alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (List.scala)

This example Scala source code file (List.scala) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Scala tags/keywords

a, a, b, b, boolean, int, iterable, left, list, list, listbuffer, listbuffer, nil, that

The Scala List.scala source code

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2011, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */



package scala.collection
package immutable

import generic._
import mutable.{Builder, ListBuffer}
import annotation.tailrec

/** A class for immutable linked lists representing ordered collections
 *  of elements of type. 
 *  
 *  This class comes with two implementing case classes `scala.Nil` 
 *  and `scala.::` that implement the abstract members `isEmpty`, 
 *  `head` and `tail`.
 *
 *  @author  Martin Odersky and others
 *  @version 2.8
 *  @since   1.0
 *
 *  @tparam  A    the type of the list's elements
 *
 *  @define Coll List
 *  @define coll list
 *  @define thatinfo the class of the returned collection. In the standard library configuration,
 *    `That` is always `List[B]` because an implicit of type `CanBuildFrom[List, B, That]`
 *    is defined in object `List`.
 *  @define bfinfo an implicit value of class `CanBuildFrom` which determines the
 *    result class `That` from the current representation type `Repr`
 *    and the new element type `B`. This is usually the `canBuildFrom` value
 *    defined in object `List`.
 *  @define orderDependent 
 *  @define orderDependentFold
 *  @define mayNotTerminateInf
 *  @define willNotTerminateInf
 */
sealed abstract class List[+A] extends LinearSeq[A] 
                                  with Product 
                                  with GenericTraversableTemplate[A, List]
                                  with LinearSeqOptimized[A, List[A]] {
  override def companion: GenericCompanion[List] = List

  import scala.collection.{Iterable, Traversable, Seq, IndexedSeq}

  def isEmpty: Boolean
  def head: A
  def tail: List[A]

  // New methods in List

  /** Adds an element at the beginning of this list.
   *  @param x the element to prepend.
   *  @return  a list which contains `x` as first element and
   *           which continues with this list.
   *  @example `1 :: List(2, 3) = List(2, 3).::(1) = List(1, 2, 3)`
   *  @usecase def ::(x: A): List[A]
   */
  def ::[B >: A] (x: B): List[B] =
    new scala.collection.immutable.::(x, this)

  /** Adds the elements of a given list in front of this list.
   *  @param prefix  The list elements to prepend.
   *  @return a list resulting from the concatenation of the given
   *    list `prefix` and this list. 
   *  @example `List(1, 2) ::: List(3, 4) = List(3, 4).:::(List(1, 2)) = List(1, 2, 3, 4)`
   *  @usecase def :::(prefix: List[A]): List[A]
   */
  def :::[B >: A](prefix: List[B]): List[B] =
    if (isEmpty) prefix
    else (new ListBuffer[B] ++= prefix).prependToList(this)

  /** Adds the elements of a given list in reverse order in front of this list.
   *  `xs reverse_::: ys` is equivalent to
   *  `xs.reverse ::: ys` but is more efficient.
   *
   *  @param prefix the prefix to reverse and then prepend
   *  @return       the concatenation of the reversed prefix and the current list.
   *  @usecase def reverse_:::(prefix: List[A]): List[A]
   */
  def reverse_:::[B >: A](prefix: List[B]): List[B] = {
    var these: List[B] = this
    var pres = prefix
    while (!pres.isEmpty) {
      these = pres.head :: these
      pres = pres.tail
    }
    these
  }

  /** Builds a new list by applying a function to all elements of this list.
   *  Like `xs map f`, but returns `xs` unchanged if function
   *  `f` maps all elements to themselves (wrt eq).
   * 
   *  @param f      the function to apply to each element.
   *  @tparam B     the element type of the returned collection.
   *  @return       a list resulting from applying the given function
   *                `f` to each element of this list and collecting the results.
   *  @usecase def mapConserve(f: A => A): List[A] 
   */
  def mapConserve[B >: A <: AnyRef](f: A => B): List[B] = {
    @tailrec
    def loop(mapped: ListBuffer[B], unchanged: List[A], pending: List[A]): List[B] =
      if (pending.isEmpty) {
        if (mapped eq null) unchanged
        else mapped.prependToList(unchanged)
      }
      else {
        val head0 = pending.head
        val head1 = f(head0)

        if (head1 eq head0.asInstanceOf[AnyRef])
          loop(mapped, unchanged, pending.tail)
        else {
          val b = if (mapped eq null) new ListBuffer[B] else mapped
          var xc = unchanged
          while (xc ne pending) {
            b += xc.head
            xc = xc.tail
          }
          b += head1
          val tail0 = pending.tail
          loop(b, tail0, tail0)
        }
      }
    loop(null, this, this)
  }

