home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Heap.scala)

This example Scala source code file (Heap.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

boolean, empty, foldable, forest, forestzipper, heap, int, list, node, option, order, stream, tree

The Heap.scala Scala example source code

package scalaz

import std.tuple._


/**An efficient, asymptotically optimal, implementation of priority queues
 * extended with support for efficient size.
 *
 * The implementation of 'Heap' is based on bootstrapped skew binomial heaps
 * as described by:
 * G. Brodal and C. Okasaki , "Optimal Purely Functional Priority Queues",
 *    Journal of Functional Programming 6:839-857 (1996),
 *
 * Based on the heaps Haskell library by Edward Kmett
 */
sealed abstract class Heap[A] {

  import Heap._
  import Heap.impl._
  import Tree._

  def fold[B](empty: => B, nonempty: (Int, (A, A) => Boolean, Tree[Ranked[A]]) => B): B

  /**Is the heap empty? O(1)*/
  def isEmpty = fold(true, (_, _, _) => false)

  /**Is the heap populated? O(1)*/
  final def nonEmpty = !isEmpty

  /**The number of elements in the heap. O(1)*/
  def size = fold(0, (s, _, _) => s)

  /**Insert a new value into the heap. O(1)*/
  def insert(a: A)(implicit o: Order[A]) = insertWith(o.lessThanOrEqual, a)

  /** Alias for insert */
  final def +(a: A)(implicit o: Order[A]) = this insert a

  def insertAll(as: TraversableOnce[A])(implicit o: Order[A]): Heap[A] =
    (this /: as)((h,a) => h insert a)

  def insertAllF[F[_]](as: F[A])(implicit F: Foldable[F], o: Order[A]): Heap[A] =
    F.foldLeft(as, this)((h,a) => h insert a)

  /**Meld the values from two heaps into one heap. O(1)*/
  def union(as: Heap[A]) = (this, as) match {
    case (Empty(), q)                         => q
    case (q, Empty())                         => q
    case (Heap(s1, leq, t1@Node(Ranked(r1, x1), f1)),
    Heap(s2, _, t2@Node(Ranked(r2, x2), f2))) =>
      if (leq(x1, x2))
        Heap(s1 + s2, leq, Node(Ranked(0, x1), skewInsert(leq, t2, f1)))
      else
        Heap(s1 + s2, leq, Node(Ranked(0, x2), skewInsert(leq, t1, f2)))
  }

  /**Split the heap into the minimum element and the remainder. O(log n)*/
  def uncons: Option[(A, Heap[A])] =
    fold(None, (_, _, t) => Some((t.rootLabel.value, deleteMin)))

  /**Get the minimum key on the (nonempty) heap. O(1) */
  def minimum: A = fold(sys.error("Heap.minimum: empty heap"), (_, _, t) => t.rootLabel.value)

  /**Get the minimum key on the (nonempty) heap. O(1) */
  def minimumO: Option[A] = fold(None, (_, _, t) => Some(t.rootLabel.value))

  /**Delete the minimum key from the heap and return the resulting heap. O(log n) */
  def deleteMin: Heap[A] = {
    fold(Empty[A], (s, leq, t) => t match {
      case Node(_, Stream()) => Empty[A]
      case Node(_, f0)       => {
        val (Node(Ranked(r, x), cf), ts2) = getMin(leq, f0)
        val (zs, ts1, f1) = splitForest(r, Stream(), Stream(), cf)
        val f2 = skewMeld(leq, skewMeld(leq, ts1, ts2), f1)
        val f3 = zs.foldRight(f2)(skewInsert(leq, _, _))
        Heap(s - 1, leq, Node(Ranked(0, x), f3))
      }
    })
  }

  def adjustMin(f: A => A): Heap[A] = this match {
    case Heap(s, leq, Node(Ranked(r, x), xs)) =>
      Heap(s, leq, heapify(leq)(Node(Ranked(r, f(x)), xs)))
  }

  def toUnsortedStream: Stream[A] = fold(Stream(), (_, _, t) => t.flatten.map(_.value))

