alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Parsers.scala)

This example Scala source code file (Parsers.scala) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Scala tags/keywords

as, failure, input, nosuccess, parser, parser, parseresult, parseresult, string, success, t, t, u, u

The Scala Parsers.scala source code

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2006-2011, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */


package scala.util.parsing.combinator

import scala.util.parsing.input._
import scala.collection.mutable.ListBuffer
import scala.annotation.tailrec
import annotation.migration

// TODO: better error handling (labelling like parsec's <?>)

/** <p>
 *    <code>Parsers is a component that provides generic
 *    parser combinators.
 *  </p>
 *  <p>
 *    It <i>requires the type of the elements these parsers should parse 
 *    (each parser is polymorphic in the type of result it produces).
 *  </p>
 *  <p>
 *    There are two aspects to the result of a parser: (1) success or failure,
 *    and (2) the result. A <code>Parser[T] provides both kinds of
 *    information.
 *  </p>
 *  <p>
 *    The term ``parser combinator'' refers to the fact that these parsers
 *    are constructed from primitive parsers and composition operators, such
 *    as sequencing, alternation, optionality, repetition, lifting, and so on.
 *  </p>
 *  <p>
 *    A ``primitive parser'' is a parser that accepts or rejects a single
 *    piece of input, based on a certain criterion, such as whether the
 *    input...
 *  </p>
    * <li> is equal to some given object, * <li> satisfies a certain predicate, * <li> is in the domain of a given partial function,.... * </ul> * <p> * Even more primitive parsers always produce the same result, irrespective * of the input. * </p> * * @author Martin Odersky, Iulian Dragos, Adriaan Moors */ trait Parsers { /** the type of input elements the provided parsers consume (When consuming invidual characters, a parser is typically * called a ``scanner'', which produces ``tokens'' that are consumed by what is normally called a ``parser''. * Nonetheless, the same principles apply, regardless of the input type.) */ type Elem /** The parser input is an abstract reader of input elements, i.e. the type of input the parsers in this component * expect. */ type Input = Reader[Elem] /** A base class for parser results. A result is either successful or not (failure may be fatal, i.e., an Error, or * not, i.e., a Failure). On success, provides a result of type `T` which consists of some result (and the rest of * the input). */ sealed abstract class ParseResult[+T] { /** Functional composition of ParseResults * * @param `f' the function to be lifted over this result * @return `f' applied to the result of this `ParseResult', packaged up as a new `ParseResult' */ def map[U](f: T => U): ParseResult[U] /** Partial functional composition of ParseResults * * @param `f' the partial function to be lifted over this result * @param error a function that takes the same argument as `f' and produces an error message * to explain why `f' wasn't applicable (it is called when this is the case) * @return <i>if `f' f is defined at the result in this `ParseResult', * `f' applied to the result of this `ParseResult', packaged up as a new `ParseResult'. * If `f' is not defined, `Failure'. */ def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U] def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U] def append[U >: T](a: => ParseResult[U]): ParseResult[U] def isEmpty = !successful /** Returns the embedded result */ def get: T def getOrElse[B >: T](default: => B): B = if (isEmpty) default else this.get val next: Input val successful: Boolean } /** The success case of ParseResult: contains the result and the remaining input. * * @param result The parser's output * @param next The parser's remaining input */ case class Success[+T](result: T, override val next: Input) extends ParseResult[T] { def map[U](f: T => U) = Success(f(result), next) def mapPartial[U](f: PartialFunction[T, U], error: T => String): ParseResult[U] = if(f.isDefinedAt(result)) Success(f(result), next) else Failure(error(result), next) def flatMapWithNext[U](f: T => Input => ParseResult[U]): ParseResult[U] = f(result)(next) def append[U >: T](a: => ParseResult[U]): ParseResult[U] = this def get: T = result /** The toString method of a Success */ override def toString = "["+next.pos+"] parsed: "+result val successful = true } var lastNoSuccess: NoSuccess = null /** A common super-class for unsuccessful parse results */ sealed abstract class NoSuccess(val msg: String, override val next: Input) extends ParseResult[Nothing] { // when we don't care about the difference between Failure and Error val successful = false if (!