  // Overridden methods from IterableLike and SeqLike or overloaded variants of such methods
  
  override def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[List[A], B, That]): That = {
    val b = bf(this)
    if (b.isInstanceOf[ListBuffer[_]]) (this ::: that.seq.toList).asInstanceOf[That]
    else super.++(that)
  }

  override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[List[A], B, That]): That = bf match {
    case _: List.GenericCanBuildFrom[_] => (elem :: this).asInstanceOf[That]
    case _ => super.+:(elem)(bf)
  }

  override def toList: List[A] = this

  override def take(n: Int): List[A] = {
    val b = new ListBuffer[A]
    var i = 0
    var these = this
    while (!these.isEmpty && i < n) {
      i += 1
      b += these.head
      these = these.tail
    }
    if (these.isEmpty) this
    else b.toList
  }

  override def drop(n: Int): List[A] = {
    var these = this
    var count = n
    while (!these.isEmpty && count > 0) {
      these = these.tail
      count -= 1
    }
    these
  }
  
  override def slice(from: Int, until: Int): List[A] = {
    val lo = math.max(from, 0)
    if (until <= lo || isEmpty) Nil
    else this drop lo take (until - lo)
  }

  override def takeRight(n: Int): List[A] = {
    @tailrec
    def loop(lead: List[A], lag: List[A]): List[A] = lead match {
      case Nil => lag
      case _ :: tail => loop(tail, lag.tail)
    }
    loop(drop(n), this)
  }
  
  // dropRight is inherited from LinearSeq

  override def splitAt(n: Int): (List[A], List[A]) = {
    val b = new ListBuffer[A]
    var i = 0
    var these = this
    while (!these.isEmpty && i < n) {
      i += 1
      b += these.head
      these = these.tail
    }
    (b.toList, these)
  }

  override def takeWhile(p: A => Boolean): List[A] = {
    val b = new ListBuffer[A]
    var these = this
    while (!these.isEmpty && p(these.head)) {
      b += these.head
      these = these.tail
    }
    b.toList
  }

  override def dropWhile(p: A => Boolean): List[A] = {
    @tailrec
    def loop(xs: List[A]): List[A] =
      if (xs.isEmpty || !p(xs.head)) xs
      else loop(xs.tail)

    loop(this)
  }

  override def span(p: A => Boolean): (List[A], List[A]) = {
    val b = new ListBuffer[A]
    var these = this
    while (!these.isEmpty && p(these.head)) {
      b += these.head
      these = these.tail
    }
    (b.toList, these)
  }

  override def reverse: List[A] = {
    var result: List[A] = Nil
    var these = this
    while (!these.isEmpty) {
      result = these.head :: result
      these = these.tail
    }
    result
  }

  override def stringPrefix = "List"

  override def toStream : Stream[A] = 
    if (isEmpty) Stream.Empty
    else new Stream.Cons(head, tail.toStream)
    
  /** Like <code>span but with the predicate inverted.
   */
  @deprecated("use `span { x => !p(x) }` instead", "2.8.0")
  def break(p: A => Boolean): (List[A], List[A]) = span { x => !p(x) }
  
  @deprecated("use `filterNot' instead", "2.8.0")
  def remove(p: A => Boolean): List[A] = filterNot(p)

  /** Computes the difference between this list and the given list
   *  `that`.
   *
   *  @param that the list of elements to remove from this list.
   *  @return     this list without the elements of the given list
   *              `that`.
   */
  @deprecated("use `list1 filterNot (list2 contains)` instead", "2.8.0")
  def -- [B >: A](that: List[B]): List[B] = {
    val b = new ListBuffer[B]
    var these = this
    while (!these.isEmpty) {
      if (!that.contains(these.head)) b += these.head
      these = these.tail
    }
    b.toList
  }

