " + tpString(base.info) + " of " + base);
              }
            }
            validateVariance(pre, variance)
            validateVarianceArgs(args, variance, sym.typeParams) //@M for higher-kinded typeref, args.isEmpty
            // However, these args respect variances by construction anyway 
            // -- the interesting case is in type application, see checkKindBounds in Infer
          case ClassInfoType(parents, decls, symbol) =>
            validateVariances(parents, variance)
          case RefinedType(parents, decls) =>
            validateVariances(parents, variance)
            for (sym <- decls.toList)
              validateVariance(sym.info, if (sym.isAliasType) NoVariance else variance)
          case TypeBounds(lo, hi) =>
            validateVariance(lo, -variance)
            validateVariance(hi, variance)
          case MethodType(formals, result) =>
            validateVariance(result, variance)
          case NullaryMethodType(result) =>
            validateVariance(result, variance)
          case PolyType(tparams, result) =>
            // type parameters will be validated separately, because they are defined explicitly.
            validateVariance(result, variance)
          case ExistentialType(tparams, result) =>
            validateVariances(tparams map (_.info), variance)
            validateVariance(result, variance)
          case AnnotatedType(annots, tp, selfsym) =>
            if (!(annots exists (_.atp.typeSymbol.isNonBottomSubClass(uncheckedVarianceClass))))
              validateVariance(tp, variance)
        }

        def validateVariances(tps: List[Type], variance: Int) {
          tps foreach (tp => validateVariance(tp, variance))
        }

        def validateVarianceArgs(tps: List[Type], variance: Int, tparams: List[Symbol]) {
          (tps zip tparams) foreach {
            case (tp, tparam) => validateVariance(tp, variance * tparam.variance)
          }
        }

        validateVariance(base.info, CoVariance)
      }

      override def traverse(tree: Tree) {
        tree match {
          case ClassDef(_, _, _, _) | 
               TypeDef(_, _, _, _) =>
            validateVariance(tree.symbol)
            super.traverse(tree)
          // ModuleDefs need not be considered because they have been eliminated already
          case ValDef(_, _, _, _) =>
            validateVariance(tree.symbol)
          case DefDef(_, _, tparams, vparamss, tpt, rhs) =>
            validateVariance(tree.symbol)
            traverseTrees(tparams); traverseTreess(vparamss)
          case Template(_, _, _) =>
            super.traverse(tree)
          case _ =>
        }
      }
    }

// Forward reference checking ---------------------------------------------------

    class LevelInfo(val outer: LevelInfo) {
      val scope: Scope = if (outer eq null) new Scope else new Scope(outer.scope)
      var maxindex: Int = Int.MinValue
      var refpos: Position = _
      var refsym: Symbol = _
    }

    private var currentLevel: LevelInfo = null
    private val symIndex = new mutable.HashMap[Symbol, Int]

    private def pushLevel() {
      currentLevel = new LevelInfo(currentLevel)
    }

    private def popLevel() {
      currentLevel = currentLevel.outer
    }

    private def enterSyms(stats: List[Tree]) {
      var index = -1
      for (stat <- stats) { 
        index = index + 1; 
        stat match {
          case ClassDef(_, _, _, _) | DefDef(_, _, _, _, _, _) | ModuleDef(_, _, _) | ValDef(_, _, _, _) =>
            //assert(stat.symbol != NoSymbol, stat);//debug
            val sym = stat.symbol.lazyAccessorOrSelf
            if (sym.isLocal) {
              currentLevel.scope.enter(sym)
              symIndex(sym) = index;
            }
          case _ =>
        }
      }
    }

    private def enterReference(pos: Position, sym: Symbol) {
      if (sym.isLocal) {
        val e = currentLevel.scope.lookupEntry(sym.name)
        if ((e ne null) && sym == e.sym) {
          var l = currentLevel
          while (l.scope != e.owner) l = l.outer;
          val symindex = symIndex(sym)
          if (l.maxindex < symindex) {
            l.refpos = pos
            l.refsym = sym
            l.maxindex = symindex
          }
        }
      }
    }

