

LEARNING
RECHRSION

ALUIN ALEXANDER

Copyright

Learning Recursion
Copyright 2023 Alvin J. Alexander!

All rights reserved. No part of this book may be reproduced without

prior written permission from the author.

This book is presented solely for educational purposes. While best efforts
have been made to prepare this book, the author makes no representa-
tions or warranties of any kind and assumes no liabilities of any kind
with respect to the accuracy or completeness of the contents, and specif-
ically disclaims any implied warranties of merchantability or fitness of
use for a particular purpose. The author shall not be held liable or re-
sponsible to any person or entity with respect to any loss or incidental or
consequential damages caused, or alleged to have been caused, directly
or indirectly, by the information or programs contained herein. Any use

of this information is at your own risk.
Version 0.1, published January 23, 2023

The “superheroes” on the front cover are “Illustration 105920523 ©
Bonezboyz | Dreamstime.com.”
The wormhole on the front cover is “Illustration 149478810 / 3d ©

Rostislav Zatonskiy | Dreamstime.com.”

Thttps:/ /alvinalexander.com

https://alvinalexander.com
https://alvinalexander.com

Other books

Other books by Alvin Alexander:

OREILLY Q,,;\,
3

Scala
Cookbook

Recipes for Object Oriented and
Functional Programming

Alvin Alexonder

Scala Cookbook, 2nd Edition (Amazon.com)?

ALVIN ALEXANDER

Functional Programming, Simplified
(“The Big FP Book,” alvinalexander.com)’

Zhttps://amzn.to/3dulpMR
Shttps:/ /alvinalexander.com/scala/functional-programming-simplified-book

https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com/scala/functional-programming-simplified-book
https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book

Learn Functional Programming Without Fear
(“The Little FP Book,” alvinalexander.com)*

Learn Scala 3 The Fast Way!”

*https://alvinalexander.com//scala/learn-functional-programming-bhook
Shttps:/ /alvinalexander.com/scala/learn-scala-3-the-fast-way-book

https://alvinalexander.com//scala/learn-functional-programming-book
https://alvinalexander.com//scala/learn-functional-programming-book
https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book
https://alvinalexander.com//scala/learn-functional-programming-book
https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book

Contents

1 Welcome 1
2 Recursion: Introduction 3
3 Recursion: Motivation 5
4 Recursion Background: Let’s Look at Lists 9
5 Recursion: How to Write a ‘sum’ Function 17
6 Recursion: How Recursive Function Calls Work 25
7 Visualizing the Recursive sum Function 31
8 Recursion: A Conversation Between Two Developers 39
9 Recursion: Thinking Recursively 43
10 JVM Stacks, Stack Frames, and Stack Overflow Errors 53
11 A Visual Look at Stacks and Frames 61
12 Tail-Recursive Algorithms 71
13 Bonus: Processing I/O with Recursion 85

14 The End 101

1

CONTENTS

Welcome

Welcome! This is a free booklet on recursion, also known as recursive
programming.

The way this booklet came into being is that in January, 2023, I started
updating my book, Functional Programming, Simplified', to use Scala 3
and other modern functional programming (FP) libraries like ZIO? and
Cats Effect’. When I got to these chapters on recursion, I realized that
they were almost 100 pages long all by themselves, so I decided to pull
them out into this booklet for any programmers who are interested in

recursion, but aren’t interested in all the other FP content in that book.

Who this book s for

In the beginning of almost all of my books I include a “Who this book
is for” chapter, but in this case that’s apparent: It’s for anyone who is
interested in learning about recursion. The examples are written using
Scala 3, but I don’t do anything fancy, so the code and techniques should
translate well to other languages.

Uhttps:/ /alvinalexander.gumroad.com/1/ fpsimplified
Zhttps:/ /zio.dev
Shttps:/ /typelevel.org/cats-effect

https://alvinalexander.gumroad.com/l/fpsimplified
https://zio.dev
https://typelevel.org/cats-effect
https://alvinalexander.gumroad.com/l/fpsimplified
https://zio.dev
https://typelevel.org/cats-effect

2 Welcome

Goals

I also usually include a “Goals” chapter in each book, but again, that’s
pretty apparent for this book: The goal is to share a collection of lessons

about programming using recursion.

Recursive programming just involves functions that call themselves, so

in this booklet I’ll show examples of how to write these types of functions.

Functional Programming, Stmplified: Updated for Scala 3

AsImentioned, at the time of this writing in January, 2023, I’'m currently
updating my book, Functional Programming, Stmplified, to work with Scala 3,
LI0, and Cats Effect. If you’re interested in reading that book as I update
it, you can find those PDF releases here:

Functional Programming, Simplified: Updated For Scala 3*

And now, let’s jump into the recursion lessons!

All the best,
Al

*https:/ /alvinalexander.gumroad.com/1/fpsimplified

https://alvinalexander.gumroad.com/l/fpsimplified
https://alvinalexander.gumroad.com/l/fpsimplified

Recursion: Introduction

You’re about to jump into a series of lessons on recursive programming.
Please note that some of these lessons may be overkill for some people.
Basically what I do in the following chapters is introduce recursion in sev-
eral different ways — for example, using code, using a conversation be-
tween two developers, and using images — so if one of those ways works
for you, great! Whenever you understand recursion, just stop where you
are and don’t worry about reading the remaining lessons.

The one exception I'll add to that statement is that you may still want to
review the lessons on stacks, stack frames, and tail recursion, because
they add more knowledge on top of the “basic recursion” technique.

Recursion: Introduction

Recursion: Motivation

What is recursion?

Before getting into the motivation to use recursion, a great question is,
“What is recursion?”

Simply stated, a recursive function is a function that calls itself. That’s it.

Why do | need to write recursive functions?

In terms of motivation, the next question that usually comes up right
about now 1s, “Why do I need to write recursive functions? Why can’t I

use for loops to iterate over lists?”

The short answer is that algorithms that use for loops require the use
of var fields, and as I mention in my book, Functional Programming, Sim-
plified, we never us var fields or mutable data structures in functional
programming (FP).

(Read on for the longer answer.)

6 Recursion: Motivation

Please recall that these lessons come from my FP book. That's why this
answer comes from an FP perspective.

If you had var fields

Of course if you could use mutable variables in your programming lan-

guage, you might write a “sum the integers in a list” algorithm like this:

def sum(xs: List[Int]): Int =
var sum = @
for x <- xs do
sum += X

sum

This algorithm uses a var field named sum and a for loop to iterate
through every element in the list that’s passed into the function as the
input parameter xs. In Scala this is how you use this function to print
the sum of a small list of integers:

val ints = List(1, 2, 3)
println(sum(ints)) // the result is 6

From an imperative programming standpoint, there’s nothing wrong
with this code. I wrote imperative code like this in Java for more than

fifteen years. But from a functional programmer’s point of view, there

are several problems with this code.

Problem 1: We can only keep so much in our brains

One problem is that reading a lot of custom for loops dulls your brain.

As an OOP/imperative programmer I never noticed it, but if you think

about the way you thought when you read that function, one of the first
things you thought is, “Hmm, here’s a var field named sum, so Al is
probably going to modify that field in the rest of the algorithm.” Next,
you thought, “Okay, here’s a for loop ... he’s looping over xs ... ah, yes,
he’s using +=, so this really 1s a ‘sum’ loop, so that variable name makes

sense.”

Once you learn FP — or even if you just learn the functional methods
available on the Scala collections classes — you realize that’s an awful lot

of thinking about a little-bitty custom for loop.

If you’re like me a few years ago, you may be thinking that what I just
wrote is overkill. You might think, “I look at mutable variables and cus-
tom for loops all the time; what’s the big deal?”

The big deal 1s occasionally known as Miller’s Law, or more commonly,
The Magical Number Seven, Plus or Minus Two'. Simply stated, per
that Wikipedia page, “the number of objects an average human can hold

in short-term memory is 7 £ 2.”

Therefore, one can argue that when you have to read a custom for loop
like that one, you're filling up those short-term memory slots with mostly
useless information. Put differently, since we can only keep just so much

information in our brains at one time:

* Any time we can keep less information there, it’s a win, and

* Boilerplate for loop code is a waste of our brain’s RAM (and

CPU)

Maybe this seems like a small, subtle win at the moment, but speaking
from my own experience, anything I can do to keep my brain’s RAM

free for important things is a win.

! https://en.wikipedia.org/wiki/ The_Magical Number_Seven, Plus_or_Minus_
Two

https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

8 Recursion: Motivation

Problem #2: This isn’t algebra

From an FP perspective, another problem is that this code doesn’t look
or feel like algebra. I discussed how important algebra 1s to FPers in
the “Functional Programming is Like Algebra” lesson, so I won’t repeat
that discussion here, other than to say that FPers like to see their code

as algebra (or blueprints).

FPer is short for “functional programmer.”

Problem #3: There are no var fields in F'P

Of course from our perspective as functional programmers, the
huge problem with this code is that it requires a var field, and Scala/FP
developers (and mathematicians) never use those. What I found in my
own research into FP is that var fields are a crutch, and the best thing
you can do to expedite your FP education is to completely forget that
they exist.

My experience was that once you let go of var fields and for loops, you

can discover a different way to solve iterative problems.

What to do?

Because we can’t use var fields, we need to look at a different tool to

solve problems like this. That tool 1s recursion.

If you’re like me, at first you'll NEED to write recursive functions be-
cause that’s all you’re allowed to do in FP, but after a while you’ll WANT to

write recursive functions.

Recursion Background:
Let’s Look at Lists

Wikipedia’s Linked List entry*

“https://en.wikipedia.org/wiki/Linked_list

Visualizing lists

Because the List data structure — and the /ead and tail components of
a List — are so important to recursion, it helps to visualize what a list
and its head and tail components look like. Figure 4.1 shows one way to
visualize a List.

Figure 4.1: One way to visualize the head and tail components of a list.

This creative imagery comes from the online version of “Learn You a

9

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Linked_list
http://learnyouahaskell.com/starting-out
http://learnyouahaskell.com/starting-out

10 Recursion Background: Let’s Look at Lists

Haskell for Great Good”', and it does a terrific job of imprinting the
concept of head and tail components of a list into your brain. As shown,
the “head” component is simply the first element in the list, and the

“tail” 1s everything else — the rest of the list.

A slightly more technical way to visualize the head and tail of a list is
shown in Figure 4.2.

head

tail
Figure 4.2: A slightly more technical way to visualize a list.

An even more accurate way to show this is with a Nil value at the end of
the List, as shown in Figure 4.3, because that’s what a List really looks

like in Scala.

Linked lists and “cons” cells

To be clear, the List that I'm talking about is a lnked list — the Scala
immutable List?, which is the default list you get if you type List in your
IDE or the REPL:

scala> val xs = List(1, 2, 3)
val xs: List[Int] = List(1, 2, 3)

Thttp:/ /learnyouahaskell.com/starting-out
Zhttps:/ /www.scala-lang.org/api/ current/scala/collection/immutable/ List.html

http://learnyouahaskell.com/starting-out
http://learnyouahaskell.com/starting-out
https://www.scala-lang.org/api/current/scala/collection/immutable/List.html
https://www.scala-lang.org/api/current/scala/collection/immutable/List.html
http://learnyouahaskell.com/starting-out
https://www.scala-lang.org/api/current/scala/collection/immutable/List.html

11

tail

Figure 4.3: A more accurate way to visualize a list.

As shown in Figure 4.4, this List is a series of cells, where each cell con-

tains two things: (a) a value, and (b) a pointer to the next cell.

\wll]
IH]]I

Figure 4.4: An accurate depiction of a linked list, as a series of cells.

What’s extremely important for our needs is that the last cell in a linked
list contains the Nil value. This value being in the last cell 1s important
because it’s how your recursive Scala code will know when it has reached
the end of a List.

Building on that previous image, Figure 4.5 highlights the head element
of a list, and Figure 4.6 highlights the tail elements. Just like the Haskell
programming language — and Lisp before it — the default Scala List
works with these head and tail components, and I'll use them extensively
in the examples that follow.

12 Recursion Background: Let’s Look at Lists

Figure 4.5: The head element of a list.

i tail

Figure 4.6: The tail elements of a list.

13

For historical reasons these cells are known as cons cells. That name
comes from Lisp, and if you like history, you can read more about it on
Wikipedia®.

“https://en.wikipedia.org/wiki/Cons

Note 1: The empty List

A List with no elements in it 1s an empty hist. An empty List contains

only one cell, and that cell is the Nil element, as shown in Figure 4.7.