  def toUnsortedList: List[A] = toUnsortedStream.toList

  def toStream: Stream[A] =
    std.stream.unfold(this)(_.uncons)

  def toList: List[A] = toStream.toList

  /**Map a function over the heap, returning a new heap ordered appropriately. O(n)*/
  def map[B: Order](f: A => B) = fold(Empty[B], (_, _, t) => t.foldMap(x => singleton(f(x.value))))

  def forall(f: A => Boolean) = toStream.forall(f)

  def exists(f: A => Boolean) = toStream.exists(f)

  def foreach(f: A => Unit) = toStream.foreach(f)

  /**Filter the heap, retaining only values that satisfy the predicate. O(n)*/
  def filter(p: A => Boolean): Heap[A] =
    fold(Empty[A], (_, leq, t) => t foldMap (x => if (p(x.value)) singletonWith(leq, x.value) else Empty[A]))

  /**Partition the heap according to a predicate. The first heap contains all elements that
   * satisfy the predicate. The second contains all elements that fail the predicate. O(n)*/
  def partition(p: A => Boolean): (Heap[A], Heap[A]) =
    fold((Empty[A], Empty[A]), (_, leq, t) => t.foldMap(x =>
      if (p(x.value)) (singletonWith(leq, x.value), Empty[A])
      else
        (Empty[A], singletonWith(leq, x.value))))

  /**Partition the heap of the elements that are less than, equal to, and greater than a given value. O(n)*/
  def split(a: A): (Heap[A], Heap[A], Heap[A]) = {
    fold((Empty[A], Empty[A], Empty[A]), (s, leq, t) => {
      def f(x: A) = if (leq(x, a)) if (leq(a, x)) (Empty[A], singletonWith(leq, x), Empty[A])
      else
        (singletonWith(leq, x), Empty[A], Empty[A])
      else
        (Empty[A], Empty[A], singletonWith(leq, x))
      t foldMap (x => f(x.value))
    })
  }

  /**Return a heap consisting of the least n elements of this heap. O(n log n) */
  def take(n: Int) = withList(_.take(n))

  /**Return a heap consisting of all the members of this heap except for the least n. O(n log n) */
  def drop(n: Int) = withList(_.drop(n))

  /**Split into two heaps, the first containing the n least elements, the second containing the n
   * greatest elements. O(n log n) */
  def splitAt(n: Int) = splitWithList(_.splitAt(n))

  /**Returns a tuple where the first element is a heap consisting of the longest prefix of least elements
   * in this heap that do not satisfy the given predicate, and the second element is the remainder
   * of the elements. O(n log n) */
  def break(p: A => Boolean): (Heap[A], Heap[A]) =
    span(x => !p(x))

  /**Returns a tuple where the first element is a heap consisting of the longest prefix of least elements
   * in this heap that satisfy the given predicate and the second element is the remainder of the elements.
   * O(n log n)*/
  def span(p: A => Boolean): (Heap[A], Heap[A]) =
    splitWithList(_.span(p))

  /**Returns a heap consisting of the longest prefix of least elements of this heap that satisfy the predicate.
   * O(n log n) */
  def takeWhile(p: A => Boolean) =
    withList(_.takeWhile(p))

  /**Returns a heap consisting of the longest prefix of least elements of this heap that do not
   * satisfy the predicate. O(n log n) */
  def dropWhile(p: A => Boolean) =
    withList(_.dropWhile(p))

  /**Remove duplicate entries from the heap. O(n log n)*/
  def nub: Heap[A] = fold(Empty[A], (_, leq, t) => {
    val x = t.rootLabel.value
    val xs = deleteMin
    val zs = xs.dropWhile(leq(_, x))
    zs.nub.insertWith(leq, x)
  })

  /**Construct heaps from each element in this heap and union them together into a new heap. O(n)*/
  def flatMap[B: Order](f: A => Heap[B]): Heap[B] =
    fold(Empty[B], (_, _, t) => t foldMap (x => f(x.value)))