(lastNoSuccess != null && next.pos < lastNoSuccess.next.pos)) lastNoSuccess = this def map[U](f: Nothing => U) = this def mapPartial[U](f: PartialFunction[Nothing, U], error: Nothing => String): ParseResult[U] = this def flatMapWithNext[U](f: Nothing => Input => ParseResult[U]): ParseResult[U] = this def get: Nothing = sys.error("No result when parsing failed") } /** An extractor so NoSuccess(msg, next) can be used in matches. */ object NoSuccess { def unapply[T](x: ParseResult[T]) = x match { case Failure(msg, next) => Some(msg, next) case Error(msg, next) => Some(msg, next) case _ => None } } /** The failure case of ParseResult: contains an error-message and the remaining input. * Parsing will back-track when a failure occurs. * * @param msg An error message string describing the failure. * @param next The parser's unconsumed input at the point where the failure occurred. */ case class Failure(override val msg: String, override val next: Input) extends NoSuccess(msg, next) { /** The toString method of a Failure yields an error message */ override def toString = "["+next.pos+"] failure: "+msg+"\n\n"+next.pos.longString def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = { val alt = a; alt match { case Success(_, _) => alt case ns: NoSuccess => if (alt.next.pos < next.pos) this else alt }} } /** The fatal failure case of ParseResult: contains an error-message and the remaining input. * No back-tracking is done when a parser returns an `Error' * * @param msg An error message string describing the error. * @param next The parser's unconsumed input at the point where the error occurred. */ case class Error(override val msg: String, override val next: Input) extends NoSuccess(msg, next) { /** The toString method of an Error yields an error message */ override def toString = "["+next.pos+"] error: "+msg+"\n\n"+next.pos.longString def append[U >: Nothing](a: => ParseResult[U]): ParseResult[U] = this } def Parser[T](f: Input => ParseResult[T]): Parser[T] = new Parser[T]{ def apply(in: Input) = f(in) } def OnceParser[T](f: Input => ParseResult[T]): Parser[T] with OnceParser[T] = new Parser[T] with OnceParser[T] { def apply(in: Input) = f(in) } /** The root class of parsers. * Parsers are functions from the Input type to ParseResult */ abstract class Parser[+T] extends (Input => ParseResult[T]) { private var name: String = "" def named(n: String): this.type = {name=n; this} override def toString() = "Parser ("+ name +")" /** An unspecified method that defines the behaviour of this parser. */ def apply(in: Input): ParseResult[T] def flatMap[U](f: T => Parser[U]): Parser[U] = Parser{ in => this(in) flatMapWithNext(f)} def map[U](f: T => U): Parser[U] //= flatMap{x => success(f(x))} = Parser{ in => this(in) map(f)} // no filter yet, dealing with zero is tricky! @migration(2, 9, "As of 2.9, the call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def append[U >: T](p0: => Parser[U]): Parser[U] = { lazy val p = p0 // lazy argument Parser{ in => this(in) append p(in)} } // the operator formerly known as +++, ++, &, but now, behold the venerable ~ // it's short, light (looks like whitespace), has few overloaded meaning (thanks to the recent change from ~ to unary_~) // and we love it! (or do we like `,` better?) /** A parser combinator for sequential composition * * <p> `p ~ q' succeeds if `p' succeeds and `q' succeeds on the input * left over by `p'.