alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (BrentSolver.java)

This example Commons Math source code file (BrentSolver.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

brentsolver, brentsolver, default_absolute_accuracy, default_maximum_iterations, deprecated, endpoints, functionevaluationexception, functionevaluationexception, maxiterationsexceededexception, maxiterationsexceededexception, non_bracketing_message, univariaterealfunction, univariaterealfunction, values

The Commons Math BrentSolver.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.analysis.solvers;


import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.analysis.UnivariateRealFunction;

/**
 * Implements the <a href="http://mathworld.wolfram.com/BrentsMethod.html">
 * Brent algorithm</a> for  finding zeros of real univariate functions.
 * <p>
 * The function should be continuous but not necessarily smooth.</p>
 *
 * @version $Revision:670469 $ $Date:2008-06-23 10:01:38 +0200 (lun., 23 juin 2008) $
 */
public class BrentSolver extends UnivariateRealSolverImpl {

    /**
     * Default absolute accuracy
     * @since 2.1
     */
    public static final double DEFAULT_ABSOLUTE_ACCURACY = 1E-6;

    /** Default maximum number of iterations
     * @since 2.1
     */
    public static final int DEFAULT_MAXIMUM_ITERATIONS = 100;

    /** Error message for non-bracketing interval. */
    private static final String NON_BRACKETING_MESSAGE =
        "function values at endpoints do not have different signs.  " +
        "Endpoints: [{0}, {1}], Values: [{2}, {3}]";

    /** Serializable version identifier */
    private static final long serialVersionUID = 7694577816772532779L;

    /**
     * Construct a solver for the given function.
     *
     * @param f function to solve.
     * @deprecated as of 2.0 the function to solve is passed as an argument
     * to the {@link #solve(UnivariateRealFunction, double, double)} or
     * {@link UnivariateRealSolverImpl#solve(UnivariateRealFunction, double, double, double)}
     * method.
     */
    @Deprecated
    public BrentSolver(UnivariateRealFunction f) {
        super(f, DEFAULT_MAXIMUM_ITERATIONS, DEFAULT_ABSOLUTE_ACCURACY);
    }

    /**
     * Construct a solver with default properties.
     */
    public BrentSolver() {
        super(DEFAULT_MAXIMUM_ITERATIONS, DEFAULT_ABSOLUTE_ACCURACY);
    }

    /**
     * Construct a solver with the given absolute accuracy.
     *
     * @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver
     * @since 2.1
     */
    public BrentSolver(double absoluteAccuracy) {
        super(DEFAULT_MAXIMUM_ITERATIONS, absoluteAccuracy);
    }

    /**
     * Contstruct a solver with the given maximum iterations and absolute accuracy.
     *
     * @param maximumIterations maximum number of iterations
     * @param absoluteAccuracy lower bound for absolute accuracy of solutions returned by the solver
     * @since 2.1
     */
    public BrentSolver(int maximumIterations, double absoluteAccuracy) {
        super(maximumIterations, absoluteAccuracy);
    }

    /** {@inheritDoc} */
    @Deprecated
    public double solve(double min, double max)
        throws MaxIterationsExceededException, FunctionEvaluationException {
        return solve(f, min, max);
    }

    /** {@inheritDoc} */
    @Deprecated
    public double solve(double min, double max, double initial)
        throws MaxIterationsExceededException, FunctionEvaluationException {
        return solve(f, min, max, initial);
    }

    /**
     * Find a zero in the given interval with an initial guess.
     * <p>Throws IllegalArgumentException if the values of the
     * function at the three points have the same sign (note that it is
     * allowed to have endpoints with the same sign if the initial point has
     * opposite sign function-wise).</p>
     *
     * @param f function to solve.
     * @param min the lower bound for the interval.
     * @param max the upper bound for the interval.
     * @param initial the start value to use (must be set to min if no
     * initial point is known).
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException the maximum iteration count
     * is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating
     *  the function
     * @throws IllegalArgumentException if initial is not between min and max
     * (even if it <em>is a root)
     */
    public double solve(final UnivariateRealFunction f,
                        final double min, final double max, final double initial)
        throws MaxIterationsExceededException, FunctionEvaluationException {

        clearResult();
        if ((initial < min) || (initial > max)) {
            throw MathRuntimeException.createIllegalArgumentException(
                  "invalid interval, initial value parameters:  lower={0}, initial={1}, upper={2}",
                  min, initial, max);
        }

        // return the initial guess if it is good enough
        double yInitial = f.value(initial);
        if (Math.abs(yInitial) <= functionValueAccuracy) {
            setResult(initial, 0);
            return result;
        }

        // return the first endpoint if it is good enough
        double yMin = f.value(min);
        if (Math.abs(yMin) <= functionValueAccuracy) {
            setResult(min, 0);
            return result;
        }

        // reduce interval if min and initial bracket the root
        if (yInitial * yMin < 0) {
            return solve(f, min, yMin, initial, yInitial, min, yMin);
        }

        // return the second endpoint if it is good enough
        double yMax = f.value(max);
        if (Math.abs(yMax) <= functionValueAccuracy) {
            setResult(max, 0);
            return result;
        }

        // reduce interval if initial and max bracket the root
        if (yInitial * yMax < 0) {
            return solve(f, initial, yInitial, max, yMax, initial, yInitial);
        }

        throw MathRuntimeException.createIllegalArgumentException(
              NON_BRACKETING_MESSAGE, min, max, yMin, yMax);

