|
Commons Math example source code file (CauchyDistributionImpl.java)
The Commons Math CauchyDistributionImpl.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathRuntimeException; /** * Default implementation of * {@link org.apache.commons.math.distribution.CauchyDistribution}. * * @since 1.1 * @version $Revision: 925900 $ $Date: 2010-03-21 17:10:07 -0400 (Sun, 21 Mar 2010) $ */ public class CauchyDistributionImpl extends AbstractContinuousDistribution implements CauchyDistribution, Serializable { /** * Default inverse cumulative probability accuracy * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier */ private static final long serialVersionUID = 8589540077390120676L; /** The median of this distribution. */ private double median = 0; /** The scale of this distribution. */ private double scale = 1; /** Inverse cumulative probability accuracy */ private final double solverAbsoluteAccuracy; /** * Creates cauchy distribution with the medain equal to zero and scale * equal to one. */ public CauchyDistributionImpl(){ this(0.0, 1.0); } /** * Create a cauchy distribution using the given median and scale. * @param median median for this distribution * @param s scale parameter for this distribution */ public CauchyDistributionImpl(double median, double s){ this(median, s, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a cauchy distribution using the given median and scale. * @param median median for this distribution * @param s scale parameter for this distribution * @param inverseCumAccuracy the maximum absolute error in inverse cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}) * @since 2.1 */ public CauchyDistributionImpl(double median, double s, double inverseCumAccuracy) { super(); setMedianInternal(median); setScaleInternal(s); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * For this distribution, X, this method returns P(X < <code>x). * @param x the value at which the CDF is evaluated. * @return CDF evaluted at <code>x. */ public double cumulativeProbability(double x) { return 0.5 + (Math.atan((x - median) / scale) / Math.PI); } /** * Access the median. * @return median for this distribution */ public double getMedian() { return median; } /** * Access the scale parameter. * @return scale parameter for this distribution */ public double getScale() { return scale; } /** * Returns the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. * @since 2.1 */ @Override public double density(double x) { final double dev = x - median; return (1 / Math.PI) * (scale / (dev * dev + scale * scale)); } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = <code>p. * <p> * Returns <code>Double.NEGATIVE_INFINITY for p=0 and * <code>Double.POSITIVE_INFINITY for p=1. * * @param p the desired probability * @return x, such that P(X < x) = <code>p * @throws IllegalArgumentException if <code>p is not a valid * probability. */ @Override public double inverseCumulativeProbability(double p) { double ret; if (p < 0.0 || p > 1.0) { throw MathRuntimeException.createIllegalArgumentException( "{0} out of [{1}, {2}] range", p, 0.0, 1.0); } else if (p == 0) { ret = Double.NEGATIVE_INFINITY; } else if (p == 1) { ret = Double.POSITIVE_INFINITY; } else { ret = median + scale * Math.tan(Math.PI * (p - .5)); } return ret; } /** * Modify the median. * @param median for this distribution * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setMedian(double median) { setMedianInternal(median); } /** * Modify the median. * @param newMedian for this distribution */ private void setMedianInternal(double newMedian) { this.median = newMedian; } /** * Modify the scale parameter. * @param s scale parameter for this distribution * @throws IllegalArgumentException if <code>sd is not positive. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setScale(double s) { setScaleInternal(s); } /** * Modify the scale parameter. * @param s scale parameter for this distribution * @throws IllegalArgumentException if <code>sd is not positive. */ private void setScaleInternal(double s) { if (s <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( "scale must be positive ({0})", s); } scale = s; } /** * Access the domain value lower bound, based on <code>p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < <i>lower bound) < Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math CauchyDistributionImpl.java source code file: |
... this post is sponsored by my books ... | |
![]() #1 New Release! |
![]() FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.