</p> * * @param q a parser that will be executed after `p' (this parser) succeeds -- evaluated at most once, and only when necessary * @return a `Parser' that -- on success -- returns a `~' (like a Pair, but easier to pattern match on) * that contains the result of `p' and that of `q'. * The resulting parser fails if either `p' or `q' fails. */ @migration(2, 9, "As of 2.9, the call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def ~ [U](q: => Parser[U]): Parser[~[T, U]] = { lazy val p = q // lazy argument (for(a <- this; b <- p) yield new ~(a,b)).named("~") } /** A parser combinator for sequential composition which keeps only the right result * * <p> `p ~> q' succeeds if `p' succeeds and `q' succeeds on the input * left over by `p'.</p> * * @param q a parser that will be executed after `p' (this parser) succeeds -- evaluated at most once, and only when necessary * @return a `Parser' that -- on success -- returns the result of `q'. */ @migration(2, 9, "As of 2.9, the call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def ~> [U](q: => Parser[U]): Parser[U] = { lazy val p = q // lazy argument (for(a <- this; b <- p) yield b).named("~>") } /** A parser combinator for sequential composition which keeps only the left result * * <p> `p <~ q' succeeds if `p' succeeds and `q' succeeds on the input * left over by `p'.</p> * * <b>Note: <~ has lower operator precedence than ~ or ~>. * * @param q a parser that will be executed after `p' (this parser) succeeds -- evaluated at most once, and only when necessary * @return a `Parser' that -- on success -- returns the result of `p'. */ @migration(2, 9, "As of 2.9, the call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def <~ [U](q: => Parser[U]): Parser[T] = { lazy val p = q // lazy argument (for(a <- this; b <- p) yield a).named("<~") } /* not really useful: V cannot be inferred because Parser is covariant in first type parameter (V is always trivially Nothing) def ~~ [U, V](q: => Parser[U])(implicit combine: (T, U) => V): Parser[V] = new Parser[V] { def apply(in: Input) = seq(Parser.this, q)((x, y) => combine(x,y))(in) } */ /** A parser combinator for non-back-tracking sequential composition * *<p>`p ~! q' succeeds if `p' succeeds and `q' succeeds on the input * left over by `p'. In case of failure, no back-tracking is performed * (in an earlier parser produced by the | combinator).</p> * * @param q a parser that will be executed after `p' (this parser) succeeds * @return a `Parser' that -- on success -- returns a `~' (like a Pair, but easier to pattern match on) * that contains the result of `p' and that of `q'. * The resulting parser fails if either `p' or `q' fails, this failure is fatal. */ def ~! [U](p: => Parser[U]): Parser[~[T, U]] = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~!") } /** A parser combinator for alternative composition * *<p>`p | q' succeeds if `p' succeeds or `q' succeeds * Note that `q' is only tried if `p's failure is non-fatal (i.e., back-tracking is * allowed).</p> * * @param q a parser that will be executed if `p' (this parser) fails (and allows back-tracking) * @return a `Parser' that returns the result of the first parser to succeed (out of `p' and `q') * The resulting parser succeeds if (and only if) <ul> * <li> `p' succeeds, or * <li> if `p' fails allowing back-tracking and `q' succeeds.
*/ def | [U >: T](q: => Parser[U]): Parser[U] = append(q).named("|") // TODO /** A parser combinator for alternative with longest match composition * *<p>`p ||| q' succeeds if `p' succeeds or `q' succeeds * If `p' and `q' both succeed, the parser that consumed the most * characters accepts.</p> * * @param q0 a parser that accepts if p consumes less characters. -- evaluated at most once, and only when necessary * @return a `Parser' that returns the result of the parser consuming the most characters (out of `p' and `q'). */ @migration(2, 9, "As of 2.9, the call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def ||| [U >: T](q0: => Parser[U]): Parser[U] = new Parser[U] { lazy val q = q0 // lazy argument def apply(in: Input) = { val res1 = Parser.this(in) val res2 = q(in) (res1, res2) match { case (s1 @ Success(_, next1), s2 @ Success(_, next2)) => if (next2.pos < next1.pos) s1 else s2 case (s1 @ Success(_, _), _) => s1 case (_, s2 @ Success(_, _)) => s2 case (e1 @ Error(_, _), _) => e1 case (f1 @ Failure(_, next1), ns2 @ NoSuccess(_, next2)) => if (next2.pos < next1.pos) f1 else ns2 } } override def toString = "|||" } /** A parser combinator for function application * *<p>`p ^^ f' succeeds if `p' succeeds; it returns `f' applied to the result of `p'.

