|
Commons Math example source code file (NormalDistributionImpl.java)
The Commons Math NormalDistributionImpl.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.MathRuntimeException; import org.apache.commons.math.MaxIterationsExceededException; import org.apache.commons.math.special.Erf; /** * Default implementation of * {@link org.apache.commons.math.distribution.NormalDistribution}. * * @version $Revision: 925812 $ $Date: 2010-03-21 11:49:31 -0400 (Sun, 21 Mar 2010) $ */ public class NormalDistributionImpl extends AbstractContinuousDistribution implements NormalDistribution, Serializable { /** * Default inverse cumulative probability accuracy * @since 2.1 */ public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9; /** Serializable version identifier */ private static final long serialVersionUID = 8589540077390120676L; /** &sqrt;(2 π) */ private static final double SQRT2PI = Math.sqrt(2 * Math.PI); /** The mean of this distribution. */ private double mean = 0; /** The standard deviation of this distribution. */ private double standardDeviation = 1; /** Inverse cumulative probability accuracy */ private final double solverAbsoluteAccuracy; /** * Create a normal distribution using the given mean and standard deviation. * @param mean mean for this distribution * @param sd standard deviation for this distribution */ public NormalDistributionImpl(double mean, double sd){ this(mean, sd, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a normal distribution using the given mean, standard deviation and * inverse cumulative distribution accuracy. * * @param mean mean for this distribution * @param sd standard deviation for this distribution * @param inverseCumAccuracy inverse cumulative probability accuracy * @since 2.1 */ public NormalDistributionImpl(double mean, double sd, double inverseCumAccuracy) { super(); setMeanInternal(mean); setStandardDeviationInternal(sd); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Creates normal distribution with the mean equal to zero and standard * deviation equal to one. */ public NormalDistributionImpl(){ this(0.0, 1.0); } /** * Access the mean. * @return mean for this distribution */ public double getMean() { return mean; } /** * Modify the mean. * @param mean for this distribution * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setMean(double mean) { setMeanInternal(mean); } /** * Modify the mean. * @param newMean for this distribution */ private void setMeanInternal(double newMean) { this.mean = newMean; } /** * Access the standard deviation. * @return standard deviation for this distribution */ public double getStandardDeviation() { return standardDeviation; } /** * Modify the standard deviation. * @param sd standard deviation for this distribution * @throws IllegalArgumentException if <code>sd is not positive. * @deprecated as of 2.1 (class will become immutable in 3.0) */ @Deprecated public void setStandardDeviation(double sd) { setStandardDeviationInternal(sd); } /** * Modify the standard deviation. * @param sd standard deviation for this distribution * @throws IllegalArgumentException if <code>sd is not positive. */ private void setStandardDeviationInternal(double sd) { if (sd <= 0.0) { throw MathRuntimeException.createIllegalArgumentException( "standard deviation must be positive ({0})", sd); } standardDeviation = sd; } /** * Return the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. * @deprecated */ public double density(Double x) { return density(x.doubleValue()); } /** * Returns the probability density for a particular point. * * @param x The point at which the density should be computed. * @return The pdf at point x. * @since 2.1 */ public double density(double x) { double x0 = x - mean; return Math.exp(-x0 * x0 / (2 * standardDeviation * standardDeviation)) / (standardDeviation * SQRT2PI); } /** * For this distribution, X, this method returns P(X < <code>x). * @param x the value at which the CDF is evaluated. * @return CDF evaluted at <code>x. * @throws MathException if the algorithm fails to converge; unless * x is more than 20 standard deviations from the mean, in which case the * convergence exception is caught and 0 or 1 is returned. */ public double cumulativeProbability(double x) throws MathException { try { return 0.5 * (1.0 + Erf.erf((x - mean) / (standardDeviation * Math.sqrt(2.0)))); } catch (MaxIterationsExceededException ex) { if (x < (mean - 20 * standardDeviation)) { // JDK 1.5 blows at 38 return 0.0d; } else if (x > (mean + 20 * standardDeviation)) { return 1.0d; } else { throw ex; } } } /** * Return the absolute accuracy setting of the solver used to estimate * inverse cumulative probabilities. * * @return the solver absolute accuracy * @since 2.1 */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = <code>p. * <p> * Returns <code>Double.NEGATIVE_INFINITY for p=0 and * <code>Double.POSITIVE_INFINITY for p=1. * * @param p the desired probability * @return x, such that P(X < x) = <code>p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if <code>p is not a valid * probability. */ @Override public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return Double.NEGATIVE_INFINITY; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on <code>p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < <i>lower bound) < Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math NormalDistributionImpl.java source code file: |
... this post is sponsored by my books ... | |
![]() #1 New Release! |
![]() FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.