  /** Computes the difference between this list and the given object
   *  `x`.
   *
   *  @param x    the object to remove from this list.
   *  @return     this list without occurrences of the given object
   *              `x`.
   */
  @deprecated("use `filterNot (_ == x)` instead", "2.8.0")
  def - [B >: A](x: B): List[B] = {
    val b = new ListBuffer[B]
    var these = this
    while (!these.isEmpty) {
      if (these.head != x) b += these.head
      these = these.tail
    }
    b.toList
  }
  
  @deprecated("use `distinct' instead", "2.8.0")
  def removeDuplicates: List[A] = distinct

  @deprecated("use `sortWith' instead", "2.8.0")
  def sort(lt : (A,A) => Boolean): List[A] = {
    /** Merge two already-sorted lists */
    def merge(l1: List[A], l2: List[A]): List[A] = {
      val res = new ListBuffer[A]
      var left1 = l1
      var left2 = l2

      while (!left1.isEmpty && !left2.isEmpty) {
        if(lt(left1.head, left2.head)) {
          res += left1.head
          left1 = left1.tail
        } else {
          res += left2.head
          left2 = left2.tail
        }
      }

      res ++= left1
      res ++= left2

      res.toList
    }

    /** Split a list into two lists of about the same size */
    def split(lst: List[A]) = {
      val res1 = new ListBuffer[A]
      val res2 = new ListBuffer[A]
      var left = lst

      while (!left.isEmpty) {
        res1 += left.head
        left = left.tail
        if (!left.isEmpty) {
          res2 += left.head
          left = left.tail
        }
      }

      (res1.toList, res2.toList)
    }


    /** Merge-sort the specified list */
    def ms(lst: List[A]): List[A] =
      lst match {
        case Nil => lst
        case x :: Nil => lst
        case x :: y :: Nil =>
          if (lt(x,y))
            lst
          else
            y :: x :: Nil

        case lst =>
          val (l1, l2) = split(lst)
          val l1s = ms(l1)
          val l2s = ms(l2)
          merge(l1s, l2s)
      }

    ms(this)
  }

}

/** The empty list.
 *
 *  @author  Martin Odersky
 *  @version 1.0, 15/07/2003
 *  @since   2.8
 */
@SerialVersionUID(0 - 8256821097970055419L)
case object Nil extends List[Nothing] {
  override def isEmpty = true
  override def head: Nothing =
    throw new NoSuchElementException("head of empty list")
  override def tail: List[Nothing] =
    throw new UnsupportedOperationException("tail of empty list")
  // Removal of equals method here might lead to an infinite recursion similar to IntMap.equals.
  override def equals(that: Any) = that match {
    case that1: collection.Seq[_] => that1.isEmpty
    case _ => false
  }
}

/** A non empty list characterized by a head and a tail.
 *  @param hd   the first element of the list
 *  @param tl   the list containing the remaining elements of this list after the first one.
 *  @tparam B   the type of the list elements.
 *  @author  Martin Odersky
 *  @version 1.0, 15/07/2003
 *  @since   2.8
 */
@SerialVersionUID(0L - 8476791151983527571L)
final case class ::[B](private var hd: B, private[scala] var tl: List[B]) extends List[B] {
  override def head : B = hd
  override def tail : List[B] = tl
  override def isEmpty: Boolean = false

  import java.io._

  private def writeObject(out: ObjectOutputStream) {
    var xs: List[B] = this
    while (!xs.isEmpty) { out.writeObject(xs.head); xs = xs.tail }
    out.writeObject(ListSerializeEnd)
  }

  private def readObject(in: ObjectInputStream) {
    hd = in.readObject.asInstanceOf[B]
    assert(hd != ListSerializeEnd)
    var current: ::[B] = this
    while (true) in.readObject match {
      case ListSerializeEnd =>
        current.tl = Nil
        return
      case a : Any =>
        val list : ::[B] = new ::(a.asInstanceOf[B], Nil)
        current.tl = list
        current = list
    }
  }
}