* * @param f a function that will be applied to this parser's result (see `map' in `ParseResult'). * @return a parser that has the same behaviour as the current parser, but whose result is * transformed by `f'. */ def ^^ [U](f: T => U): Parser[U] = map(f).named(toString+"^^") /** A parser combinator that changes a successful result into the specified value. * * <p>`p ^^^ v' succeeds if `p' succeeds; discards its result, and returns `v` instead.

* @param v The new result for the parser, evaluated at most once (if `p` succeeds), not evaluated at all if `p` fails. * @return a parser that has the same behaviour as the current parser, but whose successful result is `v` */ @migration(2, 9, "As of 2.9, the call-by-name argument is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def ^^^ [U](v: => U): Parser[U] = new Parser[U] { lazy val v0 = v // lazy argument def apply(in: Input) = Parser.this(in) map (x => v0) }.named(toString+"^^^") /** A parser combinator for partial function application * *<p>`p ^? (f, error)' succeeds if `p' succeeds AND `f' is defined at the result of `p'; * in that case, it returns `f' applied to the result of `p'. If `f' is not applicable, * error(the result of `p') should explain why.</p> * * @param f a partial function that will be applied to this parser's result * (see `mapPartial' in `ParseResult'). * @param error a function that takes the same argument as `f' and produces an error message * to explain why `f' wasn't applicable * @return a parser that succeeds if the current parser succeeds <i>and `f' is applicable * to the result. If so, the result will be transformed by `f'. */ def ^? [U](f: PartialFunction[T, U], error: T => String): Parser[U] = Parser{ in => this(in).mapPartial(f, error)}.named(toString+"^?") /** A parser combinator for partial function application * *<p>`p ^? f' succeeds if `p' succeeds AND `f' is defined at the result of `p'; * in that case, it returns `f' applied to the result of `p'.</p> * * @param f a partial function that will be applied to this parser's result * (see `mapPartial' in `ParseResult'). * @return a parser that succeeds if the current parser succeeds <i>and `f' is applicable * to the result. If so, the result will be transformed by `f'. */ def ^? [U](f: PartialFunction[T, U]): Parser[U] = ^?(f, r => "Constructor function not defined at "+r) /** A parser combinator that parameterizes a subsequent parser with the result of this one * *<p> * Use this combinator when a parser depends on the result of a previous parser. `p' should be * a function that takes the result from the first parser and returns the second parser.</p> * *<p> `p into fq' (with `fq' typically `{x => q}') first applies `p', and then, if `p' successfully * returned result `r', applies `fq(r)' to the rest of the input. </p> * *<p> From: G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3):323--343, 1992.

* * @param fq a function that, given the result from this parser, returns the second parser to be applied * @return a parser that succeeds if this parser succeeds (with result `x') and if then `fq(x)' succeeds */ def into[U](fq: T => Parser[U]): Parser[U] = flatMap(fq) // shortcuts for combinators: /** Returns into(fq) */ def >>[U](fq: T => Parser[U])=into(fq) /** Returns a parser that repeatedly parses what this parser parses * * @return rep(this) */ def * = rep(this) /** Returns a parser that repeatedly parses what this parser parses, interleaved with the `sep' parser. * The `sep' parser specifies how the results parsed by this parser should be combined. * * @return chainl1(this, sep) */ def *[U >: T](sep: => Parser[(U, U) => U]) = chainl1(this, sep) // TODO: improve precedence? a ~ b*(",") = a ~ (b*(",")) should be true /** Returns a parser that repeatedly (at least once) parses what this parser parses. * * @return rep1(this) */ def + = rep1(this) /** Returns a parser that optionally parses what this parser parses. * * @return opt(this) */ def ? = opt(this) } /** Wrap a parser so that its failures become errors (the | combinator will give up as soon as * it encounters an error, on failure it simply tries the next alternative) */ def commit[T](p: => Parser[T]) = Parser{ in => p(in) match{ case s @ Success(_, _) => s case e @ Error(_, _) => e case f @ Failure(msg, next) => Error(msg, next) } } /*trait ElemFun case class EFCons(hd: Elem => ElemFun, tl: ElemFun) extends ElemFun case class EFNil(res: Boolean) extends ElemFun*/ /** A parser matching input elements that satisfy a given predicate * * <p>elem(kind, p) succeeds if the input starts with an element `e' for which p(e) is true.