Wil

Figure 4.7: A list with no elements contains only one cell, which s the Nil element.

You can create an empty List in Scala in a few different ways:

scala> val empty = List()
empty: List[Nothing] = List()

scala> val empty = Nil
empty: scala.collection.immutable.Nil.type = List()

Because I didn’t give those lists a data type (like Int), the results look a
little unusual, and as a practical matter you probably won’t do this in
the real world. What you will do is specity a data type when you create
your lists, like this:

scala> val emptyl: List[Int] = List()
empty: List[Int] = List()
scala> val empty2: List[Int] = Nil

empty: List[Int] = List(Q)

https://en.wikipedia.org/wiki/Cons
https://en.wikipedia.org/wiki/Cons
https://en.wikipedia.org/wiki/Cons

14 Recursion Background: Let’s Look at Lists

scala> emptyl == empty2

res@: Boolean = true

Note 2: Several ways to create Lists

There are several ways to create non-empty Listsin Scala, but for the most

part I’ll use two approaches. First, here’s the most-common approach:
val list = List(1, 2, 3)

Second, this is an approach you may not have seen before:

val list =1 :: 2 :: 3 :: Nil

These two techniques result in the exact same List[Int], which you can

see in the REPL:

scala> val listl = List(1, 2, 3)
list: List[Int] = List(1, 2, 3)

scala> val list2 =1 :: 2 :: 3 :: Nil
list: List[Int] = List(1, 2, 3)

scala> listl == list2

resl: Boolean = true

The second approach is known as using “cons cells.” As you can see,
it’s a very literal approach to creating a List, where you specify each
element in the List, including the Nil element, which must be in the
last position. The elements you specify are literally the values in each
cons cell. Note that if you forget the Nil element at the end, the Scala

compiler will give you an error message:

scala> val list =1 :: 2 :: 3
-- [E@08] Not Found Error:

15

1 Ival list =1 :: 2 :: 3
| AAAA
| value :: is not a member of Int

1 error found

I emphasize this because it’s important — very important — to know
that the last element in a List MUST be the Nil element. (The Nil
element is to a List as a caboose is to a train.) We’re going to take

advantage of this knowledge as we write our first recursive function.

16

Recursion Background: Let’s Look at Lists

Recursion:
How to Write a ‘sum’ Function

With all of the images of the previous lesson firmly ingrained in your

brain, let’s write a sum function using recursion!

Sketching the sum function signature
Given a List of integers, such as this one:
val list = List(1, 2, 3, 4)

let’s start tackling the problem in the usual way, by thinking, “Sketch the

function signature first.”

NOTE: | write all functions in Functional Programming, Simplified” by first
sketching the function signature, and then implementing the body of the
function. This is the way we think when solving problems and writing func-
tions in FP.

“https:/ /alvinalexander.com/scala/functional-programming-simplified-book

What do we know about the sum function we want to write? Well, right

off the bat we know a couple of things:

It will take a list of integers as input

* Because it returns a sum of those integers, the function will return

a single value, an Int

17

https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com/scala/functional-programming-simplified-book

18 Recursion: How to Write a ‘sum’ Function

Armed with those two pieces of information, I sketch the signature for

a sum function like this:

def sum(list: List[Int]): Int = ??7?

NOTE: For the purposes of this example, I'm assuming that
the integer values will be small, and the list size will also be
small. That way we don’t have to worry about all of the
Ints adding up to a Long or BigInteger.

The sum function body

At this point an FPer will think of a “sum” algorithm as follows:

1. If the sum function is given an empty list of integers, it should re-
turn @. This 1s because “the sum of nothing” is zero.

2. Otherwise, if the list 1s not empty, the result of the function is the
combination of (a) the value of its head element (1, in our exam-

ple), and (b) the sum of the remaining elements in the list (2,3,4).

A slight restatement of that second sentence 1is:

“The sum of a list of integers is the sum of the fead element,

plus the sum of the @/ elements.”

Now that we have a little idea of how to think about the problem recur-
sively, let’s see how to implement those sentences in Scala code.

TIP: Thinking about a List in terms of its head and tail elements is a
standard way of thinking when writing recursive functions.

19

Implementing the first sentence in code

The first sentence above states:

If the sum function is given an empty list of integers, it should
return 0.

Recursive Scala functions are commonly implemented using match ex-
pressions. Using (a) that information and (b) remembering that an empty
list contains ONLY the Nil element, you can start writing the body of
the sum function like this:

def sum(list: List[Int]): Int = list match
case Nil => 0

// more code here ...

This is a Scala way of saying, “If the List is empty, yield 0.” If you’re
comfortable with match expressions and the List class, I think you’ll
agree that this makes sense.

TIP: When writing a recursive function, write the end condition first, just
like this. This will give you comfort that the recursive calls will stop when
this condition is reached.

Note 1: Using return

If you prefer using return statements at this point in your programming

career, for just this moment you can write that code like this:

def sum(list: List[Int]): Int = list match
case Nil => return 0

// more code here ...

20 Recursion: How to Write a ‘sum’ Function

However, because pure functions don’t “return” a value as much as they
evaluate to a result, this is the moment in life where I recommend dropping

the return keyword from your vocabulary.

(That being said, if you are an OOP developer who’s used to using lan-
guages like Java, Kotlin, Python, Dart, etc., I was once in your shoes,
and I remember that using return can help when you first start writing
recursive functions. Therefore, perhaps a more gentle way to say this is,
“please drop the return keyword from your vocabulary as soon as you

feel comfortable letting it go.”)

Note 2: Using if/then instead

You can also write this function using an if/then expression, but be-
cause pattern matching 1s such a big part of Scala and FP, I prefer match

expressions.

Note 3: Can also use List()

Because Nil is equivalent to List() in Scala, you can also write that case

expression like this:
case List() == 0

However, most functional programmers use Nil, and I'll continue to use

Nil in this lesson.

Implementing the second sentence in code

The case expression I just wrote is a Scala/FP implementation of the

first sentence of our algorithm, so let’s move on to the second sentence,

21

which says, “If the list is not empty, the result of the algorithm is the
combination of (a) the value of its head element, and (b) the sum of its

tail elements.”

Since the first case expression handles the case of an empty list, our sec-
ond case expression should handle the case of a non-empty list. Further-
more, knowing that we want to pattern-match a List and split it into

head and tail components, I start writing the second case expression

like this:

case head :: tail => ?7?

If you know your case expressions, you know that if sum is given a list
like List(1,2,3,4), the result of this code 1s that it assigns the value 1 to
head, and then tail is assigned the value List(2,3,4), like this:

head = 1
tail = List(2, 3, 4)

(If you don’t know your case expressions, please refer to the

match expression lessons in the Scala Cookbook.)

Great, this case expression is a start! But, how do we finish it? Once

again I go back to the second sentence:

If the list is not empty, the result of the algorithm is the com-
bination of (a) the value of'its head element, and (b) the sum
of the tail elements.

The “value of its head element” is easy to add to the case expression:

case head :: tail => head ...

https://amzn.to/3du1pMR

22 Recursion: How to Write a ‘sum’ Function

But then what comes next? The sentence “the value of its head element,
and the sum of the tail elements,” tells us we’ll be adding something to
head:

case head :: tail => head + ?7?7?

What are we adding to head? The sum of the list’s tail elements. Hmm, now
how can we get the sum of a list of tail elements? Well, what if we happen
to have a function nearby that gives us the sum of a list of integer values?:

case head :: tail => head + sum(tail)

Whoa. That code is a straightforward implementation of the sentence,

isn’t it?
(I’ll pause here to let that sink in.)

If you combine this new case expression with the existing code, you get
the following complete sum function:

def sum(list: List[Int]): Int = list match
case Nil => 0

case head :: tail => head + sum(tail)

And that is a recursive “sum the integers in a List” function in Scala.

Notice that there is no need for var fields or for loops.

TIP: If it ever feels weird to call the same function you're currently writing,
just imagine that you're calling some other function. For example, in this
case, instead of calling sum(tail), imagine you're calling some other
function named addA11Elements(tail) or something like that.

23

Also, if you’re new to Scala, it may be easier to read this function if I put

the values on the right side of the => symbol on separate lines:

def sum(list: List[Int]): Int = list match
case Nil =>
0
case head :: tail =>
head + sum(tail)

If you’re not familiar with match expressions, the way cases work inside
amatch expression is that the code on the left side of the => symbol is the
pattern you’re matching, and the code on the right side of the => is the
code that will be run when list matches the current pattern.

A note on those names

If you're new to case expressions, it’s important to note that the head
and tail variable names in the second case expression can be anything

you want. [wrote it like this:
case head :: tail => head + sum(tail)

but I could have written this:

case h :: t = h + sum(t)
or this:
case x :: Xs => X + sum(xs)

This last example uses variable names that are commonly used with FP,
lists, and recursive programming. When working with a list, a single el-
ement is often referred to as x (pronounced “ex”) and multiple elements
are referred to as xs (pronounced “exes”). It’s a way of indicating that

x 1is singular and xs is plural, like referring to a single “pizza” or mul-

24 Recursion: How to Write a ‘sum’ Function

tiple “pizzas.” With lists, the head element is definitely singular, while
the tail can contain one or more elements. I'll generally use this naming

convention in this book.

Proof that sum works

To demonstrate that sum works, you can clone my (old) RecursiveSum
project on Github — which uses ScalaTest to test sum— or you can copy
the following source code that uses a Scala 3 main method application:

def sum(list: List[Int]): Int = list match
case Nil => 0

case X :: XS => X + sum(xs)

@main def RecursiveSum =
val list = List(1, 2, 3, 4)
val sum = sum(list)

println(sum)

When you run this application you should see the output, 10. And if

you’ve never written a recursive function before, congratulations!
“That’s great,” you say, “but how exactly did that end up printing 10?”
To which I say, “Excellent question. Let’s dig into that in the next les-

son!”

As I've noted before, | tend to write verbose code that’'s hopefully easy
to understand — especially in books — but you can shrink the last three
lines of code to this, if you prefer:

printlnCsum(List(1, 2, 3, 4)))

https://github.com/alvinj/RecursiveSum
https://github.com/alvinj/RecursiveSum

Recursion: How Recursive Function
Calls Work

When recursive calls are made to a function like sum, you can envision
that they “wind up” as sum is called repeatedly. You can imagine that

the second case expression looks like this as sum is called over and over

again:
sum(List(1, 2, 3, 4)) // the 1st call to “sum’
=> 1 + sum(List(2, 3, 4)) // 2nd call
=> 2 + sum(List(3, 4)) // 3rd
=> 3 + sum(List(4)) // 4th

=> 4 + sum(List()) // 5th (final call)

An important point to understand about these recursive calls is that just
as they wind up as they’re called repeatedly, they “unwind” rapidly when
the function’s end condition is reached.

In the case of the sum function, the end condition is triggered when the
Nil elementin a List is reached. (Recall that Nil is the same as ListQ)).
When sum is passed the Nil element as the last element of the List, this
pattern of the match expression is matched:

case Nil => 0

Because this line simply returns 0, there are no more recursive calls to
sum. As I’'ve mentioned, handling the Nil element is the typical way
of ending the recursion when you operate on all elements of a List in

recursive algorithms.

25

26 Recursion: How Recursive Function Calls Work

Reminder; Lists end with Ni1

As I mentioned previously, a very literal way to create a List looks like
these examples:

1 ::2 ::3 ::Nil // List[Int]
'a' 1 'b" o 'c" i Nil // List[Char]
"a" i "b" :: "c" :: Nil // List[String]

This is a reminder that with ANY Scala List you are guaranteed that the
last List element 1s Nil. Therefore, if your algorithm is going to iterate

over the entire list, you should use this as your function’s end condition:
case Nil => 777

This 1s our first clue about how the “unfolding” process works.

NOTE 1: Nil being the last element is a feature of the
Scala List class. You'll have to change the approach if
you work with other sequential collection classes like Vector,
ArrayBuffer, etc.

NOTE 2: Examples of functions that are built into the col-
lections classes and iterate over every element in a list are
map, filter, foreach, sum, product, and many more. Con-
versely, examples of functions that may not operate on every

list element are take and takeWhile.