/** $factoryInfo
 *  @define coll list
 *  @define Coll List
 */
object List extends SeqFactory[List] {
  
  import scala.collection.{Iterable, Seq, IndexedSeq}

  /** $genericCanBuildFromInfo */
  implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, List[A]] = new GenericCanBuildFrom[A]

  def newBuilder[A]: Builder[A, List[A]] = new ListBuffer[A]

  override def empty[A]: List[A] = Nil

  override def apply[A](xs: A*): List[A] = xs.toList

  /** Create a sorted list with element values
   * `v<sub>n+1 = step(vn)`
   * where `v<sub>0 = start`
   * and elements are in the range between `start` (inclusive)
   * and `end` (exclusive)
   *
   *  @param start the start value of the list
   *  @param end  the end value of the list
   *  @param step the increment function of the list, which given `v<sub>n`,
   *              computes `v<sub>n+1`. Must be monotonically increasing
   *              or decreasing.
   *  @return     the sorted list of all integers in range [start;end).
   */
  @deprecated("use `iterate' instead", "2.8.0")
  def range(start: Int, end: Int, step: Int => Int): List[Int] = {
    val up = step(start) > start
    val down = step(start) < start
    val b = new ListBuffer[Int]
    var i = start
    while ((!up || i < end) && (!down || i > end)) {
      b += i
      val next = step(i)
      if (i == next)
        throw new IllegalArgumentException("the step function did not make any progress on "+ i)
      i = next
    }
    b.toList
  }

  /** Create a list containing several copies of an element.
   *
   *  @param n    the length of the resulting list
   *  @param elem the element composing the resulting list
   *  @return     a list composed of n elements all equal to elem
   */
  @deprecated("use `fill' instead", "2.8.0")
  def make[A](n: Int, elem: A): List[A] = {
    val b = new ListBuffer[A]
    var i = 0
    while (i < n) {
      b += elem
      i += 1
    }
    b.toList
  }

  /** Concatenate all the elements of a given list of lists.
   *
   *  @param xss the list of lists that are to be concatenated
   *  @return    the concatenation of all the lists
   */
  @deprecated("use `xss.flatten' instead of `List.flatten(xss)'", "2.8.0")
  def flatten[A](xss: List[List[A]]): List[A] = { 
    val b = new ListBuffer[A] 
    for (xs <- xss) {
      var xc = xs
      while (!xc.isEmpty) {
        b += xc.head
        xc = xc.tail
      }
    }
    b.toList
  }

  /** Transforms a list of pairs into a pair of lists.
   *
   *  @param xs the list of pairs to unzip
   *  @return a pair of lists.
   */
  @deprecated("use `xs.unzip' instead of `List.unzip(xs)'", "2.8.0")
  def unzip[A,B](xs: List[(A,B)]): (List[A], List[B]) = {
    val b1 = new ListBuffer[A]
    val b2 = new ListBuffer[B]
    var xc = xs
    while (!xc.isEmpty) {
      b1 += xc.head._1
      b2 += xc.head._2
      xc = xc.tail
    }
    (b1.toList, b2.toList)
  }

  /** Transforms an iterable of pairs into a pair of lists.
   *
   *  @param xs the iterable of pairs to unzip
   *  @return a pair of lists.
   */
  @deprecated("use `xs.unzip' instead of `List.unzip(xs)'", "2.8.0")
  def unzip[A,B](xs: Iterable[(A,B)]): (List[A], List[B]) = 
      xs.foldRight[(List[A], List[B])]((Nil, Nil)) {
        case ((x, y), (xs, ys)) => (x :: xs, y :: ys)
      }

  /**
   * Returns the `Left` values in the given `Iterable`
   * of `Either`s.
   */
  @deprecated("use `xs collect { case Left(x: A) => x }' instead of `List.lefts(xs)'", "2.8.0")
  def lefts[A, B](es: Iterable[Either[A, B]]) = 
    es.foldRight[List[A]](Nil)((e, as) => e match {
      case Left(a) => a :: as
      case Right(_) => as
    })     
 
  /**
   * Returns the `Right` values in the given`Iterable` of  `Either`s.
   */
  @deprecated("use `xs collect { case Right(x: B) => x }' instead of `List.rights(xs)'", "2.8.0")
  def rights[A, B](es: Iterable[Either[A, B]]) = 
    es.foldRight[List[B]](Nil)((e, bs) => e match {
      case Left(_) => bs
      case Right(b) => b :: bs
    })