* * @param kind The element kind, used for error messages * @param p A predicate that determines which elements match. * @return */ def elem(kind: String, p: Elem => Boolean) = acceptIf(p)(inEl => kind+" expected") /** A parser that matches only the given element `e' * * <p>elem(e) succeeds if the input starts with an element `e'

* * @param e the `Elem' that must be the next piece of input for the returned parser to succeed * @return a `Parser' that succeeds if `e' is the next available input (and returns it). */ def elem(e: Elem): Parser[Elem] = accept(e) /** A parser that matches only the given element `e' *<p> * The method is implicit so that elements can automatically be lifted to their parsers. * For example, when parsing `Token's, Identifier("new") (which is a `Token') can be used directly, * instead of first creating a `Parser' using accept(Identifier("new")).</p> * * @param e the `Elem' that must be the next piece of input for the returned parser to succeed * @return a `tParser' that succeeds if `e' is the next available input. */ implicit def accept(e: Elem): Parser[Elem] = acceptIf(_ == e)("`"+e+"' expected but " + _ + " found") /** A parser that matches only the given list of element `es' * * <p>accept(es) succeeds if the input subsequently provides the elements in the list `es'.

* * @param es the list of expected elements * @return a Parser that recognizes a specified list of elements */ def accept[ES <% List[Elem]](es: ES): Parser[List[Elem]] = acceptSeq(es) /** The parser that matches an element in the domain of the partial function `f' *<p> * If `f' is defined on the first element in the input, `f' is applied to it to produce * this parser's result.</p> *<p> * Example: The parser <code>accept("name", {case Identifier(n) => Name(n)}) * accepts an <code>Identifier(n) and returns a Name(n).