// Comparison checking -------------------------------------------------------
    object normalizeAll extends TypeMap {
      def apply(tp: Type) = mapOver(tp).normalize
    }
    
    def checkSensible(pos: Position, fn: Tree, args: List[Tree]) = fn match {
      case Select(qual, name @ (nme.EQ | nme.NE | nme.eq | nme.ne)) if args.length == 1 =>
        def isReferenceOp = name == nme.eq || name == nme.ne
        def isNew(tree: Tree) = tree match {
          case Function(_, _) 
             | Apply(Select(New(_), nme.CONSTRUCTOR), _) => true
          case _ => false
        }
        def underlyingClass(tp: Type): Symbol = {
          var sym = tp.widen.typeSymbol
          while (sym.isAbstractType)
            sym = sym.info.bounds.hi.widen.typeSymbol
          sym
        }
        val actual   = underlyingClass(args.head.tpe)
        val receiver = underlyingClass(qual.tpe)
        def onTrees[T](f: List[Tree] => T) = f(List(qual, args.head))
        def onSyms[T](f: List[Symbol] => T) = f(List(receiver, actual))

        // @MAT normalize for consistency in error message, otherwise only part is normalized due to use of `typeSymbol'
        def typesString = normalizeAll(qual.tpe.widen)+" and "+normalizeAll(args.head.tpe.widen)
        
        /** Symbols which limit the warnings we can issue since they may be value types */
        val isMaybeValue = Set(AnyClass, AnyRefClass, AnyValClass, ObjectClass, ComparableClass, SerializableClass)

        // Whether def equals(other: Any) is overridden
        def isUsingDefaultEquals      = {
          val m = receiver.info.member(nme.equals_) 
          (m == Object_equals) || (m == Any_equals)
        }
        // Whether this == or != is one of those defined in Any/AnyRef or an overload from elsewhere.
        def isUsingDefaultScalaOp = {
          val s = fn.symbol
          (s == Object_==) || (s == Object_!=) || (s == Any_==) || (s == Any_!=)
        }
        // Whether the operands+operator represent a warnable combo (assuming anyrefs)
        def isWarnable           = isReferenceOp || (isUsingDefaultEquals && isUsingDefaultScalaOp)
        def isEitherNullable     = (NullClass.tpe <:< receiver.info) || (NullClass.tpe <:< actual.info)
        def isBoolean(s: Symbol) = unboxedValueClass(s) == BooleanClass
        def isUnit(s: Symbol)    = unboxedValueClass(s) == UnitClass
        def isNumeric(s: Symbol) = isNumericValueClass(unboxedValueClass(s)) || (s isSubClass ScalaNumberClass)
        def possibleNumericCount = onSyms(_ filter (x => isNumeric(x) || isMaybeValue(x)) size)
        val nullCount            = onSyms(_ filter (_ == NullClass) size)
        
        def nonSensibleWarning(what: String, alwaysEqual: Boolean) = {
          val msg = alwaysEqual == (name == nme.EQ || name == nme.eq)
          unit.warning(pos, "comparing "+what+" using `"+name.decode+"' will always yield " + msg)
        }
          
        def nonSensible(pre: String, alwaysEqual: Boolean) = 
          nonSensibleWarning(pre+"values of types "+typesString, alwaysEqual)
         
        def unrelatedTypes() = 
          unit.warning(pos, typesString + " are unrelated: should not compare equal")
        
        if (nullCount == 2)
          nonSensible("", true)  // null == null
        else if (nullCount == 1) {
          if (onSyms(_ exists isValueClass)) // null == 5
            nonSensible("", false)
          else if (onTrees( _ exists isNew)) // null == new AnyRef
            nonSensibleWarning("a fresh object", false)
        }
        else if (isBoolean(receiver)) {
          if (!isBoolean(actual) && !isMaybeValue(actual))    // true == 5
            nonSensible("", false)
        }
        else if (isUnit(receiver)) {
          if (isUnit(actual)) // () == ()
            nonSensible("", true)
          else if (!isUnit(actual) && !isMaybeValue(actual))  // () == "abc"
            nonSensible("", false)
        }
        else if (isNumeric(receiver)) {
          if (!isNumeric(actual) && !forMSIL)
            if (isUnit(actual) || isBoolean(actual) || !isMaybeValue(actual))   // 5 == "abc"
              nonSensible("", false)
        }
        else if (isWarnable) {
          if (isNew(qual)) // new X == y
            nonSensibleWarning("a fresh object", false)
          else if (isNew(args.head) && (receiver.isFinal || isReferenceOp))   // object X ; X == new Y
            nonSensibleWarning("a fresh object", false)
          else if (receiver.isFinal && !(receiver isSubClass actual)) {  // object X, Y; X == Y
            if (isEitherNullable)
              nonSensible("non-null ", false)
            else
              nonSensible("", false)            
          }
        }
        // Warning on types without a parental relationship.  Uncovers a lot of
        // bugs, but not always right to warn.
        if (false) {
          if (nullCount == 0 && possibleNumericCount < 2 && !(receiver isSubClass actual) && !(actual isSubClass receiver))
            unrelatedTypes()
        }
        