  /**Traverse the elements of the heap in sorted order and produce a new heap with applicative effects.
   * O(n log n)*/
  def traverse[F[_] : Applicative, B: Order](f: A => F[B]): F[Heap[B]] = {
    val F = Applicative[F]
    import std.stream._
    F.map(F.traverse(toStream)(f))(fromCodata[Stream, B])
  }

  def foldRight[B](z: B)(f: (A, => B) => B): B = {
    import std.stream._
    Foldable[Stream].foldRight(toStream, z)(f)
  }

  private def withList(f: List[A] => List[A]) = {
    import std.list._
    fold(Empty[A], (_, leq, _) => fromDataWith(leq, f(toList)))
  }

  private[scalaz] def insertWith(f: (A, A) => Boolean, x: A) =
    fold(singletonWith(f, x), (s, _, t) => {
      val y = t.rootLabel.value
      if (f(x, y)) Heap(s + 1, f, Node(Ranked(0, x), Stream(t)))
      else
        Heap(s + 1, f, Node(Ranked(0, y),
          skewInsert(f, Node(Ranked(0, x), Stream()), t.subForest)))
    })

  private def splitWithList(f: List[A] => (List[A], List[A])) = {
    import std.list._

    fold((Empty[A], Empty[A]), (_, leq, _) => {
      val g = (x: List[A]) => fromDataWith(leq, x)
      val x = f(toList)
      (g(x._1), g(x._2))
    })
  }

  override def toString = "<heap>"
}

case class Ranked[A](rank: Int, value: A)

object Heap extends HeapInstances {
  type Forest[A] = Stream[Tree[Ranked[A]]]
  type ForestZipper[A] = (Forest[A], Forest[A])

  /**The empty heap */
  object Empty {
    def apply[A]: Heap[A] = new Heap[A] {
      def fold[B](empty: => B, nonempty: (Int, (A, A) => Boolean, Tree[Ranked[A]]) => B): B = empty
    }

    def unapply[A](h: Heap[A]): Boolean = h.fold(true, (_, _, _) => false)
  }

  import Heap.impl._

  def fromData[F[_] : Foldable, A: Order](as: F[A]): Heap[A] =
    Foldable[F].foldLeft(as, Empty[A])((b, a) => b insert a)

  def fromCodata[F[_] : Foldable, A: Order](as: F[A]): Heap[A] =
    Foldable[F].foldr(as, Empty[A])(x => y => y insert x)

  def fromDataWith[F[_] : Foldable, A](f: (A, A) => Boolean, as: F[A]): Heap[A] =
    Foldable[F].foldLeft(as, Empty[A])((x, y) => x.insertWith(f, y))

  /**Heap sort */
  def sort[F[_] : Foldable, A: Order](xs: F[A]): List[A] = fromData(xs).toList

  /**Heap sort */
  def sortWith[F[_] : Foldable, A](f: (A, A) => Boolean, xs: F[A]): List[A] = fromDataWith(f, xs).toList

  /**A heap with one element. */
  def singleton[A: Order](a: A): Heap[A] = singletonWith[A](Order[A].lessThanOrEqual, a)

  /**Create a heap consisting of multiple copies of the same value. O(log n) */
  def replicate[A: Order](a: A, i: Int): Heap[A] = {
    def f(x: Heap[A], y: Int): Heap[A] =
      if (y % 2 == 0) f(x union x, y / 2)
      else
      if (y == 1) x
      else
        g(x union x, (y - 1) / 2, x)
    def g(x: Heap[A], y: Int, z: Heap[A]): Heap[A] =
      if (y % 2 == 0) g(x union x, y / 2, z)
      else
      if (y == 1) x union z
      else
        g(x union x, (y - 1) / 2, x union z)
    if (i < 0) sys.error("Heap.replicate: negative length")
    else
    if (i == 0) Empty[A]
    else
      f(singleton(a), i)
  }

