alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (SingularValueDecompositionImpl.java)

This example Commons Math source code file (SingularValueDecompositionImpl.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

array2drowrealmatrix, decompositionsolver, defaultrealmatrixpreservingvisitor, eigendecompositionimpl, eigendecompositionimpl, illegalargumentexception, invalidmatrixexception, invalidmatrixexception, realmatrix, realmatrix, realvector, singularvaluedecompositionimpl, solver, solver

The Commons Math SingularValueDecompositionImpl.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.linear;

import org.apache.commons.math.MathRuntimeException;

/**
 * Calculates the compact Singular Value Decomposition of a matrix.
 * <p>
 * The Singular Value Decomposition of matrix A is a set of three matrices: U,
 * ? and V such that A = U × ? × V<sup>T. Let A be
 * a m × n matrix, then U is a m × p orthogonal matrix, ? is a
 * p × p diagonal matrix with positive or null elements, V is a p ×
 * n orthogonal matrix (hence V<sup>T is also orthogonal) where
 * p=min(m,n).
 * </p>
 * @version $Revision: 912413 $ $Date: 2010-02-21 16:46:12 -0500 (Sun, 21 Feb 2010) $
 * @since 2.0
 */
public class SingularValueDecompositionImpl implements
        SingularValueDecomposition {

    /** Number of rows of the initial matrix. */
    private int m;

    /** Number of columns of the initial matrix. */
    private int n;

    /** Eigen decomposition of the tridiagonal matrix. */
    private EigenDecomposition eigenDecomposition;

    /** Singular values. */
    private double[] singularValues;

    /** Cached value of U. */
    private RealMatrix cachedU;

    /** Cached value of U<sup>T. */
    private RealMatrix cachedUt;

    /** Cached value of S. */
    private RealMatrix cachedS;

    /** Cached value of V. */
    private RealMatrix cachedV;

    /** Cached value of V<sup>T. */
    private RealMatrix cachedVt;

    /**
     * Calculates the compact Singular Value Decomposition of the given matrix.
     * @param matrix
     *            The matrix to decompose.
     * @exception InvalidMatrixException
     *                (wrapping a
     *                {@link org.apache.commons.math.ConvergenceException} if
     *                algorithm fails to converge
     */
    public SingularValueDecompositionImpl(final RealMatrix matrix)
            throws InvalidMatrixException {

        m = matrix.getRowDimension();
        n = matrix.getColumnDimension();

        cachedU = null;
        cachedS = null;
        cachedV = null;
        cachedVt = null;

        double[][] localcopy = matrix.getData();
        double[][] matATA = new double[n][n];
        //
        // create A^T*A
        //
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                matATA[i][j] = 0.0;
                for (int k = 0; k < m; k++) {
                    matATA[i][j] += localcopy[k][i] * localcopy[k][j];
                }
                matATA[j][i]=matATA[i][j];
            }
        }

        double[][] matAAT = new double[m][m];
        //
        // create A*A^T
        //
        for (int i = 0; i < m; i++) {
            for (int j = i; j < m; j++) {
                matAAT[i][j] = 0.0;
                for (int k = 0; k < n; k++) {
                    matAAT[i][j] += localcopy[i][k] * localcopy[j][k];
                }
                matAAT[j][i]=matAAT[i][j];
            }
        }
        int p;
        if (m>=n) {
            p=n;
            // compute eigen decomposition of A^T*A
            eigenDecomposition = new EigenDecompositionImpl(
                    new Array2DRowRealMatrix(matATA),1.0);
            singularValues = eigenDecomposition.getRealEigenvalues();
            cachedV = eigenDecomposition.getV();

            // compute eigen decomposition of A*A^T
            eigenDecomposition = new EigenDecompositionImpl(
                    new Array2DRowRealMatrix(matAAT),1.0);
            cachedU = eigenDecomposition.getV().getSubMatrix(0, m - 1, 0, p - 1);
        } else {
            p=m;
            // compute eigen decomposition of A*A^T
            eigenDecomposition = new EigenDecompositionImpl(
                    new Array2DRowRealMatrix(matAAT),1.0);
            singularValues = eigenDecomposition.getRealEigenvalues();
            cachedU = eigenDecomposition.getV();