      case _ =>
    }

// Transformation ------------------------------------------------------------

    /* Convert a reference to a case factory of type `tpe' to a new of the class it produces. */
    def toConstructor(pos: Position, tpe: Type): Tree = {
      var rtpe = tpe.finalResultType
      assert(rtpe.typeSymbol hasFlag CASE, tpe);
      localTyper.typedOperator {
        atPos(pos) {
          Select(New(TypeTree(rtpe)), rtpe.typeSymbol.primaryConstructor)
        }
      }
    }

    override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = {
      pushLevel()
      try {
        enterSyms(stats)
        var index = -1
        stats flatMap { stat => index += 1; transformStat(stat, index) }
      }
      finally popLevel()
    }
    
    /** Eliminate ModuleDefs.
     *   - A top level object is replaced with their module class.
     *   - An inner object is transformed into a module var, created on first access.
     *
     *  In both cases, this transformation returns the list of replacement trees:
     *   - Top level: the module class accessor definition
     *   - Inner: a class definition, declaration of module var, and module var accessor
     */
    private def eliminateModuleDefs(tree: Tree): List[Tree] = {
      val ModuleDef(mods, name, impl) = tree
      val sym = tree.symbol

      val classSym        = sym.moduleClass
      val cdef            = ClassDef(mods | MODULE, name.toTypeName, Nil, impl) setSymbol classSym setType NoType

      def findOrCreateModuleVar() = localTyper.typedPos(tree.pos) {
        lazy val createModuleVar = gen.mkModuleVarDef(sym)
        sym.owner.info.decl(nme.moduleVarName(sym.name.toTermName)) match {
          // In case we are dealing with local symbol then we already have
          // to correct error with forward reference
          case NoSymbol => createModuleVar
          case vsym     => ValDef(vsym)
        }
      }
      def createStaticModuleAccessor() = atPhase(phase.next) {
        val method = (
          sym.owner.newMethod(sym.pos, sym.name.toTermName)
          setFlag (sym.flags | STABLE) resetFlag MODULE setInfo NullaryMethodType(sym.moduleClass.tpe)
        )
        sym.owner.info.decls enter method
        localTyper.typedPos(tree.pos)(gen.mkModuleAccessDef(method, sym))
      }
      def createInnerModuleAccessor(vdef: Tree) = List(
        vdef,
        localTyper.typedPos(tree.pos) {
          val vsym = vdef.symbol
          atPhase(phase.next) {
            val rhs  = gen.newModule(sym, vsym.tpe)
            val body = if (sym.owner.isTrait) rhs else gen.mkAssignAndReturn(vsym, rhs)
            DefDef(sym, body.changeOwner(vsym -> sym))
          }
        }
      )
      transformTrees(cdef :: {
        if (sym.isStatic)
          if (sym.allOverriddenSymbols.isEmpty) Nil
          else List(createStaticModuleAccessor())
        else createInnerModuleAccessor(findOrCreateModuleVar)
      })
    }

    /** Implements lazy value accessors:
     *    - for lazy values of type Unit and all lazy fields inside traits,
     *      the rhs is the initializer itself
     *    - for all other lazy values z the accessor is a block of this form:
     *      { z = <rhs>; z } where z can be an identifier or a field.
     */
    private def makeLazyAccessor(tree: Tree, rhs: Tree): List[Tree] = {
      val vsym        = tree.symbol
      assert(vsym.isTerm, vsym)
      val hasUnitType = vsym.tpe.typeSymbol == UnitClass
      val lazySym     = vsym.lazyAccessor
      assert(lazySym != NoSymbol, vsym)
  