  def apply[A](sz: Int, leq: (A, A) => Boolean, t: Tree[Ranked[A]]): Heap[A] = new Heap[A] {
    def fold[B](empty: => B, nonempty: (Int, (A, A) => Boolean, Tree[Ranked[A]]) => B) =
      nonempty(sz, leq, t)
  }

  def unapply[A](h: Heap[A]): Option[(Int, (A, A) => Boolean, Tree[Ranked[A]])] =
    h.fold(None, (sz, leq, t) => Some((sz, leq, t)))

  private[scalaz] object impl {
    import Tree._

    def rightZ[A]: ForestZipper[A] => ForestZipper[A] = {
      case (path, x #:: xs) => (x #:: path, xs)
    }

    def adjustZ[A](f: Tree[Ranked[A]] => Tree[Ranked[A]]):
    ForestZipper[A] => ForestZipper[A] = {
      case (path, x #:: xs) => (path, f(x) #:: xs)
      case z                => z
    }

    def rezip[A]: ForestZipper[A] => Forest[A] = {
      case (Stream(), xs)   => xs
      case (x #:: path, xs) => rezip((path, x #:: xs))
    }

    def rootZ[A]: ForestZipper[A] => A = {
      case (_, x #:: _) => x.rootLabel.value
      case _            => sys.error("Heap.rootZ: empty zipper")
    }

    def zipper[A](xs: Forest[A]): ForestZipper[A] = (Stream(), xs)

    def emptyZ[A]: ForestZipper[A] = (Stream(), Stream())

    def minZ[A](f: (A, A) => Boolean): Forest[A] => ForestZipper[A] = {
      case Stream() => emptyZ
      case xs       => {
        val z = zipper(xs)
        minZp(f)(z, z)
      }
    }

    def minZp[A](leq: (A, A) => Boolean):
    (ForestZipper[A], ForestZipper[A]) => ForestZipper[A] = {
      case (lo, (_, Stream())) => lo
      case (lo, z)             => minZp(leq)(if (leq(rootZ(lo), rootZ(z))) lo else z, rightZ(z))
    }

    def heapify[A](leq: (A, A) => Boolean): Tree[Ranked[A]] => Tree[Ranked[A]] = {
      case n@Node(_, Stream())      => n
      case n@Node(Ranked(r, a), as) => {
        val (left, Node(Ranked(rp, ap), asp) #:: right) = minZ(leq)(as)
        if (leq(a, ap)) n
        else
          Node(Ranked(r, ap), rezip((left, heapify(leq)(Node(Ranked(rp, a), asp)) #:: right)))
      }
    }

    def singletonWith[A](f: (A, A) => Boolean, a: A) =
      Heap(1, f, Node(Ranked(0, a), Stream()))


    def rank[A](t: Tree[Ranked[A]]) = t.rootLabel.rank

    def skewLink[A](f: (A, A) => Boolean,
                    t0: Tree[Ranked[A]],
                    t1: Tree[Ranked[A]],
                    t2: Tree[Ranked[A]]): Tree[Ranked[A]] = (t0, t1, t2) match {
      case (Node(Ranked(r0, x0), cf0), Node(Ranked(r1, x1), cf1), Node(Ranked(r2, x2), cf2)) =>
        if (f(x1, x0) && f(x1, x2)) Node(Ranked(r1 + 1, x1), t0 #:: t2 #:: cf1)
        else
        if (f(x2, x0) && f(x2, x1)) Node(Ranked(r2 + 1, x2), t0 #:: t1 #:: cf2)
        else
          Node(Ranked(r1 + 1, x0), t1 #:: t2 #:: cf0)
    }

    def link[A](f: (A, A) => Boolean):
    (Tree[Ranked[A]], Tree[Ranked[A]]) => Tree[Ranked[A]] = {
      case (t1@Node(Ranked(r1, x1), cf1), t2@Node(Ranked(r2, x2), cf2)) =>
        if (f(x1, x2)) Node(Ranked(r1 + 1, x1), t2 #:: cf1)
        else
          Node(Ranked(r2 + 1, x2), t1 #:: cf2)
    }