Understanding how the sum example ran

A good way to understand how the sum function example runs is to add
println statements inside the case expressions. First, change the sum
function to look like this:

def sum(list: List[Int]): Int = list match

27

case Nil =>
println("casel: Nil was matched")
0
case head :: tail =>
println(s"case2: head = $head, tail = $tail")
head + sum(tail)

Now when you call it with a List(1,2,3,4) as its input parameter, you’ll
see this output:

case2: head = 1, tail = List(2, 3, 4)
case2: head = 2, tail = List(3, 4)
case2: head = 3, tail = List(4)
caseZ2: head = 4, tail = List(Q)

casel: Nil was matched

That output shows that sum is called repeatedly until the list is reduced
to List() (which is the same as Nil). When List() is passed to sum, the
first case is matched and the recursive calls to sum come to an end. (I'll

demonstrate this visually in the next lesson.)

The book Land of Lisp! states, “recursive functions are ‘list eaters,” and
this output shows exactly why that statement is true.

How the recursion works (‘going down”)

Keeping in mind that List(1,2,3,4) is the same as 1::2::3::4::Nil,
you can read the output like this:

1. The first time sumis called, the match expression sees that the given
List does NOT match the Nil element, so control flows to the

second case statement.

'https://amzn.to/ SWRp6Cs

https://amzn.to/3WRp6Cs
https://amzn.to/3WRp6Cs

28 Recursion: How Recursive Function Calls Work

2. The second case statement DOES matches the List pattern, then
splits the incoming listof 1::2::3::4::Nil into (a) a head element
of 1 and the remainder of the list, 2::3::4::Nil. The remainder
— the tail — is then passed into another sum function call.

3. A new instance of sum receives the list 2::3::4::Nil. It sees that
this list does not match the Nil element, so control flows to the

second case statement.

4. That statement matches the List pattern, then splits the list into
a head element of 2 and a tail of 3::4::Nil. The tail is passed as

the input parameter to another sum call.

5. A new instance of sum receives the list 3::4::Nil. This list does
not match the Nil element, so control passes to the second case

statement.

6. The list matches the pattern of the second case statement, which
splits the list into a head element of 3 and a tail of 4::Nil. The
tail 1s passed as the input parameter to another sum call.

7. A new instance of sum receives the list 4: :Nil, sees that it does not

match Nil, and passes control to the second case statement.

8. The list matches the pattern of the second case statement, and it’s
split into a head element of 4 and a tail of Nil. The tail is passed

to another sum function call.

9. The new instance of sum receives Nil as an input parameter, and
sees that it DOES match the Nil pattern in the first case expres-
sion. At this point the first case expression is evaluated.

10. The first case expression returns the value @. This marks the end

of the recursive calls.

At this point — when the first case expression of this suminstance returns
0 — all of the recursive calls “unwind” until the very first sum instance

returns its answer to the code that called it.

29

How the unwinding works (“coming back up”)

That description gives you an idea of how the recursive sum function calls
work until they reach the end condition. Here’s a description of what

happens affer the end condition is reached:

1. The last sum instance — the one that received List() — returns
0. This happens because List() matches Nil in the first case ex-

pression.

2. This returns control to the previous sum instance. The second
case expression of that sum function has return 4 + sum(Nil) as
its return value. This is reduced to return 4 + 0, so this instance
returns 4. (Note that I don’t use a return statement in the actual
code, but I find that the following examples are easier to read

when I use return.)

3. Again, this returns control to the previous sum instance. That sum
instance has return 3 + sum(List(4)) as the result of its second
case expression. You just saw that sum(List(4)) returns 4, so this

case expression evaluates to return 3 + 4, or 7.

4. Control is returned to the previous sum instance. Its second case
expression has return 2 + sum(List(3,4)) as its result. You just
saw that sum(List(3,4)) returns 7, so this expression evaluates to

return 2 + 7, or 9.

5. Finally, control is returned to the original sum function call. Its sec-
ond case expression is return 1 + sum(List(2,3,4)). You just
saw that sum(List(2,3,4)) returns 9, so this call is reduced to
return 1 + 9, or 10. This value is returned to whatever code

called the first sum instance.

Initial visuals of how the recursion works

One way to visualize how the recursive sum function calls work — the

“going down” part — is shown in Figure 6.1.

30 Recursion: How Recursive Function Calls Work

sum(List(1,2,3,4))
-» sum(List(2,3,4))
-» sum{List(3,4))
=> sum(List(4))
=> sum(List())

Figure 6.1: How the original sum call leads to another; then to another ...

After that, when the end condition is reached, the “coming back up”
part — what I call the unwinding process — is shown in Figure 6.2.

-> sum(Nil) £/ return @

=> sum(List(4)) /7 return 4 + sum(List()) = return 4 + @ = 4

-> sum(List(3,4)) A/ return 3 + sum(List(4)) = return 3 + 4 = 7

-> sum(List(2,3,4)) /7 return 2 + sum(List(3, 4)) = return 2 + 7 = 9
sum(List(1,2,3,4)) Sf return 1 + sum(List(2, 3, 4)) = return 1 + 9 => 10

Figure 6.2: How sum function calls unwind, starting with the last sum call.

If this isn’t clear, fear not, in the next lesson I'll show a few more visual
examples of how this works.

Visualizing the Recursive sum
Function

Another way to think about recursion is with visual diagrams. To
demonstrate this, I'll use the rectangular symbol shown in Figure 7.1 to

represent a function.

— function name and params
— function body
— function result

Figure 7.1: This rectangular symbol is used to represent functions in this lesson.

The first step

Using that symbol and a List(1,2,3), Figure 7.2 shows a representation
of the first sum function call.

sum (1,2,3) = sum(1,2,3)

h=1, t=(z,2)

fd'u"\ i+ sum (1,3:1

Figure 7.2: A visual representation of the furst sum call.

31

32 Visualizing the Recursive sum Function

The top cell in the rectangle indicates that this first instance of sum is
called with the parameters 1,2,3. Note that I'm leaving the “List”

name off of these diagrams to make them more readable.

The body of the function is shown in the middle region of the symbol,
and it’s shown as return 1 + sum(2,3). As I mentioned before, you
don’t normally use the return keyword with Scala/FP functions, but in
this case it makes the diagram more clear. Note that in this example, h
stands for /ead, and t stands for fazl.

In the bottom region of the symbol I've left room for the final return
value of the function. At this time we don’t know what the function will

return, so for now I just leave that spot empty.

T he next steps

For the next step of the diagram, we know that the first sum function
call receives the parameter list (1,2,3), and its body now calls a new
instance of sum with the input parameter sum(2,3) (or sum(List(2,3)),
if you prefer). You can imagine the second case expression separating
the List into head (h) and tail (t) elements, as shown in Figure 7.3.

sum (12,3) = sum(1,2,3)

— e it ———

WL =l

fO_H‘urn i + Sum fl_,i‘.‘) b= 2 % =

4

Figure 7.3: The furst sum_function invokes a second sum_function call.

Then this sum instance makes a recursive call to another sum instance, as

33

shown in Figure 7.4.

sum (1,2,3) = sum(1,2,3)
o : = RN e |- M e (e (0 -2
hed, = (23) T
Cebuen 1+ sum(2,3) h22, €= (3)
re 1!u.r-n 2+ suml f:
e T e i |
P T O i PO

Figure 7.4: The second sum function call begins to invoke the third sum instance.

Again I leave the return value of this function empty because I don’t
know what it will be until its sum call returns.

It’s important to be clear that these two function calls are completely
different instances of sum. They have their own input parameter lists,
local variables, and return values. It’s just as if you had two different
functions, one named sum3elements and one named sum2elements, as
shown in Figure 7.5.

sum3elements(1,2,3)

sumzelements(2,3)
return 1 +

N B

sumZelements(2,3)

I |
return 1 +

sumlelement(3)

= = = e

Figure 7.5: One sum function calling another sum wnstance s just like calling a
different function.

34 Visualizing the Recursive sum Function

Just as the variables inside of sum3elements and sum2elements have com-
pletely different scope, the variables in two different instances of sum also
have completely different scope.

Getting back to the sum example, you can now imagine that the next

step will proceed just like the previous one, as shown in Figure 7.6.

Figure 7.6: The third sum function has now been called as sum(List(3), so its
head 1s 3 and its tail 1s Nil.

The last recursive sum call

Now we’re at the point where we make the last recursive call to sum. In
this case, because 3 was the last integer in the list, a new instance of
sum is called with the Nil value as its input parameter. This is shown in
Figure 7.7.

With this last sum call, the Nil input parameter matches the first case
expression, and that expression simply returns @. So now we can fill in

the return value for this function, as shown in Figure 7.8.

Now this sum instance returns @ back to the previous sum instance, as
shown in Figure 7.9.

The result of this function call is 3 + @ (which 1s 3), so you can fill in

its return value, and then flow it back to the previous sum call. This is

Siam f?, 3)

h=2, ¢=(3)

,n};xn-l:1+sumf3}.

Sum(3)

hz3,t=MNil

retuen 34 3wa (N1

= (’H:f}

o matiehes end

gond tion

* return ﬁ

-
———

Figure 7.7: Nil 1s passed into the final sum function call.

Sum f?b 2y
return 24 <umall30)
' | + % -
EREEEE) rchen 3 o
| | o matches end
=] 1 d’m&:hbﬂ
= ¢ peturn &
R

——

Figure 7.8: "The return value of the last sum call is @.

Sum ”; 2y
return 2+ <aml3)
{) o o 1 et 3 o Som (Nil)
'I) ‘--': o patihes end
= ol A R B p
- fﬂa&-"loﬂ
= . return ;?/

—

Figure 7.9: @ 1s returned back to the previous sum call.

35

36 Visualizing the Recursive sum Function

shown in Figure 7.10.

Zum i)

L :_ +

|
e e —
2
s 13
1 o
I
I
|
v

Figure 7.10: The third sum call returns to the second.

The result of this function call is 2 + 3 (5), so that result can flow back

to the previous function call, as shown in Figure 7.11.

Sum [1,2,3) -

Sum (2,37
returm L+
|
—

3

e

v |"J'4--'.)
' hes, en

a

| S S — - |

-

Figure 7.11: The second sum call returns to the furst.

Finally, the result of this sum instance is 1 + 5 (6). This was the first sum
function call, so it returns the value 6 back to whoever called it, as shown
in Figure 7.12.

NOTE: There are four recursive calls because there are four elements in
the list: the values 1, 2, and 3, as well as the trailing Ni1 element.

37

Figure 7.12: The first sum call returns to the final result.

Other visualizations

There are other ways to draw recursive function calls. Another nice
approach is to use a modified version of a UML “Sequence Diagram,”
as shown in Figure 7.13. Note that in this diagram, “time” flows from
the top to the bottom.

i] [] [=] [=] [=]

sum(1,2,3)
-
sum(2,3)
»
sum(3)

sum{Nil)

6

—

I |
| I |
| I |
| [|
| I- |
| I |
| I |
| I |

E | I |
| [|
<
| I |
«
| I |
| [|
| I |
| [|

A

Figure 7.13: The sum function calls can be shown using a UML Sequence Diagram.

This diagram shows that the main method calls sum with the parameter
List(1,2,3), where I again leave off the List part; it calls sum(2,3), and

so on, until the Nil case is reached, at which point the return values flow

https://en.wikipedia.org/wiki/Sequence_diagram

38 Visualizing the Recursive sum Function

back from right to left, eventually returning 6 back to the main method.

You can write the return values like that, or with some form of the func-

tion’s equation, as shown in Figure 7.14.

EN [s] [sm] [s] [s]

sum(2,3)

sum(3)

I
I
|
|
I
I
I
|
I
I
-
|
I
I
I
|

Figure 7.14: Whriting the function return values as “head + sum(tail)” equations.

Personally, I use whatever diagram seems to help the most.

Summary

Those are some visual examples of how recursive function calls work. If
you find yourself struggling to understand how recursion works, I hope

these diagrams are helpful.

Recursion: A Conversation Between
Two Developers

As an homage to one of my favorite Lisp books — an early version of
what is now The Little Schemer' — this lesson shows a little “question
and answer” interaction that you can imagine happening between two
Scala programmers.

Given this sum function:

def sum(list: List[Int]): Int = list match
case Nil => 0

case head :: tail => head + sum(tail)

I'hope this “conversation” will help drive home some of the points about

how recursion works:

Person 1 Person 2
What 1s this? An expression that defines a
val xs = List(1,2,3,4) List[Int], which in this case

contains the integers 1 through 4.
The expression binds that list to the
immutable variable xs.

And what is this? The first element of the list xs,

xs .head which 1s 1.