      // for traits, this is further transformed in mixins
      val body = (
        if (tree.symbol.owner.isTrait || hasUnitType) rhs
        else gen.mkAssignAndReturn(vsym, rhs)
      )
      val lazyDef = atPos(tree.pos)(DefDef(lazySym, body.changeOwner(vsym -> lazySym)))
      log("Made lazy def: " + lazyDef)

      if (hasUnitType) List(typed(lazyDef))
      else List(
        typed(ValDef(vsym)),
        atPhase(phase.next)(typed(lazyDef))
      )
    }

    def transformStat(tree: Tree, index: Int): List[Tree] = tree match {
      case ModuleDef(_, _, _) => eliminateModuleDefs(tree)
      case ValDef(_, _, _, _) =>
        val tree1 @ ValDef(_, _, _, rhs) = transform(tree) // important to do before forward reference check
        if (tree.symbol.isLazy)
          makeLazyAccessor(tree, rhs)
        else {
          val lazySym = tree.symbol.lazyAccessorOrSelf
          if (lazySym.isLocal && index <= currentLevel.maxindex) {
            if (settings.debug.value)
              Console.println(currentLevel.refsym)
            unit.error(currentLevel.refpos, "forward reference extends over definition of " + lazySym)
          }
          List(tree1)
        }
      case Import(_, _) => Nil
      case _            => List(transform(tree))
    }

    /* Check whether argument types conform to bounds of type parameters */
    private def checkBounds(pre: Type, owner: Symbol, tparams: List[Symbol], argtps: List[Type], pos: Position): Unit =
      try typer.infer.checkBounds(pos, pre, owner, tparams, argtps, "")
      catch {
        case ex: TypeError => 
          unit.error(pos, ex.getMessage());
          if (settings.explaintypes.value) {
            val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, argtps).bounds)
            (argtps, bounds).zipped map ((targ, bound) => explainTypes(bound.lo, targ))
            (argtps, bounds).zipped map ((targ, bound) => explainTypes(targ, bound.hi))
            ()
          }
      }
    private def isIrrefutable(pat: Tree, seltpe: Type): Boolean = pat match {
      case Apply(_, args) =>
        val clazz = pat.tpe.typeSymbol
        clazz == seltpe.typeSymbol &&
        clazz.isCaseClass &&
        (args corresponds clazz.primaryConstructor.tpe.asSeenFrom(seltpe, clazz).paramTypes)(isIrrefutable)
      case Typed(pat, tpt) => 
        seltpe <:< tpt.tpe
      case Ident(tpnme.WILDCARD) =>
        true
      case Bind(_, pat) =>
        isIrrefutable(pat, seltpe)
      case _ =>
        false
    }

    /** If symbol is deprecated, and the point of reference is not enclosed
     *  in either a deprecated member or a scala bridge method, issue a warning.
     */
    private def checkDeprecated(sym: Symbol, pos: Position) {      
      if (sym.isDeprecated && !currentOwner.ownerChain.exists(x => x.isDeprecated || x.hasBridgeAnnotation)) {
        unit.deprecationWarning(pos, "%s%s is deprecated%s".format(
          sym, sym.locationString, sym.deprecationMessage map (": " + _) getOrElse "")
        )
      }
    }

    /** Similar to deprecation: check if the symbol is marked with @migration
     *  indicating it has changed semantics between versions.
     */
    private def checkMigration(sym: Symbol, pos: Position) = {
      for (msg <- sym.migrationMessage)
        unit.warning(pos, sym.fullLocationString + " has changed semantics:\n" + msg)
    }
    
    private def lessAccessible(otherSym: Symbol, memberSym: Symbol): Boolean = (
         (otherSym != NoSymbol)
      && !otherSym.isTypeParameterOrSkolem
      && !otherSym.isExistentiallyBound
      && (otherSym isLessAccessibleThan memberSym)
      && (otherSym isLessAccessibleThan memberSym.enclClass)
    )
    private def lessAccessibleSymsInType(other: Type, memberSym: Symbol): List[Symbol] = {
      val extras = other match {
        case TypeRef(pre, _, args) =>
          // checking the prefix here gives us spurious errors on e.g. a private[process]
          // object which contains a type alias, which normalizes to a visible type.
          args filterNot (_ eq NoPrefix) flatMap (tp => lessAccessibleSymsInType(tp, memberSym))
        case _ =>
          Nil
      }
      if (lessAccessible(other.typeSymbol, memberSym)) other.typeSymbol :: extras
      else extras
    }
    private def warnLessAccessible(otherSym: Symbol, memberSym: Symbol) {
      val comparison = accessFlagsToString(memberSym) match {
        case ""   => ""
        case acc  => " is " + acc + " but"
      }
      val cannot =
        if (memberSym.isDeferred) "may be unable to provide a concrete implementation of"
        else "may be unable to override"
      
      unit.warning(memberSym.pos, 
        "%s%s references %s %s.".format(
          memberSym.fullLocationString, comparison,
          accessFlagsToString(otherSym), otherSym
        ) + "\nClasses which cannot access %s %s %s.".format(
          otherSym.decodedName, cannot, memberSym.decodedName)
      )
    }
    /** Warn about situations where a method signature will include a type which
     *  has more restrictive access than the method itself.
     */
    private def checkAccessibilityOfReferencedTypes(tree: Tree) {
      val member = tree.symbol
      
