home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (KleisliTest.scala)

This example Scala source code file (KleisliTest.scala) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Scala by Example" TM.

Learn more about this Scala project at its project page.

Java - Scala tags/keywords

applicative, apply, bindrec, equal, functor, int, kleisli, monad, monoid, option, plusempty, semigroup

The KleisliTest.scala Scala example source code

package scalaz

import std.AllInstances._
import scalaz.scalacheck.ScalazProperties._
import scalaz.scalacheck.ScalazArbitrary._
import org.scalacheck.{Gen, Arbitrary}
import org.scalacheck.Prop.forAll

object KleisliTest extends SpecLite {

  type KleisliOpt[A, B] = Kleisli[Option, A, B]
  type KleisliOptInt[B] = KleisliOpt[Int, B]
  type IntOr[A] = Int \/ A
  type KleisliEither[A] = Kleisli[IntOr, Int, A]

  implicit def Function1IntOptInt[A](implicit A: Arbitrary[Option[Int]]): Arbitrary[Int => Option[Int]] =
    Arbitrary(Gen.frequency[Int => Option[Int]](
      (1, Gen.const((x: Int) => Some(x))),
      (1, Gen.const((x: Int) => Some(x + 1))),
      (3, A.arbitrary.map(a => (_: Int) => a))
    ))

  implicit def KleisliEqual[M[_]](implicit M: Equal[M[Int]]): Equal[Kleisli[M, Int, Int]] = new Equal[Kleisli[M, Int, Int]] {
    def equal(a1: Kleisli[M, Int, Int], a2: Kleisli[M, Int, Int]): Boolean = {
      val mb1: M[Int] = a1.run(0)
      val mb2: M[Int] = a2.run(0)
      M.equal(mb1, mb2)
    }
  }

  "mapK" ! forAll {
    (f: Int => Option[Int], a: Int) =>
      Kleisli(f).mapK(_.toList.map(_.toString)).run(a)  must_===(f(a).toList.map(_.toString))
  }

  checkAll(monoid.laws[KleisliOptInt[Int]])
  checkAll(bindRec.laws[KleisliOptInt])
  checkAll(monadPlus.strongLaws[KleisliOptInt])
  checkAll(monadError.laws[KleisliEither, Int])
  checkAll(zip.laws[KleisliOptInt])
  checkAll(category.laws[KleisliOpt])
  checkAll(profunctor.laws[KleisliOpt])

  object instances {
    def semigroup[F[_], A, B](implicit FB: Semigroup[F[B]]) = Semigroup[Kleisli[F, A, B]]
    def monoid[F[_], A, B](implicit FB: Monoid[F[B]]) = Monoid[Kleisli[F, A, B]]
    def functor[F[_] : Functor, A] = Functor[Kleisli[F, A, ?]]
    def apply[F[_] : Apply, A] = Apply[Kleisli[F, A, ?]]
    def applicative[F[_] : Applicative, A] = Applicative[Kleisli[F, A, ?]]
    def bind[F[_] : Bind , A] = Bind[Kleisli[F, A, ?]]
    def plus[F[_] : Plus, A] = Plus[Kleisli[F, A, ?]]
    def empty[F[_] : PlusEmpty, A] = PlusEmpty[Kleisli[F, A, ?]]
    def bindRec[F[_] : BindRec, A] = BindRec[Kleisli[F, A, ?]]
    def monadReader[F[_] : Monad, A] = MonadReader[Kleisli[F, A, ?], A]
    def zip[F[_] : Zip, A] = Zip[Kleisli[F, A, ?]]

    def profunctor[F[_]: Functor] = Profunctor[Kleisli[F, ?, ?]]
    def strong[F[_]: Functor] = Strong[Kleisli[F, ?, ?]]
    def proChoice[F[_]: Applicative] = ProChoice[Kleisli[F, ?, ?]]
    def compose[F[_]: Bind] = Compose[Kleisli[F, ?, ?]]
    def category[F[_]: Monad] = Category[Kleisli[F, ?, ?]]
    def arrow[F[_]: Monad] = Arrow[Kleisli[F, ?, ?]]
    def choice[F[_]: Monad] = Choice[Kleisli[F, ?, ?]]