Thttps://amzn.to/3SWV8N7S

39

https://amzn.to/3WV8N7S
https://amzn.to/3WV8N7S

40 Recursion: A Conversation Between Two Developers

Person 1

Person 2

How about this?

xs.tail

How about this:
xs.tail.head

How did you come up with that?

How about this:

xs.tail.tail

Explain, please.

Are you ready for more?
Given the definition of our sum

function, explain the first step in:
sum(List(1,2,3)).

Then what happens?

And then?

That’s the remaining elements in
the list xs, which is List(2,3,4).

It is the number 2.

xs.tail is List(2,3,4), and
List(2,3,4).head is the first
element of that list, or 2.

That’s List(3,4).

xs.tail is List(2,3,4), and then
List(2,3,4).tail is List(3,4).

Yes, please.

The sum function receives
List(1,2,3). This does not match
the Nil case, but does match the
second case, where head is assigned
to1and tail is List(2,3).

A new instance of sumis called with

the parameter List(2,3).

The new instance of sum receives
the input parameter List(2,3).
This does not match the Ni1 case,
but does match the second case,
where head is assigned to 2 and
tail is List(3).

41

Person 1

Person 2

Please continue.

Go on.

Don’t stop now.
What happens inside this instance
of sum?

Cool. Something different. Now
what happens?

Ah, finally a return value!

Okay, so now what happens?

A new instance of sumis called with
the parameter List(3).

The new sum instance receives
List(3). This does not match the
Nil case, but does match the
second case, where head is assigned
to 3 and tail is List().

sum 1s called with the parameter
ListQ).

It receives List(). This is the same
as Ni1l, so it matches the first case.

That case returns 0.

You're telling me.

This ends the recursion, and then
the recursive calls unwind, as

described in the previous lesson.

42

Recursion: A Conversation Between Two Developers

Recursion: Thinking Recursively

Goal: The recursive pattern

This lesson has one primary goal: to show that the thought process fol-
lowed in writing the sum function follows a common recursive program-
ming “pattern.” Indeed, when you write recursive functions you’ll gen-

erally follow the three-step process shown in this lesson.

I don’t want to make this too formulaic, but the reality is that if you
follow these steps in your thinking, it will make it easier to write recursive
functions, especially when you first start.

The general recursive thought process (the “three steps”)

As I mentioned in the previous lessons, when I sit down to write a recur-

sive function, I think of three things:

* What 1s the function signature?
* What is the end condition for this algorithm?

* What is the actual algorithm? For example, if I’'m processing all

of the elements in a List, what does my algorithm do when the

43

44 Recursion: Thinking Recursively

function receives a non-empty List — i.e., what do I want to do
with the head and tail elements?

Let’s take a deep dive into each step in the process to make more sense

of these descriptions.

Step 1: What is the function signature?

Once I know that I’'m going to write a recursive function — or any pure
function, for that matter — the first thing I ask myself is, “What is the
ype signature of this function?”

I find that if I can describe a function verbally, I can quickly figure out
(a) the parameters that will be passed into it and (b) what the function
will return. In fact, if you don’t know these things, you’re not ready to

write the function yet, are you?

“If I were given one hour to save the planet, I'd spend 59

minutes defining the problem, and one minute resolving it.”

~ Albert Einstein

T he sum function

In the sum function, the algorithm is to “add all of the integers in a given
list together to return a single integer result.” Therefore, because I know
the function takes a list of integers as its input, I can start sketching the
function signature like this:

def sum(list: List[Int]) ...

Because the description also tells me that the function returns a single
Int result, I add the function’s return type:

45

def sum(list: List[Int]): Int = ??7?

This is the Scala way to say that “the sum function takes a list of integers
and returns an integer result,” which is what I want. In FP, sketching
the function signature is often half of the battle, so this is actually a big
step.

Step 2: How will this algorithm end?

When writing a recursive function, the next thing I usually think is,
“How will this algorithm end? What is its end condition?”

Because a recursive function like sum keeps calling itself over and
over, it’s of the utmost importance that there is an end case. If a
recursive algorithm doesn’t have an end condition, it will keep calling
itself as fast as possible until either (a) your program crashes with a
StackOverflowError, or (b) your computer’s CPU gets extraordinarily
hot. Therefore, I reiterate this tip:

TIP: Always have an end condition, and write it as soon as possible.

In the sum algorithm you know that you have a List, and you want to
march through the entire List to add up the values of all of its elements.
You may not know it at this point in your recursive programming ca-
reer, but right away this statement 1s a big hint about the end condition.

Because:

* you know that you’re working with a List,
* you want to operate on the entire List, and

e alist ends with the Nil element

you can start to write the end condition case expression like this:

46 Recursion: Thinking Recursively

case Nil => 7?7

Because the Nil element is to a List as a caboose is to a train, you're

guaranteed that it is always the last element of any List.

Conversely, if your algorithm will NOT iterate over the entire
List, the end condition will be different than this.

Now the next question is, “What should this end condition return?”

A clue here 1s that the function signature states that it returns an Int.
Therefore, you know that this end condition must return an Int of some
sort. But what Int?

Because this 1s a “sum” algorithm, you also know that you don’t want
to return anything that will affect the sum. Hmm ... what Int can you
return when the Nil element is reached that won’t affect the sum of a
list of integers?

The answer 1s 0.

NOTE: There’s a general rule about this thought process, and I'll share it
shortly.

Given that answer, I can update the first case condition:

def sum(list: List[Int]): Int = 1list match
case Nil => 0

case ?77

That condition states that if the function receives an empty List — de-
noted by Nil — the function will return 0.

Now we’re ready for the third step.

47

ASIDE: Identity (Neutral) Elements

I'll expand more on the point of returning @ in this algorithm in the coming
lessons, but for now it may help to know that there’s a mathematical theory
involved in this decision. Per this Wikipedia page?, “In mathematics, an
identity element (or neutral element) of a binary operation operating on a
set is an element of the set that leaves unchanged every element of the
set when the operation is applied.”

Put in simpler words, in our example (a) our set is a List[Int], and
(b) our operation is our sum algorithm. Given that combination of
set+operation, the identity element is the value @, because when you
add @ to any other integer value, it has no effect on that value. (As
alluded to in the description, the value @ is “neutral” for this combination
of set+operation.)

To help drive this home, here are a few other identity elements for different
set+operation combinations:

1) Imagine that you want to write a “product” algorithm for a list of integers.
What would you return for the end condition in this case?

As a reminder, we need some neutral value so that when any integer value
is multiplied by it, the resulting value is the same as the initial value. That
is, given this equation:

a = identityElement * 100

the requirement is that a must also be 10@. Therefore, what must the
value of identityElement be?

The correct answer is 1. This is because when any integer value is multi-
plied by 1, the result is the same as the original integer. (The number 1 is
the neutral element for the set+operation combination of (a) a List[Int]
combined with (b) a product algorithm.)

https://en.wikipedia.org/wiki/Identity_element

48 Recursion: Thinking Recursively

2) Next, imagine that you're writing a concatenation algorithm for a
List[String]. What would your return value be for the end condition in
this case? (i.e., what is a neutral element for a string?)

As a concrete example, what must identityElement be in the following
equation so that a is also "foo"?

a = identityElement + "foo"

The correct answer is a blank space. For the combination of (a) a list (or
set) of strings, and (b) an addition algorithm, a blank space has no effect
on the final result.

“https://en.wikipedia.org/wiki/Identity_element

Step 3: What is the algorithm?

Getting back to our sum algorithm, now that you've defined the func-
tion signature and the end condition, the final question is, “What is the

algorithm at hand?”

def sum(list: List[Int]): Int = list match
case Nil => 0
case 777 // TODO: what is the algorithm here?

In our situation — where our algorithm operates on all of the elements
in a List and the first case condition handles the “empty list” case —
this question becomes, “What should my function do when it receives a

non-empty List?”

The answer for a “sum” function is that it should add all of the elements
in the list.

Similarly, the answer for a “product” algorithm is that it
should multiply all of the list elements.

https://en.wikipedia.org/wiki/Identity_element

49
T he sum algorithm

To create the solution, I go back to the original statement of the sum
algorithm:

“The sum of a list of integers is the sum of the fead element,
plus the sum of the ‘@l elements.”

A common way to write the pattern for this case expression is this:

case head :: tail => ?7?

This pattern is the Scala way to say, “head will be bound to the value of
the first element in the List, and tail will contain all of the remaining

elements in the List.”

Because my description of the algorithm states that the sum 1s “the sum
of the head element, plus the sum of the tai/ elements,” I now start to
write the algorithm that goes on the right side of the => symbol. I start
by adding the head element:

case head :: tail => head + ...

and then I add this code to represent “plus the sum of the tail elements™:

case head :: tail => head + sum(tail)

Now that we have the function signature, the end condition, and the
list-processing algorithm, we have the complete function:

def sum(list: List[Int]): Int = list match
case Nil => 0

case head :: tail => head + sum(tail)

50 Recursion: Thinking Recursively

Before I move on, if you're new to Scala it can help to see the return

value on the right side of the => symbol on its own line:

def sum(list: List[Int]): Int = list match
case Nil =>
0
case head :: tail =>
head + sum(tail)

That helps by separating the pattern-matching on the left side of the =>

from the resulting value on its right side.

Also, almost nobody in the Scala community uses the return keyword,
but if you’re coming to Scala from an OOP language, I understand that

adding it in can make your code easier to read initially:

def sum(list: List[Int]): Int = list match
case Nil =>
return @
case head :: tail =>

return head + sum(tail)

But in the long run, remember that pure, algebraic functions don’t “re-
turn” a value; they evaluate to a result (so drop the return keyword as soon
as you can).

Naming conventions

As I noted in the previous lessons, when FPers work with lists, they often
prefer to use the variable name x to refer to a single element and xs
to refer to multiple elements, so you’ll also see recursive functions that

process lists use these variable names:

def sum(list: List[Int]): Int = list match

51

case Nil => 0

case X :: XS => X + sum(xs)

But you don’t have to use any of those names; use whatever names work
best for you.

The last two steps are iterative

In practice, the first step — sketching the function signature — is almost
always the first step in the process. As I mentioned, you can’t really write

a function if you don’t know what the inputs and output will be.

But the last two steps — defining the end condition and writing the
algorithm — are interchangeable, and even iterative. For instance, if
you’re working on a List and you want to do something for every element
in the list, you know the end condition will occur when you reach the
Nil element. But if you're NOT going to operate on the entire list, or if
you’re working with something other than a List, it can help to bounce
back and forth between the end case and the main algorithm until you
come to the solution.

Key points

As a recap of the key concepts in this lesson, when I sit down to write a

recursive function, I generally think of three things:

* What is the function signature?
* What is the end condition for this algorithm?

* What is the main algorithm?

To solve the problem I almost always write the function signature first,
and after that I usually write the end condition next, though the last two

steps can also be an iterative process.

52 Recursion: Thinking Recursively

Another key point is knowing the identity (neutral) element for the com-

bination of set+algorithm that you’re writing,

As a final note for this lesson, I thought about showing how to write a map
function using recursion, but as I thought about it, I realized you don’t
need to use recursion for that algorithm, you just need a for expression.
I show how to do that in my blog post, How to Write a ‘map’ Function

in Scala!

'https:/ /alvinalexander.com/scala/fp-book/how-to-write-scala-map-function

https://alvinalexander.com/scala/fp-book/how-to-write-scala-map-function
https://alvinalexander.com/scala/fp-book/how-to-write-scala-map-function
https://alvinalexander.com/scala/fp-book/how-to-write-scala-map-function

JVM Stacks, Stack Frames, and
Stack Overflow Errors

For functions without deep levels of recursion, there’s nothing wrong
with the algorithms shown in the previous lessons. I'use this simple, basic
form of recursion when I know that I'm working with limited data sets.
But in applications where you don’t know how much data you might be
processing, it’s important that your recursive algorithms are tail-recursie,

otherwise you’ll get a nasty StackOverflowError.

For instance, if you run the sum function from the previous lessons with

a larger list, like this:

@main def RecursiveSum =
def sum(list: List[Int]): Int = 1list match
case Nil => 0

case X :: XS => X + sum(xs)

val 1list = List.range(l, 100_000) // MUCH MORE DATA
val x = sum(list)

println(x)

you’ll get a StackOverflowError, which is really counter to our desire to

write great, bulletproof, functional programs.