      // types of the value parameters
      member.paramss.flatten foreach { p =>
        val normalized = p.tpe.normalize 
        if ((normalized ne p.tpe) && lessAccessibleSymsInType(normalized, member).isEmpty) ()
        else lessAccessibleSymsInType(p.tpe, member) foreach (sym => warnLessAccessible(sym, member))
      }
      // upper bounds of type parameters
      member.typeParams.map(_.info.bounds.hi.widen) foreach { tp =>
        lessAccessibleSymsInType(tp, member) foreach (sym => warnLessAccessible(sym, member))
      }
    }
    
    /** Check that a deprecated val or def does not override a
      * concrete, non-deprecated method.  If it does, then
      * deprecation is meaningless.
      */
    private def checkDeprecatedOvers(tree: Tree) {
      val symbol = tree.symbol
      if (symbol.isDeprecated) {
        val concrOvers =
          symbol.allOverriddenSymbols.filter(sym =>
            !sym.isDeprecated && !sym.isDeferred)
        if(!concrOvers.isEmpty)
          unit.deprecationWarning(
            tree.pos,
            symbol.toString + " overrides concrete, non-deprecated symbol(s):" +
            concrOvers.map(_.name.decode).mkString("    ", ", ", ""))
      }
    }
    private def isRepeatedParamArg(tree: Tree) = currentApplication match {
      case Apply(fn, args) =>
        !args.isEmpty && (args.last eq tree) && 
        fn.tpe.params.length == args.length && isRepeatedParamType(fn.tpe.params.last.tpe)
      case _ =>
        false
    }

    private def checkTypeRef(tp: Type, pos: Position) = tp match {
      case TypeRef(pre, sym, args) =>
        checkDeprecated(sym, pos)
        if(sym.isJavaDefined)
          sym.typeParams foreach (_.cookJavaRawInfo())
        if (!tp.isHigherKinded)
          checkBounds(pre, sym.owner, sym.typeParams, args, pos)
      case _ =>
    }

    private def checkAnnotations(tpes: List[Type], pos: Position) = tpes foreach (tp => checkTypeRef(tp, pos))
    private def doTypeTraversal(tree: Tree)(f: Type => Unit) = if (!inPattern) tree.tpe foreach f

    private def applyRefchecksToAnnotations(tree: Tree): Unit = {
      def applyChecks(annots: List[AnnotationInfo]) = {
        checkAnnotations(annots map (_.atp), tree.pos)
        transformTrees(annots flatMap (_.args))
      }

      tree match {
        case m: MemberDef => 
          val sym = m.symbol
          applyChecks(sym.annotations)
          // validate implicitNotFoundMessage
          analyzer.ImplicitNotFoundMsg.check(sym) foreach { warn =>
            unit.warning(tree.pos, "Invalid implicitNotFound message for %s%s:\n%s".format(sym, sym.locationString, warn))
          }
        case tpt@TypeTree() =>
          if(tpt.original != null) {
            tpt.original foreach {
              case dc@TypeTreeWithDeferredRefCheck() => applyRefchecksToAnnotations(dc.check()) // #2416
              case _ =>
            }
          }

          doTypeTraversal(tree) {
            case AnnotatedType(annots, _, _)  => applyChecks(annots)
            case _ =>
          }
        case _ =>
      }
    }
    
    private def transformCaseApply(tree: Tree, ifNot: => Unit) = {
      val sym = tree.symbol
      
      if (sym.isSourceMethod && sym.isCase && sym.name == nme.apply)
        toConstructor(tree.pos, tree.tpe)
      else {
        ifNot
        tree
      }
    }