    def skewInsert[A](f: (A, A) => Boolean, t: Tree[Ranked[A]], ts: Forest[A]): Forest[A] =
      ts match {
        case t1 #:: t2 #:: rest =>
          if (rank(t1) == rank(t2))
            skewLink(f, t, t1, t2) #:: rest
          else (t #:: ts)
        case _                  => t #:: ts
      }

    def getMin[A](f: (A, A) => Boolean, trees: Forest[A]): (Tree[Ranked[A]], Forest[A]) =
      trees match {
        case Stream(t) => (t, Stream())
        case t #:: ts  => {
          val (tp, tsp) = getMin(f, ts)
          if (f(t.rootLabel.value, tp.rootLabel.value)) (t, ts) else (tp, t #:: tsp)
        }
      }

    def splitForest[A]:
    (Int, Forest[A], Forest[A], Forest[A]) => (Forest[A], Forest[A], Forest[A]) = {
      case (0, zs, ts, f)                  => (zs, ts, f)
      case (1, zs, ts, Stream(t))          => (zs, t #:: ts, Stream())
      case (1, zs, ts, t1 #:: t2 #:: f)    =>
        if (rank(t2) == 0) (t1 #:: zs, t2 #:: ts, f)
        else
          (zs, t1 #:: ts, t2 #:: f)
      case (r, zs, ts, (t1 #:: t2 #:: cf)) =>
        if (rank(t1) == rank(t2)) (zs, t1 #:: t2 #:: ts, cf)
        else
        if (rank(t1) == 0) splitForest(r - 1, t1 #:: zs, t2 #:: ts, cf)
        else
          splitForest(r - 1, zs, t1 #:: ts, t2 #:: cf)
      case (_, _, _, _)                    => sys.error("Heap.splitForest: invalid arguments")
    }

    def skewMeld[A](f: (A, A) => Boolean, ts: Forest[A], tsp: Forest[A]) =
      unionUniq(f)(uniqify(f)(ts), uniqify(f)(tsp))

    def ins[A](f: (A, A) => Boolean, t: Tree[Ranked[A]]): Forest[A] => Forest[A] = {
      case Stream()    => Stream(t)
      case (tp #:: ts) => if (rank(t) < rank(tp)) t #:: tp #:: ts
      else
        ins(f, link(f)(t, tp))(ts)
    }

    def uniqify[A](f: (A, A) => Boolean): Forest[A] => Forest[A] = {
      case Stream()   => Stream()
      case (t #:: ts) => ins(f, t)(ts)
    }

    def unionUniq[A](f: (A, A) => Boolean): (Forest[A], Forest[A]) => Forest[A] = {
      case (Stream(), ts)                         => ts
      case (ts, Stream())                         => ts
      case (tts1@(t1 #:: ts1), tts2@(t2 #:: ts2)) =>
        import std.anyVal._
        Order[Int].order(rank(t1), rank(t2)) match {
          case Ordering.LT => t1 #:: unionUniq(f)(ts1, tts2)
          case Ordering.EQ => ins(f, link(f)(t1, t2))(unionUniq(f)(ts1, ts2))
          case Ordering.GT => t2 #:: unionUniq(f)(tts1, ts2)
        }
    }
  }
}

sealed abstract class HeapInstances {
  implicit val heapInstance = new Foldable[Heap] with Foldable.FromFoldr[Heap] {
    def foldRight[A, B](fa: Heap[A], z: => B)(f: (A, => B) => B) = fa.foldRight(z)(f)
  }

  implicit def heapMonoid[A]: Monoid[Heap[A]] = new Monoid[Heap[A]] {
    def append(f1: Heap[A], f2: => Heap[A]) = f1 union f2
    def zero = Heap.Empty.apply
  }

  import std.stream._

  implicit def heapEqual[A: Equal]: Equal[Heap[A]] = Equal.equalBy((_: Heap[A]).toStream)
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala Heap.scala source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.