The actual number of integers in a list needed to produce
a StackOverflowError with this function will depend on
the java command-line settings you use, but the last time I
checked the default Java stack size it was 1,024 kb — vyes,
1,024 kilobytes — just over one million bytes. That’s not much

33

http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html

54 JVM Stacks, Stack Frames, and Stack Overflow Errors

RAM to work with. I write more about this at the end of
this lesson, including how to change the default stack size

with the java command’s -Xss parameter.

T’ll cover tail recursion in the next lesson, but in this lesson I want to
discuss the 7VM stack and stack frames. If you’re not already familiar with
these concepts, this discussion will help you understand why this code
results in an exception. It can also help you debug “stack traces” in
general.

What is a “Stack™?

To understand the potential “stack overflow” problem of recursive algo-
rithms, you need to understand what happens when you write recursive

algorithms.

The first thing to know is that in all computer programming languages
there 1s this thing called tie stack, also known as the “call stack.”

Official Java/FVM “stack™ definition

Oracle provides the following description of the stack and stack frames
as they relate to the JVM:

“Each JVM thread has a private Java virtual machine stack,
created at the same time as the thread. A JVM stack stores
frames, also called ‘stack frames.” A JVM stack is analo-
gous to the stack of a conventional language such as G —
it holds local variables and partial results, and plays a part

in method invocation and return.”

Given that description, you can visualize that a single stack has a pile of
stack frames that look like Figure 10.1.

https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html

35

THE STACK

stack frame
stack frame
stack frame
stack frame
stack frame

stack frame

Figure 10.1: A single stack has a pile of stack frames.

As that description mentions, each thread has its own stack, so in a multi-
threaded application there are multiple stacks, and each stack has its own

stack of frames, as shown in Figure 10.2.

THREAD 1 THREAD 2 THREAD 3

stack frame

stack frame

stack frame stack frame

stack frame stack frame stack frame
stack frame stack frame stack frame
stack frame stack frame stack frame

Figure 10.2: Each thread has its own stack.

T he Java stack

To explain the stack a little more, all of the following quoted text comes
from the free, online version of a book titled, Inside the Java Virtual

Machine, by Bill Venners (who is also known for creating the ScalaTest

https://www.artima.com/insidejvm/ed2/jvm8.html
https://www.artima.com/insidejvm/ed2/jvm8.html

56 JVM Stacks, Stack Frames, and Stack Overflow Errors

testing framework). (I edited the text slightly to include only the portions

relevant to stacks and stack frames.)

“When a new thread is launched, the JVM creates a new
stack for the thread. A Java stack stores a thread’s state in
discrete frames. The JVM only performs two operations directly
on java stacks: it pushes and pops frames.

The method that is currently being executed by a thread
is the thread’s current method. The stack frame for the
current method is the current frame. The class in which
the current method is defined is called the current class, and
the current class’s constant pool is the current constant pool.
As it executes a method, the JVM keeps track of the current
class and current constant pool. When the JVM encounters
instructions that operate on data stored in the stack frame,
it performs those operations on the current frame.

When a thread invokes a jJava method, the JVM creates and pushes
a new frame onto the thread’s stack. This new frame then be-
comes the current frame. As the method executes, it uses
the frame to store parameters, local variables, intermediate

computations, and other data.”

TIP: As the previous paragraph implies, each instance of a method has
its own stack frame. Therefore, when you see the term “stack frame,” you
can think, “all of the stuff a method instance needs.”

What is a “Stack Frame”?

The same chapter in that book describes the “stack frame” as follows:
“The stack frame has three parts: local variables, operand stack, and

frame data.”

37

You can visualize that as shown in Figure 10.3.

THE STACK

STACK FRAME

1) Local variable array
stack frame = 2] Operand stack
3]} Constant Pool reference

stack frame

stack frame

stack frame

Figure 10.3: Each stack _frame has three parts

The book continues:

“The sizes of the local variables and operand stack, which
are measured in words, depend upon the needs of each indi-
vidual method. These sizes are determined at compile time
and included in the class file data for each method.”

That’s important: the size of a stack frame varies depending on the local variables
and operand stack. 'The book describes that size like this:

“When the JVM invokes a method, it checks the class data
to determine the number of words required by the method
in the local variables and operand stack. It creates a stack
frame of the proper size for the method and pushes it onto
the stack.”

Word size, operand stack, and constant pool

These descriptions introduce the phrases word size, operand stack, and

constant pool. Here are definitions of those terms:

58 JVM Stacks, Stack Frames, and Stack Overflow Errors

First, word size 1s a unit of measure. From Chapter 5 of the same book,
the word size can vary in JVM implementations, but it must be at least

32 bits so it can hold a value of type long or double.

Next, the operand stack 1s defined here on oracle.com, but as a word of
warning, that definition gets into machine code very quickly. For in-
stance, it shows how two integers are added together with the iadd in-
struction. You are welcome to dig into those details, but for our purposes,
a simple way to think about the operand stack is that it’s memory (RAM)

that 1s used as a working area inside a stack frame.

The Java run-time constant pool 1s defined at this oracle.com page, which
states, “A run-time constant pool ... contains several kinds of constants,
ranging from numeric literals known at compile-time, to method and
field references that must be resolved at run-time. The run-time con-
stant pool serves a function similar to that of a symbol table for a con-
ventional programming language, although it contains a wider range of
data than a typical symbol table.”

Summary to this point

You can summarize what you've learned about stacks and stack frames
like this:

* Each JVM thread has a private stack, created at the same time as
the thread.

* A stack stores frames, also called stack frames.

* A stack frame is created every time a new method 1s called.

We can also say this about what happens when a Java/Scala/JVM
method is invoked:

* When a method is invoked, a new stack frame is created to contain

information about that method.

https://www.artima.com/insidejvm/ed2/jvm3.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.6.2
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html#jvms-2.5.5

29

 Stack frames can have different sizes, depending on the method’s

parameters, local variables, and algorithm.

* As the method is executed, the code can only access the values
in the current stack frame, which you can visualize as being the

top-most stack frame.

As it relates to recursion, that last point is important. As a function like
our sum function works on a list (such as List(1,2,3)), information about
that instance of sumis in the top-most stack frame, and that instance of
sum can’t see the data of other instances of the sum function. This is how
what appears to be a single, local variable — like the values head and
tail inside of sum — can seemingly have many different values at the

same time: they’re all maintained in different stack frames.

One last resource on the stack and recursion

To be thorough, I want to share one last description of the stack (and
the heap) that has specific comments about recursion. The discussion
in Figure 10.4 comes from a book named Algorithms, by Sedgewick and
Wayne.

There are two important lines in this description that relate to recursive
algorithms:

* When the method returns, that information is popped off the
stack, so the program can resume execution just after the point
where it called the method.

* recursive algorithms can sometimes create extremely deep call

stacks and exhaust the stack space.

What we now know

From all of these discussions I hope you can see the potential problem

of recursive algorithms:

http://amzn.to/1WSRnEY

60 JVM Stacks, Stack Frames, and Stack Overflow Errors

SERIOUS STACK SPACE

Mormally a computer allocates two areas of memory for a program: the stack and
the heap.

The stack is used to store information about method calls. When a piece of
code calls a method, information about the call is placed on the stack. When the
method returns, that information is popped off the stack, so the program can
resume execution just after the point where it called the method. [The stack is the
same kind of stack described in Chapter 5.] The list of methods that were called to
get to a particular point of execution is called the cail stack,

The heap is another piece of memory thal the program can use 1o create
varlables and perform calculations.

Typically the stack is much smaller than the heap. The stack usually is large
enough for normal programs because your code typically doesn’t include methods
calling other methods to a very great depth. However, recursive algorithms can
sometimes create extremely deep call stacks and exhaust the stack space,
causing the program to crash.

For this reason, it's impartant to evaluate the maximum depth of recursion that
arecursive algorithm réquires in addition to studying its run time and memary
regquirements,

Figure 10.4: A discussion of the JVM stack and heap

* When a recursive function calls itself, information for the new in-
stance of the function is pushed onto the stack in the form of a

new stack frame.

* Each time the function calls itself, another copy of the function
information is pushed onto the stack. With each recursive call, a
new stack frame 1s added to the stack.

* As a result, more and more memory that is allocated to the stack
1s consumed as the function recurses. If the sum function calls itself

a million times, a million stack frames are created.

* Because the JVM stack size is relatively small, it’s easy for a re-
cursive function to consume all of this memory, which results in a

StackOverflowError.

A Visual Look at Stacks and Frames

Given the background information of the previous lesson, let’s take a
visual look at how the JVM stack and stack frames work by going back

to our recursive sum function from the previous lessons.

Before the sum function is initially called, the only thing on the call stack
is the application’s main method, as shown in Figure 11.1.

Stack

main

Figure 11.1: main is the only method on the call stack before sum is called.

Then main calls sum with List(1,2,3), which I show in Figure 11.2 with-
out the “List” to keep things simple.

The data that’s given to sum matches its second case expression, and in
my pseudocode, that expression evaluates to this:

return 1 + sum(2,3)

61

62 A Visual Look at Stacks and Frames

Stack

sumil,2,3)

main

Figure 11.2: The first sum call is added to the stack.

So now a new instance of sum is called with List(2,3), and the stack

looks as shown in Figure 11.3.

Inside this sum call, the second case expression is matched, and the right

side of the => symbol evaluates to this:
return 2 + sum(3)

At this point a new instance of sum is called with the input parameter
List(3), and the stack looks like Figure 11.4.

Once again the second case expression i1s matched, and the right side of

the => symbol evaluates to this:
return 3 + sum(Nil)

Finally, another instance of sum is called with the input parameter Nil
— also known as List() — and the stack now looks like Figure 11.5.

This time, when sum(Nil) is called, the first case expression is matched:

Stack

sum(2,3)

sumil,2,3)

main

Figure 11.3: The second sum call is added to the stack.

Stack

sumi3)

sum{2,3)

sumil,2,3)

main

Figure 11.4: The third sum call is added to the stack.

63

64 A Visual Look at Stacks and Frames

Stack

sumiMil)
sumi 3]
sumi2,3)

sumil,2,3)

main

Figure 11.5: The fourth (and final) sum call is added to the stack.

case Nil => 0

That pattern match causes this sum instance to return @, and when it
does, the call stack unwinds and the stack frames are popped off of the

stack, as shown in the series of images in Figure 11.6.

sum(Nil)
sum(3) - sum(3)

sum(1,2,3)

sum(2,3) sum{2,3) - sum(2,3)
sum(1,2,3) sum(1,2,3)

- ‘ sum(1,2,3) l

Fagure 11.6: In the unwinding of the call stack, the stack frames are popped off the

stack as each_function yields its result.

In this process, as each sum call returns its result, its frame is popped off
of the stack, and when the recursion completely ends, the main method is
the only frame left on the call stack. (The value 6 is also returned by the

first sum invocation to the place where it was called in the main method.)

65

I hope that gives you a good idea of how recursive function calls are
pushed-on and popped-off the JVM call stack.

Manually dumping the stack with the sum example

If you want to explore this in code, you can also see the series of sum
stack calls by modifying the sum function. To do this, add the lines of
code shown to the Nil case to print out stack trace information when
that case is reached:

def sum(list: List[Int]): Int = list match
case Nil =>
// manually create a stack trace and then print it
val stackTraceAsArray =
Thread.currentThread.getStackTrace
stackTraceAsArray.foreach(println)
// return @ as before
0

case X :: XS => X + sum(xs)
Now, if you call sum with a list that goes from 1 to 5:

val 1list = List.range(l, 5)
sum(list)

youw’ll get this output when the Nil case is reached:

java.base/java.lang.Thread.getStackTrace(Thread. java:1602)
rs$line$8%.sum(rs$line$8:5)
rs$line$8%$.sum(rs$line$8:10)
rs$line$8%$.sum(rs$line$8:10)
rs$line$8%.sum(rs$line$8:10)
rs$line$8%$.sum(rs$line$8:10)

While that output isn’t too exciting, it shows that when the stack dump

66 A Visual Look at Stacks and Frames

is manually triggered when the Nil case is reached, the sum function is
on the stack five imes. You can verify that this is correct by repeating
the test with a List that has three elements, in which case you’ll see the

sum function referenced only three times in the output:

java.base/java.lang.Thread.getStackTrace(Thread. java:1602)
rs$line$8%$.sum(rs$line$8:5)

rs$line$8%.sum(rs$line$8:10)

rs$line$8%.sum(rs$line$8:10)

Clearly the sum function is being added to the stack over and over again,

once for each call.

I encourage you to try this on your own to become comfort-
able with what’s happening.