    }

    /**
     * Find a zero in the given interval.
     * <p>
     * Requires that the values of the function at the endpoints have opposite
     * signs. An <code>IllegalArgumentException is thrown if this is not
     * the case.</p>
     *
     * @param f the function to solve
     * @param min the lower bound for the interval.
     * @param max the upper bound for the interval.
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException if the maximum iteration count is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating the
     * function
     * @throws IllegalArgumentException if min is not less than max or the
     * signs of the values of the function at the endpoints are not opposites
     */
    public double solve(final UnivariateRealFunction f,
                        final double min, final double max)
        throws MaxIterationsExceededException,
        FunctionEvaluationException {

        clearResult();
        verifyInterval(min, max);

        double ret = Double.NaN;

        double yMin = f.value(min);
        double yMax = f.value(max);

        // Verify bracketing
        double sign = yMin * yMax;
        if (sign > 0) {
            // check if either value is close to a zero
            if (Math.abs(yMin) <= functionValueAccuracy) {
                setResult(min, 0);
                ret = min;
            } else if (Math.abs(yMax) <= functionValueAccuracy) {
                setResult(max, 0);
                ret = max;
            } else {
                // neither value is close to zero and min and max do not bracket root.
                throw MathRuntimeException.createIllegalArgumentException(
                        NON_BRACKETING_MESSAGE, min, max, yMin, yMax);
            }
        } else if (sign < 0){
            // solve using only the first endpoint as initial guess
            ret = solve(f, min, yMin, max, yMax, min, yMin);
        } else {
            // either min or max is a root
            if (yMin == 0.0) {
                ret = min;
            } else {
                ret = max;
            }
        }

        return ret;
    }

    /**
     * Find a zero starting search according to the three provided points.
     * @param f the function to solve
     * @param x0 old approximation for the root
     * @param y0 function value at the approximation for the root
     * @param x1 last calculated approximation for the root
     * @param y1 function value at the last calculated approximation
     * for the root
     * @param x2 bracket point (must be set to x0 if no bracket point is
     * known, this will force starting with linear interpolation)
     * @param y2 function value at the bracket point.
     * @return the value where the function is zero
     * @throws MaxIterationsExceededException if the maximum iteration count
     * is exceeded
     * @throws FunctionEvaluationException if an error occurs evaluating
     * the function
     */
    private double solve(final UnivariateRealFunction f,
                         double x0, double y0,
                         double x1, double y1,
                         double x2, double y2)
    throws MaxIterationsExceededException, FunctionEvaluationException {

        double delta = x1 - x0;
        double oldDelta = delta;

        int i = 0;
        while (i < maximalIterationCount) {
            if (Math.abs(y2) < Math.abs(y1)) {
                // use the bracket point if is better than last approximation
                x0 = x1;
                x1 = x2;
                x2 = x0;
                y0 = y1;
                y1 = y2;
                y2 = y0;
            }
            if (Math.abs(y1) <= functionValueAccuracy) {
                // Avoid division by very small values. Assume
                // the iteration has converged (the problem may
                // still be ill conditioned)
                setResult(x1, i);
                return result;
            }
            double dx = x2 - x1;
            double tolerance =
                Math.max(relativeAccuracy * Math.abs(x1), absoluteAccuracy);
            if (Math.abs(dx) <= tolerance) {
                setResult(x1, i);
                return result;
            }
            if ((Math.abs(oldDelta) < tolerance) ||
                    (Math.abs(y0) <= Math.abs(y1))) {
                // Force bisection.
                delta = 0.5 * dx;
                oldDelta = delta;
            } else {
                double r3 = y1 / y0;
                double p;
                double p1;
                // the equality test (x0 == x2) is intentional,
                // it is part of the original Brent's method,
                // it should NOT be replaced by proximity test
                if (x0 == x2) {
                    // Linear interpolation.
                    p = dx * r3;
                    p1 = 1.0 - r3;
                } else {
                    // Inverse quadratic interpolation.
                    double r1 = y0 / y2;
                    double r2 = y1 / y2;
                    p = r3 * (dx * r1 * (r1 - r2) - (x1 - x0) * (r2 - 1.0));
                    p1 = (r1 - 1.0) * (r2 - 1.0) * (r3 - 1.0);
                }
                if (p > 0.0) {
                    p1 = -p1;
                } else {
                    p = -p;
                }
                if (2.0 * p >= 1.5 * dx * p1 - Math.abs(tolerance * p1) ||
                        p >= Math.abs(0.5 * oldDelta * p1)) {
                    // Inverse quadratic interpolation gives a value
                    // in the wrong direction, or progress is slow.
                    // Fall back to bisection.
                    delta = 0.5 * dx;
                    oldDelta = delta;
                } else {
                    oldDelta = delta;
                    delta = p / p1;
                }
            }
            // Save old X1, Y1
            x0 = x1;
            y0 = y1;
            // Compute new X1, Y1
            if (Math.abs(delta) > tolerance) {
                x1 = x1 + delta;
            } else if (dx > 0.0) {
                x1 = x1 + 0.5 * tolerance;
            } else if (dx <= 0.0) {
                x1 = x1 - 0.5 * tolerance;
            }
            y1 = f.value(x1);
            if ((y1 > 0) == (y2 > 0)) {
                x2 = x0;
                y2 = y0;
                delta = x1 - x0;
                oldDelta = delta;
            }
            i++;
        }
        throw new MaxIterationsExceededException(maximalIterationCount);
    }
}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math BrentSolver.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.