* * @param expected a description of the kind of element this parser expects (for error messages) * @param f a partial function that determines when this parser is successful and what its output is * @return A parser that succeeds if `f' is applicable to the first element of the input, * applying `f' to it to produce the result. */ def accept[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = acceptMatch(expected, f) def acceptIf(p: Elem => Boolean)(err: Elem => String): Parser[Elem] = Parser { in => if (p(in.first)) Success(in.first, in.rest) else Failure(err(in.first), in) } def acceptMatch[U](expected: String, f: PartialFunction[Elem, U]): Parser[U] = Parser{ in => if (f.isDefinedAt(in.first)) Success(f(in.first), in.rest) else Failure(expected+" expected", in) } def acceptSeq[ES <% Iterable[Elem]](es: ES): Parser[List[Elem]] = es.foldRight[Parser[List[Elem]]](success(Nil)){(x, pxs) => accept(x) ~ pxs ^^ mkList} /** A parser that always fails * * @param msg The error message describing the failure. * @return A parser that always fails with the specified error message. */ def failure(msg: String) = Parser{ in => Failure(msg, in) } /** A parser that results in an error * * @param msg The error message describing the failure. * @return A parser that always fails with the specified error message. */ def err(msg: String) = Parser{ in => Error(msg, in) } /** A parser that always succeeds * * @param v The result for the parser * @return A parser that always succeeds, with the given result `v' */ def success[T](v: T) = Parser{ in => Success(v, in) } def log[T](p: => Parser[T])(name: String): Parser[T] = Parser{ in => println("trying "+ name +" at "+ in) val r = p(in) println(name +" --> "+ r) r } /** A parser generator for repetitions. * * <p> rep(p) repeatedly uses `p' to parse the input until `p' fails (the result is a List * of the consecutive results of `p') </p> * * @param p a `Parser' that is to be applied successively to the input * @return A parser that returns a list of results produced by repeatedly applying `p' to the input. */ def rep[T](p: => Parser[T]): Parser[List[T]] = rep1(p) | success(List()) /** A parser generator for interleaved repetitions. * * <p> repsep(p, q) repeatedly uses `p' interleaved with `q' to parse the input, until `p' fails. * (The result is a `List' of the results of `p'.) </p> * * <p>Example: repsep(term, ",") parses a comma-separated list of term's, * yielding a list of these terms</p> * * @param p a `Parser' that is to be applied successively to the input * @param q a `Parser' that parses the elements that separate the elements parsed by `p' * @return A parser that returns a list of results produced by repeatedly applying `p' (interleaved * with `q') to the input. * The results of `p' are collected in a list. The results of `q' are discarded. */ def repsep[T](p: => Parser[T], q: => Parser[Any]): Parser[List[T]] = rep1sep(p, q) | success(List()) /** A parser generator for non-empty repetitions. * * <p> rep1(p) repeatedly uses `p' to parse the input until `p' fails -- `p' must succeed at least * once (the result is a `List' of the consecutive results of `p')</p> * * @param p a `Parser' that is to be applied successively to the input * @return A parser that returns a list of results produced by repeatedly applying `p' to the input * (and that only succeeds if `p' matches at least once). */ def rep1[T](p: => Parser[T]): Parser[List[T]] = rep1(p, p) /** A parser generator for non-empty repetitions. * * <p> rep1(f, p) first uses `f' (which must succeed) and then repeatedly uses `p' to * parse the input until `p' fails * (the result is a `List' of the consecutive results of `f' and `p')</p> * * @param first a `Parser' that parses the first piece of input * @param p0 a `Parser' that is to be applied successively to the rest of the input (if any) -- evaluated at most once, and only when necessary * @return A parser that returns a list of results produced by first applying `f' and then * repeatedly `p' to the input (it only succeeds if `f' matches). */ @migration(2, 9, "As of 2.9, the p0 call-by-name arguments is evaluated at most once per constructed Parser object, instead of on every need that arises during parsing.") def rep1[T](first: => Parser[T], p0: => Parser[T]): Parser[List[T]] = Parser { in => lazy val p = p0 // lazy argument val elems = new ListBuffer[T] def continue(in: Input): ParseResult[List[T]] = { val p0 = p // avoid repeatedly re-evaluating by-name parser @tailrec def applyp(in0: Input): ParseResult[List[T]] = p0(in0) match { case Success(x, rest) => elems += x ; applyp(rest) case _ => Success(elems.toList, in0) } applyp(in) } first(in) match { case Success(x, rest) => elems += x ; continue(rest) case ns: NoSuccess => ns } } /** A parser generator for a specified number of repetitions. * * <p> repN(n, p) uses `p' exactly `n' time to parse the input * (the result is a `List' of the `n' consecutive results of `p')</p> * * @param p a `Parser' that is to be applied successively to the input * @param n the exact number of times `p' must succeed * @return A parser that returns a list of results produced by repeatedly applying `p' to the input * (and that only succeeds if `p' matches exactly `n' times). */ def repN[T](num: Int, p: => Parser[T]): Parser[List[T]] = if (num == 0) success(Nil) else Parser { in => val elems = new ListBuffer[T] val p0 = p // avoid repeatedly re-evaluating by-name parser @tailrec def applyp(in0: Input): ParseResult[List[T]] = if (elems.length == num) Success(elems.toList, in0) else p0(in0) match { case Success(x, rest) => elems += x ; applyp(rest) case ns: NoSuccess => return ns } applyp(in) } /** A parser generator for non-empty repetitions. * * <p>rep1sep(p, q) repeatedly applies `p' interleaved with `q' to parse the input, until `p' fails. * The parser `p' must succeed at least once.</p> * * @param p a `Parser' that is to be applied successively to the input * @param q a `Parser' that parses the elements that separate the elements parsed by `p' * (interleaved with `q') * @return A parser that returns a list of results produced by repeatedly applying `p' to the input * (and that only succeeds if `p' matches at least once). * The results of `p' are collected in a list. The results of `q' are discarded. */ def rep1sep[T](p : => Parser[T], q : => Parser[Any]): Parser[List[T]] = p ~ rep(q ~> p) ^^ {case x~y => x::y} /** A parser generator that, roughly, generalises the rep1sep generator so that `q', which parses the separator, * produces a left-associative function that combines the elements it separates. * * <p> From: J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced Functional Programming, volume 925 of Lecture Notes in Computer Science, pages 1--23. Springer, 1995.