  /** Transforms an Iterable of Eithers into a pair of lists.
   *
   *  @param xs the iterable of Eithers to separate
   *  @return a pair of lists.
   */
  @deprecated("use `(for (Left(x) <- es) yield x, for (Right(x) <- es) yield x)` instead", "2.8.0")
  def separate[A,B](es: Iterable[Either[A, B]]): (List[A], List[B]) =
    es.foldRight[(List[A], List[B])]((Nil, Nil)) {
      case (Left(a), (lefts, rights)) => (a :: lefts, rights)
      case (Right(b), (lefts, rights)) => (lefts, b :: rights)
    }

  /** Converts an iterator to a list.
   *
   *  @param it the iterator to convert
   *  @return   a list that contains the elements returned by successive
   *            calls to `it.next`
   */
  @deprecated("use `it.toList' instead of `List.toList(it)'", "2.8.0")
  def fromIterator[A](it: Iterator[A]): List[A] = it.toList

  /** Converts an array into a list.
   *
   *  @param arr the array to convert
   *  @return    a list that contains the same elements than `arr`
   *             in the same order
   */
  @deprecated("use `array.toList' instead of `List.fromArray(array)'", "2.8.0")
  def fromArray[A](arr: Array[A]): List[A] = fromArray(arr, 0, arr.length)

  /** Converts a range of an array into a list.
   *
   *  @param arr   the array to convert
   *  @param start the first index to consider
   *  @param len   the length of the range to convert
   *  @return      a list that contains the same elements than `arr`
   *               in the same order
   */
  @deprecated("use `array.view(start, end).toList' instead of `List.fromArray(array, start, end)'", "2.8.0")
  def fromArray[A](arr: Array[A], start: Int, len: Int): List[A] = {
    var res: List[A] = Nil
    var i = start + len
    while (i > start) {
      i -= 1
      res = arr(i) :: res
    }
    res
  }
  
  /** Parses a string which contains substrings separated by a
   *  separator character and returns a list of all substrings.
   *
   *  @param str       the string to parse
   *  @param separator the separator character
   *  @return          the list of substrings
   */
  @deprecated("use `str.split(separator).toList' instead of `List.fromString(str, separator)'", "2.8.0")
  def fromString(str: String, separator: Char): List[String] = {
    var words: List[String] = Nil
    var pos = str.length()
    while (pos > 0) {
      val pos1 = str.lastIndexOf(separator, pos - 1)
      if (pos1 + 1 < pos)
        words = str.substring(pos1 + 1, pos) :: words
      pos = pos1
    }
    words
  }

  /** Returns the given list of characters as a string.
   *
   *  @param xs the list to convert.
   *  @return   the list in form of a string.
   */
  @deprecated("use `xs.mkString' instead of `List.toString(xs)'", "2.8.0")
  def toString(xs: List[Char]): String = {
    val sb = new StringBuilder()
    var xc = xs
    while (!xc.isEmpty) {
      sb.append(xc.head)
      xc = xc.tail
    }
    sb.toString()
  }

  /** Like xs map f, but returns `xs` unchanged if function
   *  `f` maps all elements to themselves.
   */
  @deprecated("use `xs.mapConserve(f)' instead of `List.mapConserve(xs, f)'", "2.8.0")
  def mapConserve[A <: AnyRef](xs: List[A])(f: A => A): List[A] = {
    def loop(ys: List[A]): List[A] =
      if (ys.isEmpty) xs
      else {
        val head0 = ys.head
        val head1 = f(head0)
        if (head1 eq head0) {
          loop(ys.tail)
        } else {
          val ys1 = head1 :: mapConserve(ys.tail)(f)
          if (xs eq ys) ys1
          else {
            val b = new ListBuffer[A]
            var xc = xs
            while (xc ne ys) {
              b += xc.head
              xc = xc.tail
            }
            b.prependToList(ys1)
          }
        }
      }
    loop(xs)
  }