Summary: Our current problem with “basic recursion”

I'hope this little dive into the JVM stack and stack frames helps to explain
our current problem with “basic recursion.” As mentioned, if I try to
pass a List with 10,000 elements into the current recursive sum function,
it will generate a StackOverflowError. Because we’re trying to write

bulletproof programs, this isn’t good.

What's next

Now that we looked at (a) basic recursion with the sum function, (b) how
that works with stacks and stack frames in the last two lessons, and (c)
how basic recursion can throw a StackOverflowError with large data
sets, the next lesson shows how to fix these problems with something

called “‘tail recursion.”

67

See also

» Chapter 5 of Inside the Java Virtual Machine, by Bill Venners is
an excellent resource. You may not need to read anything more
than the content at this URL.

» Chapter 2 of Oracle’s JVM Specification is also an excellent re-

source.

e Here’s an article I wrote about the differences between the stack

and the heap a long time ago.

One More Thing: Viewing and Setting the JVM Stack Size

“Well,” you say, “these days computers have crazy amounts of memory.
Why is this such a problem?”

According to this Oracle document, with Java 6 the default stack size was
very low: 1,024k on both Linux and Windows.

| encourage you to check the JVM stack size on your favorite computing
platform(s). One way to check it is with a command like this on a Unix-
based system:

java -XX:+PrintFlagsFinal -version | grep -i stack

When | do this on my current Mac OS X system, | see that the
ThreadStackSize is 1024. | dug through this oracle.com documentation
to find that this “1024” means “1,024 Kbytes”.

It's important to know that you can also control the JVM stack size with
the -Xss command line option:

$ java -Xss IM ... (the rest of your command line here)

That command sets the stack size to one megabyte. You specify the mem-

https://www.artima.com/insidejvm/ed2/jvm8.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
https://alvinalexander.com/java/java-stack-heap-definitions-memory
https://alvinalexander.com/java/java-stack-heap-definitions-memory
http://www.oracle.com/technetwork/java/hotspotfaq-138619.html
http://www.oracle.com/technetwork/articles/java/vmoptions-jsp-140102.html

68

A Visual Look at Stacks and Frames

ory size attribute as m or M after the numeric value to get megabytes, as
in 1m or 1M for one megabyte.

Use g or G to specify the size in gigabytes, but if you're
trying to use many MB or GB for the stack size, you're doing
something wrong. You may need this gigabytes option for
the Xmx option, but you should never need it for this Xss
attribute.

The Xss option can help if you run into a StackOverflowError, BUT, the
next lesson on fail recursion is intended to help you from ever needing this
command line option.

More JVM memory settings

As a final note, you can find more options for controlling Java application
memory use by looking at the output of the java -X command:

$ java -X

If you dig through the output of that command, you'll find that the
command-line arguments specifically related to Java application memory
use are:

-Xms set initial Java heap size
-Xmx set maximum Java heap size

-Xss set java thread stack size
You can use these parameters on the java command line like this:
java -Xmse4m -Xmx1G myapp.jar

As before, valid memory values end with m or M for megabytes, and g or
G for gigabytes:

http://alvinalexander.com/blog/post/java/java-xmx-xms-memory-heap-size-control

-Xms64m or -Xmso64M
-Xmx1lg or -Xmx1G

69

70

A Visual Look at Stacks and Frames

Tail-Recursive Algorithms

the “Functional” cartoon on
xkcd.com

Goal

The goal of this lesson is to solve the problem shown in the previ-
ous lessons: Simple recursion creates a series of stack frames, and
for algorithms that require deep levels of recursion, this creates a
StackOverflowError (and crashes your program).

Tail recursion to the rescue

Although the previous lesson showed that algorithms with deep levels
of recursion can crash with a StackOverflowError, all is not lost. With
Scala you can work around this problem by making sure that your re-

cursive functions are written in a tail-recursive style.

A tarl-recursive function 1s just a function whose very last action 1s a call to itself.
When you write your recursive function in this way, the Scala compiler
can optimize the resulting JVM bytecode so that the function requires only one
stack _frame — as opposed to one stack frame for each level of recursion!

On this Stack Overflow page, Martin Odersky (creator of the Scala lan-

guage) explains tail-recursion in Scala:

71

https://xkcd.com/1270/
https://xkcd.com/1270/
https://stackoverflow.com/questions/12496959/summing-values-in-a-list

72 Tail-Recursiwe Algorithms

“Functions which call themselves as their last action are
called tail-recursive. The Scala compiler detects tail recur-
sion and replaces it with a jump back to the beginning of
the function, after updating the function parameters with
the new values ... as long as the last thing you do is calling

yourself] it’s automatically tail-recursive (i.e., optimized).”

But that sum function looks tail-recursive to me ...

“Hmm,” you might say, “if I understand Mr. Odersky’s quote, the sum
function you wrote at the end of the last lesson sure looks tail-recursive

to me”’:

def sum(list: List[Int]): Int = list match
case Nil => 0

case X :: Xs => X + sum(xs)

“Isn’t the ‘last action’ a call to itself, making it tail-recursive?”

If that’s what you're thinking, fear not, that’s an easy mistake to make —
and I should know, because that’s what I thought!

But the answer is no, this function is not tail-recursive. Although
sum(tail) is at the end of the second case expression, you have to think
like a compiler here, and when you do that you’ll see that the last two

actions of this function are:

1. Call sum(xs)

2. After that function call returns, add its value to x and return that

result

When I make that code more explicit and write it as a series of one-line

expressions, you see that it looks like this:

73

case X :: XS =>
val s = sum(xs)
val result = x + s

return result

As shown, the last calculation that happens before the return statement is
that the sum of x and s 1s calculated. If you’re not 100% sure that you

believe that, there are a few ways you can prove it to yourself.

1) Proving it with the previous “stack trace” example
g

One way to “prove” that the sum algorithm is not tail-recursive is with
the stack trace output from the previous lesson. Asyou’ll recall, the JVM
output shows the sum method is called once for each step in the recursion
— five times when the list contains five elements — so it’s clear that the
JVM feels the need to create a new instance of sum for each element in

the collection.

2) Proving it with the @tailrec annotation

A second way to prove that sum isn’t tail-recursive is to attempt to tag
the function with a Scala annotation named @tailrec. This annotation

is cool because your function won’t compile unless it’s tail-recursive.

For example, if you attempt to add the @tailrec annotation to sum, like
this:

// need to import tailrec before using it

import scala.annotation.tailrec

@tailrec

74 Tail-Recursiwe Algorithms

def sum(list: List[Int]): Int = list match
case Nil => 0

case X :: XS => X + sum(xs)

the scalac compiler (or your IDE) will show an error message like this:

4 | case X :: XS => X + sum(xs)
| AAAAAAA
[Cannot rewrite recursive call: it is nhot
in tail position

1 error found

This is another way to “prove” that the Scala compiler doesn’t think sum

1s tail-recursive.

So, how do | write a tail-recursive function?

Now that you know the current approach isn’t tail-recursive, the ques-

tion becomes, “How do I make it tail-recursive?”

A common pattern used to make a recursive function that “accumulates

a result” into a tail-recursive function is to follow this series of steps:

1. Keep the original function signature the same (i.e., sum’s signa-

ture).

2. Create a second function by (a) copying the original function, (b)
giving it a new name, (c) making it private, (d) giving it a new
accumulator input parameter, and (e) adding the @tailrec anno-
tation to it.

3. Modify the second function’s algorithm so it uses the new accu-
mulator. (More on this shortly.)

4. Call the second function from inside the first function. When you

do this, you give the second function’s accumulator parameter a

75

“seed” value, such as the wdentity value I wrote about in the previous

lessons.

Let’s jump into an example to see how this works.

Example: How to make sum tail-recursive

1) Keep the original function signature the same

To begin the process of converting the recursive sum function into a taul-
recursiwe sum algorithm, leave the external signature of sum the same as it

was before:

def sum(list: List[Int]): Int = ...

2) Creale a second_function

Now create the second function by copying the first function, giving it a
new name, marking it private, giving it a new “accumulator” parameter

(named acc in this example), and adding the @tailrec annotation to it:

@tailrec
private def sumWithAccumulator(list: List[Int], acc: Int): Int =
list match
case Nil => 0

case X :: xS => X + sum(xs)

This code won’t compile as shown, so I'll fix that next.

76 Tail-Recursiwe Algorithms

TIP: Another key thing to notice in this solution is that the data type for
the accumulator (Int) is the same as the data type held in the List that
we're iterating over.

3) Modify the second function’s algorithm

The third step is to modify the algorithm of the newly-created function
to use the accumulator parameter. The easiest way to explain this is to
show the code for the solution, and then explain the changes. Here’s the

source code (where I renamed the accumulator parameter to acc so the

code would fit in the book’s width):

@tailrec
private def sumWithAccumulator(list: List[Int], acc: Int): Int =
list match
case Nil => acc

case X :: xs => sumWithAccumulator(xs, acc + Xx)

Here’s a description of how that code works:

* I'marked it with @tailrecso the compiler can help me by verifying

that my code truly is tail-recursive.

* sumWithAccumulator takes two parameters, list: List[Int], and

accumulator: Int.
* The first parameter is the same list that the sum function receives.

* The second parameter is new. It’s the “accumulator” that I men-
tioned earlier.

* The inside of the sumWithAccumulator function looks similar. It
uses the same match/case approach that the original sum method
used.

* Rather than returning 0, the first case statement returns the

77

accumulator value when the Nil pattern is matched.

* The second case expression IS tail-recursive. When this case is
matched, it immediately calls sumWithAccumulator, passing in the
xs (tail) portion of list. What'’s different here is that the second
parameter 1s the sum of (a) the accumulator, and (b) the head of

the current list, x.

* Where the original sum method passed itself the tail of xs and then
later added that result to x, this new approach keeps track of the

accumulator (total sum) value as each recursive call is made.

The result of this approach is that the “last action” of the sumWithAccumulator

function is this call:
sumWithAccumulator(xs, accumulator + Xx)

Because this last action really is a call back to the same function, the

JVM can optimize this code as Mr. Odersky described earlier.

4) Call the second function_from the furst function

The fourth step in the process is to modify the original function to call

the new function. Here’s the source code for the new version of sum:
def sum(list: List[Int]): Int = sumWithAccumulator(list, @)

Here’s a description of how it works:

* The sum function signature is the same as before. It accepts a

List[Int] and returns an Int value.

* The body of sum is just a call to the sumWithAccumulator func-
tion. It passes the original 1ist to that function, and also gives its

accumulator parameter an initial seed value of @.

78 Tail-Recursiwe Algorithms

Note that this seed value 1s the same as the identity value I wrote about in

the previous recursion lessons. In those lessons I noted:

» The identity value for a sum algorithm is @
* The identity value for a product algorithm is 1

* The identity value for a string concatenation algorithm is

A few notes about the sum_function

Looking at sum again:
def sum(list: List[Int]): Int = sumWithAccumulator(list, @)

a few key points about it are:

* The intention of the design is that other programmers will call
sum. It’s the “Public API” portion of the solution.

* It has the same function signature as the previous version of sum.
The benefit of this is that other programmers won’t have to pro-
vide the initial seed value. In fact, they won’t know that the in-
ternal algorithm uses a seed value. All they’ll see in their IDE or
your Scaladoc is sum’s type signature:

def sum(list: List[Int]): Int

A slightly better way to write sum

Tail-recursive algorithms that use accumulators are typically written in
the manner shown, with one exception: Rather than mark the new accu-
mulator function as private, most Scala/FP developers like to put that
function mside the original function as a way to limit its scope.

When doing this, the thought process is, “Don’t expose the

79

scope of sumWithAccumulator in any way, unless you want

other functions to call it.”

When you make this change, the final code looks like this:

/**

* A tail-recursive solution with the accumulator function
* enclosed inside the outer “sum™ function.

*/

import scala.annotation.tailrec

def sum(list: List[Int]): Int =
@tailrec
def sumWithAccumulator(list: List[Int], currSum: Int): Int =
list match
case Nil => currSum
case X :: xs => sumWithAccumulator(xs, currSum + x)
end sumWithAccumulator
sumWithAccumulator(list, @)

end sum

Feel free to use either approach. (Don'’t tell anyone, but I prefer the first

approach; I think it reads more easily.)