    private def transformApply(tree: Apply): Tree = tree match {
      case Apply(
        Select(qual, nme.filter), 
        List(Function(
          List(ValDef(_, pname, tpt, _)), 
          Match(_, CaseDef(pat1, _, _) :: _))))
        if ((pname startsWith nme.CHECK_IF_REFUTABLE_STRING) && 
            isIrrefutable(pat1, tpt.tpe) && (qual.tpe <:< tree.tpe)) =>
            
          transform(qual)

      case Apply(Select(New(tpt), name), args) 
      if (tpt.tpe.typeSymbol == ArrayClass && args.length >= 2) =>
        unit.deprecationWarning(tree.pos, 
          "new Array(...) with multiple dimensions has been deprecated; use Array.ofDim(...) instead")
        val manif = {
          var etpe = tpt.tpe
          for (_ <- args) { etpe = etpe.typeArgs.headOption.getOrElse(NoType) }
          if (etpe == NoType) {
            unit.error(tree.pos, "too many dimensions for array creation")
            Literal(Constant(null))
          } else {
            localTyper.getManifestTree(tree.pos, etpe, false)
          }
        }
        val newResult = localTyper.typedPos(tree.pos) {
          new ApplyToImplicitArgs(Apply(Select(gen.mkAttributedRef(ArrayModule), nme.ofDim), args), List(manif))
        }
        currentApplication = tree
        newResult

      case Apply(fn, args) =>
        checkSensible(tree.pos, fn, args)
        currentApplication = tree
        tree
    }
    private def transformSelect(tree: Select): Tree = {
      val Select(qual, name) = tree
      val sym = tree.symbol
      
      /** Note: if a symbol has both @deprecated and @migration annotations and both
       *  warnings are enabled, only the first one checked here will be emitted.
       *  I assume that's a consequence of some code trying to avoid noise by suppressing
       *  warnings after the first, but I think it'd be better if we didn't have to
       *  arbitrarily choose one as more important than the other.
       */
      checkDeprecated(sym, tree.pos)
      if (settings.Xmigration28.value)
        checkMigration(sym, tree.pos)        
      
      if (currentClass != sym.owner && sym.hasLocalFlag) {
        var o = currentClass
        var hidden = false
        while (!hidden && o != sym.owner && o != sym.owner.moduleClass && !o.isPackage) {
          hidden = o.isTerm || o.isPrivateLocal
          o = o.owner
        }
        if (!hidden) escapedPrivateLocals += sym
      }
      
      def checkSuper(mix: Name) =
        // term should have been eliminated by super accessors
        assert(!(qual.symbol.isTrait && sym.isTerm && mix == tpnme.EMPTY))
      
      transformCaseApply(tree, 
        qual match {
          case Super(_, mix)  => checkSuper(mix)
          case _              =>
        }
      )
    }
    private def transformIf(tree: If): Tree = {
      val If(cond, thenpart, elsepart) = tree
      def unitIfEmpty(t: Tree): Tree =
        if (t == EmptyTree) Literal(()).setPos(tree.pos).setType(UnitClass.tpe) else t
      
      cond.tpe match {
        case ConstantType(value) =>
          val res = if (value.booleanValue) thenpart else elsepart
          unitIfEmpty(res)
        case _ => tree
      }
    }
    
    // Warning about nullary methods returning Unit.
    private def checkNullaryMethodReturnType(sym: Symbol) = sym.tpe match {
      case NullaryMethodType(restpe) if restpe.typeSymbol == UnitClass =>
        // this may be the implementation of e.g. a generic method being parameterized
        // on Unit, in which case we had better let it slide.
        if (sym.isGetter || sym.allOverriddenSymbols.exists(over => !(over.tpe.resultType =:= sym.tpe.resultType))) ()
        else unit.warning(sym.pos,
          "side-effecting nullary methods are discouraged: suggest defining as `def %s()` instead".format(
           sym.name.decode)
        )
        case _ => ()
    }

    override def transform(tree: Tree): Tree = {
      val savedLocalTyper = localTyper
      val savedCurrentApplication = currentApplication
      try {
        val sym = tree.symbol