    // checking absence of ambiguity
    def semigroup[F[_], A, B](implicit FB: Monoid[F[B]]) = Semigroup[Kleisli[F, A, B]]
    def functor[F[_] : Monad, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : Bind, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : Apply, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : Applicative, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : BindRec, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : Monad: BindRec, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : Applicative: BindRec, A] = Functor[Kleisli[F, A, ?]]
    def functor[F[_] : ApplicativePlus: BindRec, A] = Functor[Kleisli[F, A, ?]]
    def apply[F[_] : Monad, A] = Apply[Kleisli[F, A, ?]]
    def apply[F[_] : Bind, A] = Apply[Kleisli[F, A, ?]]
    def apply[F[_] : BindRec, A] = Apply[Kleisli[F, A, ?]]
    def apply[F[_] : Applicative, A] = Apply[Kleisli[F, A, ?]]
    def apply[F[_] : Monad: BindRec, A] = Apply[Kleisli[F, A, ?]]
    def apply[F[_] : Applicative: BindRec, A] = Apply[Kleisli[F, A, ?]]
    def apply[F[_] : ApplicativePlus: BindRec, A] = Apply[Kleisli[F, A, ?]]
    def applicative[F[_] : Monad, A] = Applicative[Kleisli[F, A, ?]]
    def bind[F[_] : BindRec, A] = Bind[Kleisli[F, A, ?]]
    def bind[F[_] : Monad: BindRec, A] = Bind[Kleisli[F, A, ?]]
    def plus[F[_] : PlusEmpty, A] = Plus[Kleisli[F, A, ?]]
    def empty[F[_] : MonadPlus, A] = PlusEmpty[Kleisli[F, A, ?]]
    def profunctor[F[_]: Applicative] = Profunctor[Kleisli[F, ?, ?]]
    def profunctor[F[_]: Monad] = Profunctor[Kleisli[F, ?, ?]]
    def strong[F[_]: Monad] = Strong[Kleisli[F, ?, ?]]
    def proChoice[F[_]: Monad] = ProChoice[Kleisli[F, ?, ?]]
    def compose[F[_]: Monad] = Compose[Kleisli[F, ?, ?]]

    object reader {
      // F = Id
      def readerFunctor[A] = Functor[Reader[A, ?]]
      def readerApply[A] = Apply[Reader[A, ?]]
      def readerMonadReader[A] = MonadReader[Reader[A, ?], A]
      def readerCategory = Category[Reader]
      def readerArrow = Arrow[Reader]

      // Sigh, more tests needed, see http://stackoverflow.com/questions/11913128/scalaz-7-why-using-type-alias-results-in-ambigous-typeclass-resolution-for-rea
      trait X
      type ReaderX[A] = Reader[X, A]
      def readerXFunctor = Functor[ReaderX]
      def readerXApply = Apply[ReaderX]
    }
  }

  object `FromKleisliLike inference` {
    val k1: Kleisli[Option, Int, String] = Kleisli(i => Option("a"))
    val k2: Kleisli[Option, String, Int] = Kleisli(s => Option(1))

    object compose{
      import syntax.compose._
      k1 >>> k2
    }

    object choice{
      import syntax.choice._
      k1 ||| k1
    }

    object split{
      import syntax.split._
      k1 -*- k1
    }

    object profunctor{
      import syntax.profunctor._
      k1.mapsnd(x => x)
    }

    object strong{
      import syntax.strong._
      k1.first
    }

    object proChoice{
      import syntax.proChoice._
      k1.proleft
    }

    object arrow{
      import syntax.arrow._
      k1 *** k1
    }

    object all{
      import syntax.all._

      k1 >>> k2
      k1 ||| k1
      k1 -*- k1
      k1.mapsnd(x => x)
      k1 *** k1
    }
  }

  "Catchable[Kleisli]" should {

    import effect.IO

    type F[A] = Kleisli[IO, Int, A]
    val C = Catchable[F]
    val err = new Error("oh noes")
    val bad = C.fail[Int](err)

    "throw exceptions captured via fail()" in {
      try {
        bad.run(1).unsafePerformIO
        fail("should have thrown")
      } catch {
        case t: Throwable => t must_== err
      }
    }

    "catch exceptions captured via fail()" in {
      C.attempt(bad).run(1).unsafePerformIO must_== -\/(err)
    }

    "catch ambient exceptions (1/2)" in {
      C.attempt(Kleisli(_ => IO[Int](throw err))).run(1).unsafePerformIO must_== -\/(err)
    }

    "catch ambient exceptions (2/2)" in {
      C.attempt(Kleisli(_ => throw err)).run(1).unsafePerformIO must_== -\/(err)
    }

    "properly handle success" in {
      C.attempt(Kleisli(n => IO(n + 2))).run(1).unsafePerformIO must_== \/-(3)
    }

  }

}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala KleisliTest.scala source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.