* * @param p a parser that parses the elements * @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that * combines two elements into one */ def chainl1[T](p: => Parser[T], q: => Parser[(T, T) => T]): Parser[T] = chainl1(p, p, q) /** A parser generator that, roughly, generalises the rep1sep generator so that `q', which parses the separator, * produces a left-associative function that combines the elements it separates. * * @param first a parser that parses the first element * @param p a parser that parses the subsequent elements * @param q a parser that parses the token(s) separating the elements, yielding a left-associative function that * combines two elements into one */ def chainl1[T, U](first: => Parser[T], p: => Parser[U], q: => Parser[(T, U) => T]): Parser[T] = first ~ rep(q ~ p) ^^ { case x ~ xs => xs.foldLeft(x){(_, _) match {case (a, f ~ b) => f(a, b)}} } /** A parser generator that generalises the rep1sep generator so that `q', which parses the separator, * produces a right-associative function that combines the elements it separates. Additionally, * The right-most (last) element and the left-most combining function have to be supplied. * * rep1sep(p: Parser[T], q) corresponds to chainr1(p, q ^^ cons, cons, Nil) (where val cons = (x: T, y: List[T]) => x :: y) * * @param p a parser that parses the elements * @param q a parser that parses the token(s) separating the elements, yielding a right-associative function that * combines two elements into one * @param combine the "last" (left-most) combination function to be applied * @param first the "first" (right-most) element to be combined */ def chainr1[T, U](p: => Parser[T], q: => Parser[(T, U) => U], combine: (T, U) => U, first: U): Parser[U] = p ~ rep(q ~ p) ^^ { case x ~ xs => (new ~(combine, x) :: xs). foldRight(first){(_, _) match {case (f ~ a, b) => f(a, b)}} } /** A parser generator for optional sub-phrases. * * <p>opt(p) is a parser that returns `Some(x)' if `p' returns `x' and `None' if `p' fails

* * @param p A `Parser' that is tried on the input * @return a `Parser' that always succeeds: either with the result provided by `p' or * with the empty result */ def opt[T](p: => Parser[T]): Parser[Option[T]] = p ^^ (x => Some(x)) | success(None) /** Wrap a parser so that its failures&errors become success and vice versa -- it never consumes any input */ def not[T](p: => Parser[T]): Parser[Unit] = Parser { in => p(in) match { case Success(_, _) => Failure("Expected failure", in) case _ => Success((), in) } } /** A parser generator for guard expressions. The resulting parser will fail or succeed * just like the one given as parameter but it will not consume any input. * * @param p a `Parser' that is to be applied to the input * @return A parser that returns success if and only if 'p' succeeds but never consumes any input */ def guard[T](p: => Parser[T]): Parser[T] = Parser { in => p(in) match{ case s@ Success(s1,_) => Success(s1, in) case e => e } } /** `positioned' decorates a parser's result with the start position of the input it consumed. * * @param p a `Parser' whose result conforms to `Positional'. * @return A parser that has the same behaviour as `p', but which marks its result with the * start position of the input it consumed, if it didn't already have a position. */ def positioned[T <: Positional](p: => Parser[T]): Parser[T] = Parser { in => p(in) match { case Success(t, in1) => Success(if (t.pos == NoPosition) t setPos in.pos else t, in1) case ns: NoSuccess => ns } } /** <p> * A parser generator delimiting whole phrases (i.e. programs). * </p> * <p> * <code>phrase(p) succeeds if p succeeds and * no input is left over after <code>p. * </p> * * @param p the parser that must consume all input for the resulting parser * to succeed. * @return a parser that has the same result as `p', but that only succeeds * if <code>p consumed all the input. */ def phrase[T](p: Parser[T]) = new Parser[T] { lastNoSuccess = null def apply(in: Input) = p(in) match { case s @ Success(out, in1) => if (in1.atEnd) s else if (lastNoSuccess == null || lastNoSuccess.next.pos < in1.pos) Failure("end of input expected", in1) else lastNoSuccess case _ => lastNoSuccess } } def mkList[T] = (_: ~[T, List[T]]) match { case x ~ xs => x :: xs } case class ~[+a, +b](_1: a, _2: b) { override def toString = "("+ _1 +"~"+ _2 +")" } /** A parser whose ~ combinator disallows back-tracking. */ trait OnceParser[+T] extends Parser[T] { override def ~ [U](p: => Parser[U]): Parser[~[T, U]] = OnceParser{ (for(a <- this; b <- commit(p)) yield new ~(a,b)).named("~") } } }

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Parsers.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.