        // Apply RefChecks to annotations. Makes sure the annotations conform to
        // type bounds (bug #935), issues deprecation warnings for symbols used
        // inside annotations.
        applyRefchecksToAnnotations(tree)
        var result: Tree = tree match {
          case DefDef(mods, name, tparams, vparams, tpt, EmptyTree) if tree.symbol.hasAnnotation(NativeAttr) =>
            tree.symbol.resetFlag(DEFERRED)
            transform(treeCopy.DefDef(tree, mods, name, tparams, vparams, tpt, 
                  typed(Apply(gen.mkAttributedRef(Predef_error), List(Literal("native method stub"))))))

          case ValDef(_, _, _, _) | DefDef(_, _, _, _, _, _) =>
            checkDeprecatedOvers(tree)
            if (settings.warnNullaryUnit.value)
              checkNullaryMethodReturnType(sym)
            if (settings.warnInaccessible.value) {
              if (!sym.isConstructor && !sym.isEffectivelyFinal && !sym.isSynthetic)
                checkAccessibilityOfReferencedTypes(tree)
            }
            tree

          case Template(parents, self, body) =>
            localTyper = localTyper.atOwner(tree, currentOwner)
            validateBaseTypes(currentOwner)
            checkOverloadedRestrictions(currentOwner)
            val bridges = addVarargBridges(currentOwner)
            checkAllOverrides(currentOwner)

            if (bridges.nonEmpty) treeCopy.Template(tree, parents, self, body ::: bridges)
            else tree

          case dc@TypeTreeWithDeferredRefCheck() => assert(false, "adapt should have turned dc: TypeTreeWithDeferredRefCheck into tpt: TypeTree, with tpt.original == dc"); dc
          case tpt@TypeTree() =>
            if(tpt.original != null) {
              tpt.original foreach {
                case dc@TypeTreeWithDeferredRefCheck() =>
                  transform(dc.check()) // #2416 -- only call transform to do refchecks, but discard results
                  // tpt has the right type if the deferred checks are ok
                case _ =>
              }
            }

            val existentialParams = new ListBuffer[Symbol]
            doTypeTraversal(tree) { // check all bounds, except those that are
                              // existential type parameters
              case ExistentialType(tparams, tpe) => 
                existentialParams ++= tparams
              case t: TypeRef => 
                val exparams = existentialParams.toList
                val wildcards = exparams map (_ => WildcardType)
                checkTypeRef(t.subst(exparams, wildcards), tree.pos)
              case _ => 
            }
            tree

          case TypeApply(fn, args) =>
            checkBounds(NoPrefix, NoSymbol, fn.tpe.typeParams, args map (_.tpe), tree.pos)
            transformCaseApply(tree, ())

          case x @ Apply(_, _)  =>
            transformApply(x)

          case x @ If(_, _, _)  =>
            transformIf(x)

          case New(tpt) =>
            enterReference(tree.pos, tpt.tpe.typeSymbol)
            tree

          case Typed(_, Ident(tpnme.WILDCARD_STAR)) if !isRepeatedParamArg(tree) =>
            unit.error(tree.pos, "no `: _*' annotation allowed here\n"+
              "(such annotations are only allowed in arguments to *-parameters)")
            tree

          case Ident(name) =>
            transformCaseApply(tree,
              if (name != nme.WILDCARD && name != tpnme.WILDCARD_STAR) {
                assert(sym != NoSymbol, "transformCaseApply: name = " + name.debugString + " tree = " + tree + " / " + tree.getClass) //debug
                enterReference(tree.pos, sym)
              }
            )

          case x @ Select(_, _) =>
            transformSelect(x)
            
          case UnApply(fun, args) =>
            transform(fun) // just make sure we enterReference for unapply symbols, note that super.transform(tree) would not transform(fun)
                           // transformTrees(args) // TODO: is this necessary? could there be forward references in the args??
                           // probably not, until we allow parameterised extractors
            tree


          case _ => tree
        }
        result = result match {
          case CaseDef(pat, guard, body) =>
            inPattern = true
            val pat1 = transform(pat)
            inPattern = false
            treeCopy.CaseDef(tree, pat1, transform(guard), transform(body))
          case _ =>
            super.transform(result)
        }
        result match {
          case ClassDef(_, _, _, _) 
             | TypeDef(_, _, _, _) =>
            if (result.symbol.isLocal || result.symbol.owner.isPackageClass) 
              varianceValidator.traverse(result)
          case _ =>
        }
        result
      } catch {
        case ex: TypeError =>
          if (settings.debug.value) ex.printStackTrace();
          unit.error(tree.pos, ex.getMessage())
          tree
      } finally {
        localTyper = savedLocalTyper
        currentApplication = savedCurrentApplication
      }        
    }
  }
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala RefChecks.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.