A note on variable names

As shown in the previous example, if you don’t like the name
accumulator for the new input parameter, it may help to see the
function with a different parameter name. For a “sum” algorithm a

name like runningTotal or currentSum may be more meaningful:

/%%
* A complete tail-recursive solution that shows a

* different name for the accumulator parameter.
*/

80 Tail-Recursiwe Algorithms

import scala.annotation.tailrec

def sum(list: List[Int]): Int =
sumWithAccumulator(list, @)

@tailrec
def sumWithAccumulator(

list: List[Int],

runningTotal: Int // the ‘accumulator’ parameter
): Int = list match

case Nil => runningTotal

case x :: xs => sumWithAccumulator(xs, runningTotal + x)

(Note that I changed the formatting of that function to fit the book’s
width.)

I encourage you to use whatever name makes sense to you. Personally I
prefer currentSum for this algorithm, but you’ll often hear this approach
referred to as using an “accumulator,” which is why I used that name
first.

Proving that this solution is tail-recursive

To wrap up this discussion, let’s take a few moments to prove that the

compiler thinks this code is tail-recursive.

Frst proof

As you may be thinking, the first proofis already in the code. When you
compile this code with the @tailrec annotation and the compiler doesn’t

complain, you know that the compiler believes the code is tail-recursive.

81

Second proof

If for some reason you don’t believe the compiler, a second way to prove
this is to add some debug code to the new sum function, just like we did in
the previous lessons. Here’s the source code for a full Scala 3 application
that shows this approach:

//> using scala "3"
// run me like this:

// scala-cli SumTailRecursive.scala
import scala.annotation.tailrec

def sum(list: List[Int]): Int =
sumWithAccumulator(list, @)

@tailrec
def sumWithAccumulator(
list: List[Int],
runningTotal: Int // the ‘accumulator’ parameter
): Int = list match
case Nil =>
val stackTraceAsArray = Thread.currentThread.getStackTrace
stackTraceAsArray.foreach(println)
runningTotal
case X :: XS =>

sumWithAccumulator(xs, runningTotal + x)

@main def SumTailRecursive =
println(sum(List.range(1l, 10_000)))

When I put that code in a file named SumTailRecursive.scala and then
compile and run it with scala-cli, I see a lot of other output related to

the compilation process, followed by the answer:

82 Tail-Recursiwe Algorithms

$ scala-cli SecondProof.scala

// ... other compiler output here ...
java.base/java.lang.Thread.getStackTrace(Thread. java:1610)
SecondProof$package$. sumWithAccumulator(SecondProof.scala:16)
SecondProof$package$.sum(SecondProof.scala:8)
SecondProof$package$.SumTailRecursive(SecondProof.scala:23)
SumTailRecursive.main(SecondProof.scala:22)

49995000

As you can see, although the List in the code contains 10,000 elements,
there’s only one call to sum, and more importantly in this case, only one
call to sumAccumulator. You can now safely call sum with even more
elements and it will work just fine without blowing the stack. (Go ahead
and test it!)

NOTE: The upper limit of a Scala Int is 2,147,483,647,
so at some point you'll create a number that’s too large
for that. Fortunately a Long goes to 2463-1 (which is
9,223,372,036,854,775,807), so that problem is easily
remedied. (If that’s not big enough, use a BigInt.)

Key points

In this lesson I:

* Showed why the sum function I created in the previous lessons isn’t
tail-recursive

¢ Defined tail recursion
e Introduced the @tailrec annotation
* Showed how to write a tail-recursive function

* Showed a formula you can use to convert a simple recursive func-

tion to a tail-recursive function

» Showed ways to prove to yourself that a function is tail-recursive

TIP: Personally, 'm usually not smart enough to write a tail-recursive func-
tion right away, so | usually write my algorithms using simple recursion,
and then convert them to use tail-recursion.

83

84

Tail-Recursiwe Algorithms

Bonus: Processing I/0 with Recursion

To demonstrate something completely different with recursion, I've
adapted the following lesson from my book, Learn Functional Program-
ming Without Fear”.

Because most of this text comes from that book, you'll see that | occasion-
ally refer to the code we write as being like algebra. In FP, that's the exact
mindset: When we write FP code, it’s just like we are mathematicians,
and every pure function we write is like an equation, and then we com-
bine those equations together in a series of expressions. The use of pure
functions, immutable data, and immutable variables (algebraic variables)
is what makes our code like algebra.

“https:/ /alvinalexander.com/scala/learn-functional-programming-book

This lesson’s goal

Now that you've seen a /ot of lessons that show how to use recursion to
iterate over the elements in a List, let’s look at another use of recursion:
looping over a data source that is not a List.

In this lesson you’ll write some recursive code to:

1. Prompt a user for their input
2. Read that input

3. Process the input as desired
4. Go back to Step 1

By the end of the lesson you’ll see how to write recursive code to create

85

https://alvinalexander.com/scala/learn-functional-programming-book
https://alvinalexander.com/scala/learn-functional-programming-book
https://alvinalexander.com/scala/learn-functional-programming-book

86 Bonus: Processing 1/0 with Recursion

a complete, little command-line application that works like this:

$ scala-cli MainLoopExample.scala

Enter your name: al

AL

Enter your name: alvin
ALVIN

Enter your name: q

Q

To do this, I'm going to combine recursion along with (a) a for expres-
sion and (b) the Scala Try data type, so I'll briefly review those before

we get into the recursion.

'for’ expressions

A Scala for expression is like a for loop in other programming lan-

guages, but it always yields a result.

A for expression begins with the for keyword, iterates over a data source
(or stream), lets you process that data as desired, and then ends by yield-
ing a result. It has the following general syntax, including the for and

yield keywords:

val result =
for
X <- Xxs // 'xs' is a source of data
y <- customFunctionl(x)
z <- customFunction2(y)
yield
// add business logic here as desired

z

To demonstrate this more, here’s a concrete example that shows how to

87

use the list xs as the data source for a for expression. This expression
yields a new list ys, where each integer in ys is twice the value of the

corresponding element in xs:

val xs = List(1, 2, 3)
val ys: List[Int] =
for
X <- XS
yield

x * 2

// ys has this value:
// ys == List(2, 4, 6)

I wrote that for expression in a long form to clearly show the for/yield

sections, but you can also write it as a one-liner like this:
val ys = for x <- xs yield x * 2

In summary, a for expression is used to (a) loop over a list (or other data
source), (b) process that data as desired, and (c) yield some result.

TIP: If you're familiar with the map method on Scala collections classes,
the for expression just shown works the same as this map method:

val ys = xs.map(x => x * 2)

Error handling with Try

In addition to for expressions, the other piece of knowledge you need
to know for the recursion example that follows is how to use Scala’s Try

data type.

A key thing to know is that Try is an error-handling data type. This means

88 Bonus: Processing 1/0 with Recursion

that rather than writing a function that throws an exception, you return

one of Try’s two sub-types, Success and Failure:

* When the function’s algorithm succeeds as desired, the function re-

turns its successful result inside a Success.

* When the function’s algorithm #hrows an exception, the function
catches that exception and then returns a Failure that contains

the exception information.

If you’re familiar with Java’s Optional data type, Try is similar to that,
but a significant difference is that Try gives us access to the exception
information. Because of that, I use it all the time for I/O functions and
any other function that can throw an exception. (That way I can tell the

end user what went wrong.)

A Try example

To demonstrate Try, imagine that you want to write a pure function that
converts a String to an Int. Because this function can receive bad input
like "foo" or "yo" as well as good input like "1" or "2", a pure function
must account for that bad input.

Furthermore, because pure functions never throw exceptions — alge-
braic code never short-circuits with an exception — we commonly use
Try in this situation:

// you have to import the Try data types to use them

import scala.util.{Try, Success, Failure}

// return Try instead of throwing an exception
def makeInt(s: String): Try[Int] =
try

Success(s.tolnt)

89

catch

case e: NumberFormatException => Failure(e)

This is what makeInt looks like when it’s called with both good and bad
data:

// success case
makeInt("1™) // Success(1)

// failure case
makeInt("one™") // Failure(java.lang.NumberFormatException:

// For input string: "one™")

The way makeInt works is like this:

1. It receives a String input parameter, which I have named s
2. It attempts to convert that String to an Int by calling s.toInt

3. When that attempt succeeds, the result is wrapped in a Success
value, and that Success is returned

4. Conversely, if that attempt fails, control is transferred to the catch
block, and a NumberFormatException is returned inside a Failure

As mentioned, Success and Failure are sub-types of Try, so I declare
the function to return the parent Try type, and then I return specific

mstances of Success and Failure inside the function.

TIP 1: When you declare that a function returns a Try[Int], this means
that the Success value must contain an Int (while the Failure always
contains an exception). And, as described, a function either returns a

Success 0r a Failure.

TIP 2: Once you have a Try value — such as a result from makeInt —a
typical way to handle it is with a match expression:

90 Bonus: Processing 1/0 with Recursion

makeInt(aString) match

case Success(i) =>
println(s"Success: i = $i")

case Failure(e) =>

println(s"Failed: msg = ${e.getMessage}")

A more concise version of Try

As a last point about Try, in a “basic” scenario like makeInt where you
have (a) an algorithm that throws an exception, and (b) you don’t want
to do anything special inside the try and catch blocks, you can write

your code more concisely like this:
def makeInt(s: String): Try[Int] = Try(s.tolnt)

In this situation, Try’s constructor works just like the longer code previ-
ously shown.

Using recursion to create a loop

Given those two pieces of knowledge as background information, let’s
look at how to use recursion differently. In the rest of this lesson we’ll
use a for expression and recursion to stay in the following loop until the
user says they want to exit:

1. Prompt a user for their input
Read that input
Process the input as desired

Go back to Step 1

S

Before we start on the “looping” part of the code, we’ll first need two

functions, one to prompt a user for their input, and a second to read

91

their input:

import scala.io.StdIn

import scala.util.{Try, Success, Failure}

def printOutput(s: String): Try[Unit] = Try {
print(s)

def readInput(): Try[String] = Try {
StdIn.readlLine()

I use Try with these functions because I want you to imagine that these
functions are REST API calls, where one writes to a REST endpoint
and the other reads a REST response. Because network calls can fail,

you need to handle that possibility, and Try is perfect for this.

Next, because I know that I want to continuously prompt a user and
then read their input, I know that I want some sort of loop. The way
I'm going to solve this is with the use of a for expression.

There’s a little bit of a “chicken and the egg” thing going on here, so
what I’'m going to do is demonstrate a solution I know based on past
experience, and then I'll explain that as I go on. Therefore, if you’ll
bear with me for a few moments, I'm going to start writing this code to

create a “main loop™:

def mainLoop(): Try[Unit] = for ...

Based on past experience, what I’'m thinking here 1s this:
* I need to create a loop

* A for expression is a great “looping” tool

* Inside for I'm going to prompt the user, then read and process

92 Bonus: Processing 1/0 with Recursion

their input

* One part you'll see as we go along is that immediately after this, I
will then recursively call mainLoop from inside the for expression

when the user wants to continue

Prompting for input

Given that background, let’s focus on writing the code inside the for
expression. In here we know that the first thing we want to do is prompt

the user for their input, so I add this line:

def mainLoop(): Try[Unit] = for
_ <- printOutput("Enter your name: ")

// more code soon ...

This code 1s a little different than the for expression I showed earlier, but
it can be read as, “Prompt the user for their input. Because printOutput
returns a Unit value wrapped inside a Try, I don’t care about that value,

_ character on the left

so ignore it.” The key here is that I use the
side of the <- operator to say, “I don’t care about the value returned

by printOutput.”
I could also write that code with a variable name, like this:

def mainLoop(): Try[Unit] = for
ignoreMe <- printOutput("Enter your name: ")

// more code soon ...

but once you get used to seeing the _ character, it jumps out at you and

makes the intention to “ignore this value” very obvious.

93

Reading the input

The next thing I want to do inside the loop is read the user’s input, so I
add in a readInput call:

def mainLoop(): Try[Unit] = for
_ <- printOutput("Enter your name: ")
input <- readInput()

// more code soon ...

This new line of code reads the user input and binds it to the variable
named input. What happens here is that whatever the user types in
before they press the [Enter] key becomes a String that’s assigned to

the input variable.

A key to know here is that even though readInput returns a Try[String],
the variable input is a plain String. How this works is beyond the scope
of this particular book, but this is the way that types like Try work: inside
a for expression, you know that you’re working with the value contained

inside the Success type.

Conversely, if readInput or printOutput return a Failure,
the for expression is terminated at that point, and the
for expression’s result is a Failure. In this situation, that

Failure would be mainLoop’s return type.