  /** Returns the list resulting from applying the given function `f`
   *  to corresponding elements of the argument lists.
   *
   *  @param f function to apply to each pair of elements.
   *  @return `[f(a0,b0), ..., f(an,bn)]` if the lists are 
   *          `[a0, ..., ak]`, `[b0, ..., bl]` and
   *          `n = min(k,l)`
   */
  @deprecated("use `(xs, ys).zipped.map(f)' instead of `List.map2(xs, ys)(f)'", "2.8.0")
  def map2[A,B,C](xs: List[A], ys: List[B])(f: (A, B) => C): List[C] = {
    val b = new ListBuffer[C]
    var xc = xs
    var yc = ys
    while (!xc.isEmpty && !yc.isEmpty) {
      b += f(xc.head, yc.head)
      xc = xc.tail
      yc = yc.tail
    }
    b.toList
  }

  /** Returns the list resulting from applying the given function
   *  `f` to corresponding elements of the argument lists.
   *
   *  @param f function to apply to each pair of elements.
   *  @return  `[f(a<sub>0,b0,c0),
   *           ..., f(a<sub>n,bn,cn)]`
   *           if the lists are `[a<sub>0, ..., ak]`,
   *           `[b<sub>0, ..., bl]`,
   *           `[c<sub>0, ..., cm]` and
   *           `n = min(k,l,m)`
   */
  @deprecated("use `(xs, ys, zs).zipped.map(f)' instead of `List.map3(xs, ys, zs)(f)'", "2.8.0")
  def map3[A,B,C,D](xs: List[A], ys: List[B], zs: List[C])(f: (A, B, C) => D): List[D] = {
    val b = new ListBuffer[D]
    var xc = xs
    var yc = ys
    var zc = zs
    while (!xc.isEmpty && !yc.isEmpty && !zc.isEmpty) {
      b += f(xc.head, yc.head, zc.head)
      xc = xc.tail
      yc = yc.tail
      zc = zc.tail
    }
    b.toList
  }

  /** Tests whether the given predicate `p` holds 
   *  for all corresponding elements of the argument lists.
   *
   *  @param p function to apply to each pair of elements.
   *  @return  `(p(a<sub>0,b0) &&
   *           ... && p(a<sub>n,bn))]`
   *           if the lists are `[a<sub>0, ..., ak]`;
   *           `[b<sub>0, ..., bl]`
   *           and `n = min(k,l)`
   */
  @deprecated("use `(xs, ys).zipped.forall(f)' instead of `List.forall2(xs, ys)(f)'", "2.8.0")
  def forall2[A,B](xs: List[A], ys: List[B])(f: (A, B) => Boolean): Boolean = {
    var xc = xs
    var yc = ys
    while (!xc.isEmpty && !yc.isEmpty) {
      if (!f(xc.head, yc.head)) return false
      xc = xc.tail
      yc = yc.tail
    }
    true
  }

  /** Tests whether the given predicate `p` holds
   *  for some corresponding elements of the argument lists.
   *
   *  @param p function to apply to each pair of elements.
   *  @return  `n != 0 && (p(a<sub>0,b0) ||
   *           ... || p(a<sub>n,bn))]` if the lists are
   *           `[a<sub>0, ..., ak]`,
   *           `[b<sub>0, ..., bl]` and
   *           `n = min(k,l)`
   */
  @deprecated("use `(xs, ys).zipped.exists(f)' instead of `List.exists2(xs, ys)(f)'", "2.8.0")
  def exists2[A,B](xs: List[A], ys: List[B])(f: (A, B) => Boolean): Boolean = {
    var xc = xs
    var yc = ys
    while (!xc.isEmpty && !yc.isEmpty) {
      if (f(xc.head, yc.head)) return true
      xc = xc.tail
      yc = yc.tail
    }
    false
  }

  /** Transposes a list of lists.
   *  pre: All element lists have the same length.
   *
   *  @param xss the list of lists
   *  @return    the transposed list of lists
   */
  @deprecated("use `xss.transpose' instead of `List.transpose(xss)'", "2.8.0")
  def transpose[A](xss: List[List[A]]): List[List[A]] = {
    val buf = new ListBuffer[List[A]]
    var yss = xss
    while (!yss.head.isEmpty) {
      buf += (yss map (_.head))
      yss = (yss map (_.tail))
    }
    buf.toList
  }
}

/** Only used for list serialization */
@SerialVersionUID(0L - 8476791151975527571L)
private[scala] case object ListSerializeEnd

Other Scala examples (source code examples)

Here is a short list of links related to this Scala List.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.