For the purposes of this discussion I don’t care about potential errors, so

we’ll press on.

For MANY more details about how for expressions work, see my book,
Functional Programming, Simplified”.

“https:/ /alvinalexander.com/scala/functional-programming-simplified-book

https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com/scala/functional-programming-simplified-book

94 Bonus: Processing 1/0 with Recursion

Handling the input

Next, our application needs to process the user’s input. In a larger appli-
cation you’d write a function to do this, but to keep things simple I'm
just going to convert the user’s input to uppercase. Therefore, I know
that I want to do something like this:

def mainLoop(): Try[Unit] = for

_ <- printOutput("Enter your name: ")

input <- readInput()
_ <- {
val ucInput = input.toUpperCase
printOutput(ucInput + "\n™)
// hmm, now i need to do something to
// loop again ...
ky
yield
O

A few notes about that code:

* Code inside curly braces is a “block of code (BOC)” (for lack of a
better term)

* The value of a BOC is the value of the last expression inside the
BOC

* Therefore, the type of this BOC is the return type of printOutput,
which we know is Try[Unit]

Another important note is that the yield portion of the code returns the
symbol (). This is the Scala way to say that this code yields an instance
of the Unit type. Unit is like void or Void in other languages, and when
you return it from a yield, it means that this expression does not return
anything (or at least nothing of interest). Because I knew this was coming,
that’s how I knew mainLoop’s return type would be Try[Unit]:

95

def mainLoop(): Try[Unit] = for ...

At this point, mainLoop works as-is and will prompt a user one time, but
since I want to prompt them over and over again, we need to add some-
thing else ...

Implementing the loop

When you’re working with immutable values, the solution to this prob-
lem is almost always the same: recursion. Therefore, you may not know
it yet, but what we need to do inside the for expression is to call mainLoop
recursively, so it starts the prompt/read/handlelnput process all over

again.

Because I'm about to recursively call mainLoop, a good thing to do at
this point is to think about the recursion’s end condition. 'To keep things as
simple as possible, my recursion will end when the uppercase version of
the string I get from the user is a "Q". When this happens, I'll stop the

recursion by exiting the application.
I can sketch those thoughts as code like this:
if
input.toUpperCase == "Q" then System.exit(0)

else

mainLoop() // the recursive call

With a few minor adjustments, I then add that code to the existing for
expression:

import scala.util.{Try, Success, Failure}

def mainLoop(): Try[Unit] = for

_ <- printOutput("Enter your name: ")

96 Bonus: Processing 1/0 with Recursion

input <- readInput()

_ <- {
val ucInput = input.toUpperCase
printOutputCucInput + "\n™)
if ucInput == "Q" then System.exit(0@)
mainLoop()
¥
yield
O

You can format that code in different ways, but the important thing is
that this code:

_ <- A
val ucInput = input.toUpperCase
printOutput(ucInput + "\n")
if ucInput == "Q" then System.exit(@)
mainLoop()
by

can be read as:

* As mentioned before, everything inside the curly braces is one
block of code

Inside that block, first convert the user’s input to uppercase, and
then print that value (ucInput)

Next, if the uppercase version of their input is the string "Q", exit
the application

Otherwise, call mainLoop recursively

Therefore, when you don’t get "Q" as your input, mainLoop is called again,

it starts its for expression, which prompts the user (again) for their input.

97

A common pattern

The approach I just showed is a very common way in FP to iterate over
some source of data, whether that datais a List, user input, or any other
data stream:

def mainLoop(): Try[Unit] = for
data <- getData()

_ <= {
// [1] an algorithm that uses 'data'
// [2] "if' some condition is true,
// exit the loop, else:
mainLoop()
}
yield
O

As time goes on I'm sure that developers will find other ways to encapsu-
late this pattern (and some may exist already that I'm not aware of), but
until then, I wanted to let you know that in FP this is currently a very
common approach.

TIP: As | write in Functional Programming, Simplified and Learn Func-
tional Programming Without Fear, FPers write code just like a mathemati-
cian writes algebra: there are no moving parts, which means that in our
code there are no mutable variables (var fields) and no mutable data
structures (lists, etc.). Everything we write is truly like algebra. Because
of this, for expressions and recursion are what we use to iterate over lists
and streams.

98 Bonus: Processing 1/0 with Recursion

A complete application

Lastly, I'll create a complete Scala 3 application to show that this works.
The only new thing I'll add here is a Scala 3 main method, which is what
kicks off a Scala 3 application. As you’ll see in the code, all that main
method does is make an initial call to mainLoop to get the ball rolling:

import scala.io.StdIn

import scala.util.{Try, Success, Failure}

// i shortened these two functions
def printOutput(s: String): Try[Unit] = Try(print(s))

def readInput(): Try[String] = Try(StdIn.readLine())
def mainLoop(): Try[Unit] = for

_ <- printOutput("Enter your name: ")

input <- readInput(Q)

_ <- {
val ucInput = input.toUpperCase
printOutput(ucInput + "\n")
if ucInput == "Q" then System.exit(@)
mainLoop()
}
yield
O
@main

def MainLoopExample =
// this starts the application running:

mainLoop()

The way this code works is:

* The Scala 3 compiler sees @main before the MainLoopExample

method, and recognizes it as a main method

99

* A main method is the entry point to a Scala 3 application, so this

method begins running

It calls the mainLoop function, which that starts the process of

prompting the user and reading their input

Lastly, as I showed in the beginning of this lesson, an interactive session
with this application looks like this:

$ scala-cli MainLoopExample.scala

Enter your name: al
AL

Enter your name: alvin
ALVIN

Enter your name: q

Q

Key points

This was a relatively large lesson, so let’s recap the key points:

* for expressions can be used to loop over lists, as well as streams of

information (such as user input, in this example)

* The Try data type is used for error-handling, and it has the sub-

types Success and Failure

* As shown in the mainLoop example, you can use recursion inside

a for expression

I'included this example in this booklet because, again, whenever you’re
using only immutable values, immutable data, and you also need to loop
(or iterate) over that data, recursion is e solution. As shown in this
example, that applies to processing user input, but if you imagine that
readInput and printOutput were REST functions that interact with data

across the internet, the solution would be the same.

100 Bonus: Processing 1/0 with Recursion

One thing I glossed over in this lesson is that Try can be used inside
for expressions. I didn’t get into that here because it’s a long story, but
a very short answer is that Try works because it implements map and
flatMap methods, and any class that properly implements those methods
can work in for expressions. For much more detail on this, see my “Big
FP Book,” Functional Programming, Simplified'.

Uhttps:/ /alvinalexander.com/scala/functional-programming-simplified-book

https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com/scala/functional-programming-simplified-book

The End

As I mentioned way back in the beginning of this booklet, I pulled most
of these chapters from my book, FFunctional Programming, Simplified:
Updated for Scala 3'.

In these chapters, because I attempt to explain recursion in a variety
of different ways over about 100 pages, I thought this might make a
nice, standalone booklet. So if you’re interested in recursion, I hope this
booklet has been helpful.

Other books

If you're interested in other books I've written on Scala, here’s the cur-
rent list as of January, 2023:

OREILLY &,

Scala
Cookbook

Recipes for Object Oriented and
Functional Programming

Alvin Alexonder

Scala Cookbook, 2nd Edition (Amazon.com)?

! https://alvinalexander.com/scala/functional-programming-simplified-book-scala-3
Zhttps://amzn.to/3dulpMR

101

https://alvinalexander.com/scala/functional-programming-simplified-book-scala-3
https://alvinalexander.com/scala/functional-programming-simplified-book-scala-3
https://amzn.to/3du1pMR
https://alvinalexander.com/scala/functional-programming-simplified-book-scala-3
https://amzn.to/3du1pMR

102 The End

Functional Programming, Simplified
(“The Big FP Book,” alvinalexander.com)®

Learn Functional Programming Without Fear
(“The Little FP Book,” alvinalexander.com)*

T

ALVIN ALEYANDER

Learn Scala 3 The Fast Way!”

Shttps:/ /alvinalexander.com/scala/functional-programming-simplified-book
*https://alvinalexander.com//scala/learn-functional-programming-bhook
Shttps:/ /alvinalexander.com/scala/learn-scala-3-the-fast-way-book

https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com//scala/learn-functional-programming-book
https://alvinalexander.com//scala/learn-functional-programming-book
https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book
https://alvinalexander.com/scala/functional-programming-simplified-book
https://alvinalexander.com//scala/learn-functional-programming-book
https://alvinalexander.com/scala/learn-scala-3-the-fast-way-book

103

Other resources

If you’re interested in other free resources related to recursion, here’s a

small collection of blog posts I've written:

6

A Scala ‘foldLeft’ function written using recursion
* More Scala recursion examples’

« A Scala factorial recursion example®

* Recursion is great, but check out Scala’s fold and reduce’
« A quick review of Scala’s for-expressions'’

* You can also find my free videos here on my YouTube channel'!

Support my writing

As a last note, if you'd like to see more free documents like this in the
future (and free videos), you can support my work here:

¢ “Buy me a coffee” at ko-fi.com/alvin'?

* Be a patron of my work at patreon.com/alvinalexander'?

Shttps://alvinalexander.com/source-code/scala-foldleft-function-using-recursion/

"https:/ /alvinalexander.com/scala/scala-recursion-examples-recursive-programming
8https://alvinalexander.com/scala/scala-factorial-recursion-example-recursive-programming/
https:/ /alvinalexander.com/scala/fp-book/recursion-great-but-fold-reduce-in-scala/
Ohttps:/ /alvinalexander.com/scala/fp-book/ quick-review-scala-for-expressions/

Hhttps:/ /www.youtube.com/@devdaily/videos

2https:/ /ko-fi.com/alvin

Bhttps:/ /www.patreon.com/alvinalexander

https://alvinalexander.com/source-code/scala-foldleft-function-using-recursion/
https://alvinalexander.com/scala/scala-recursion-examples-recursive-programming
https://alvinalexander.com/scala/scala-factorial-recursion-example-recursive-programming/
https://alvinalexander.com/scala/fp-book/recursion-great-but-fold-reduce-in-scala/
https://alvinalexander.com/scala/fp-book/quick-review-scala-for-expressions/
https://www.youtube.com/@devdaily/videos
https://ko-fi.com/alvin
https://www.patreon.com/alvinalexander
https://alvinalexander.com/source-code/scala-foldleft-function-using-recursion/
https://alvinalexander.com/scala/scala-recursion-examples-recursive-programming
https://alvinalexander.com/scala/scala-factorial-recursion-example-recursive-programming/
https://alvinalexander.com/scala/fp-book/recursion-great-but-fold-reduce-in-scala/
https://alvinalexander.com/scala/fp-book/quick-review-scala-for-expressions/
https://www.youtube.com/@devdaily/videos
https://ko-fi.com/alvin
https://www.patreon.com/alvinalexander

104 The End

Find me here
You can also find me at these locations:

e alvinalexander.com'*

e twitter.com/alvinalexander'

¢ linkedin.com/in/alvinalexander!'®

All the best,
Alvin Alexander
January, 2023

Mhttps://alvinalexander.com
Bhttps:/ /twitter.com/alvinalexander
https:/ /www.linkedin.com/in/alvinalexander

https://alvinalexander.com
https://twitter.com/alvinalexander
https://www.linkedin.com/in/alvinalexander
https://alvinalexander.com
https://twitter.com/alvinalexander
https://www.linkedin.com/in/alvinalexander

Index

algorithm, 48 tail recursion, 71

FPer, 8
getStackTrace, 65

JVM
stack, 54
stack frame, 56

linked list
cons cells, 10
list
head, 11
tail, 11
lists
end with Nil, 25
visualizing, 9

ways to create, 14
Martin Odersky, 71

recursion
accumulator, 74
case statements, 20
conversation, 39
how unwinding works, 27
stack and stack frames, 58
sum function, 17
thought process, 43
unwinding, 25, 64
visualizing, 31

recursion, tail, 71

stack, 61

105

	Welcome
	Recursion: Introduction
	Recursion: Motivation
	Recursion Background: Let's Look at Lists
	Recursion: How to Write a `sum' Function
	Recursion: How Recursive Function Calls Work
	Visualizing the Recursive sum Function
	Recursion: A Conversation Between Two Developers
	Recursion: Thinking Recursively
	JVM Stacks, Stack Frames, and Stack Overflow Errors
	A Visual Look at Stacks and Frames
	Tail-Recursive Algorithms
	Bonus: Processing I/O with Recursion
	The End