            // compute eigen decomposition of A^T*A
            eigenDecomposition = new EigenDecompositionImpl(
                    new Array2DRowRealMatrix(matATA),1.0);
            cachedV = eigenDecomposition.getV().getSubMatrix(0,n-1,0,p-1);
        }
        for (int i = 0; i < p; i++) {
            singularValues[i] = Math.sqrt(Math.abs(singularValues[i]));
        }
        // Up to this point, U and V are computed independently of each other.
        // There still an sign indetermination of each column of, say, U.
        // The sign is set such that A.V_i=sigma_i.U_i (i<=p)
        // The right sign corresponds to a positive dot product of A.V_i and U_i
        for (int i = 0; i < p; i++) {
          RealVector tmp = cachedU.getColumnVector(i);
          double product=matrix.operate(cachedV.getColumnVector(i)).dotProduct(tmp);
          if (product<0) {
            cachedU.setColumnVector(i, tmp.mapMultiply(-1.0));
          }
        }
    }

    /** {@inheritDoc} */
    public RealMatrix getU() throws InvalidMatrixException {
        // return the cached matrix
        return cachedU;

    }

    /** {@inheritDoc} */
    public RealMatrix getUT() throws InvalidMatrixException {

        if (cachedUt == null) {
            cachedUt = getU().transpose();
        }

        // return the cached matrix
        return cachedUt;

    }

    /** {@inheritDoc} */
    public RealMatrix getS() throws InvalidMatrixException {

        if (cachedS == null) {

            // cache the matrix for subsequent calls
            cachedS = MatrixUtils.createRealDiagonalMatrix(singularValues);

        }
        return cachedS;
    }

    /** {@inheritDoc} */
    public double[] getSingularValues() throws InvalidMatrixException {
        return singularValues.clone();
    }

    /** {@inheritDoc} */
    public RealMatrix getV() throws InvalidMatrixException {
        // return the cached matrix
        return cachedV;

    }

    /** {@inheritDoc} */
    public RealMatrix getVT() throws InvalidMatrixException {

        if (cachedVt == null) {
            cachedVt = getV().transpose();
        }

        // return the cached matrix
        return cachedVt;

    }

    /** {@inheritDoc} */
    public RealMatrix getCovariance(final double minSingularValue) {

        // get the number of singular values to consider
        final int p = singularValues.length;
        int dimension = 0;
        while ((dimension < p) && (singularValues[dimension] >= minSingularValue)) {
            ++dimension;
        }

        if (dimension == 0) {
            throw MathRuntimeException.createIllegalArgumentException(
                    "cutoff singular value is {0}, should be at most {1}",
                    minSingularValue, singularValues[0]);
        }

        final double[][] data = new double[dimension][p];
        getVT().walkInOptimizedOrder(new DefaultRealMatrixPreservingVisitor() {
            /** {@inheritDoc} */
            @Override
            public void visit(final int row, final int column,
                    final double value) {
                data[row][column] = value / singularValues[row];
            }
        }, 0, dimension - 1, 0, p - 1);

        RealMatrix jv = new Array2DRowRealMatrix(data, false);
        return jv.transpose().multiply(jv);

    }

    /** {@inheritDoc} */
    public double getNorm() throws InvalidMatrixException {
        return singularValues[0];
    }

    /** {@inheritDoc} */
    public double getConditionNumber() throws InvalidMatrixException {
        return singularValues[0] / singularValues[singularValues.length - 1];
    }

    /** {@inheritDoc} */
    public int getRank() throws IllegalStateException {

        final double threshold = Math.max(m, n) * Math.ulp(singularValues[0]);

        for (int i = singularValues.length - 1; i >= 0; --i) {
            if (singularValues[i] > threshold) {
                return i + 1;
            }
        }
        return 0;

    }

    /** {@inheritDoc} */
    public DecompositionSolver getSolver() {
        return new Solver(singularValues, getUT(), getV(), getRank() == Math
                .max(m, n));
    }

    /** Specialized solver. */
    private static class Solver implements DecompositionSolver {

        /** Pseudo-inverse of the initial matrix. */
        private final RealMatrix pseudoInverse;

        /** Singularity indicator. */
        private boolean nonSingular;

        /**
         * Build a solver from decomposed matrix.
         * @param singularValues
         *            singularValues
         * @param uT
         *            U<sup>T matrix of the decomposition
         * @param v
         *            V matrix of the decomposition
         * @param nonSingular
         *            singularity indicator
         */
        private Solver(final double[] singularValues, final RealMatrix uT,
                final RealMatrix v, final boolean nonSingular) {
            double[][] suT = uT.getData();
            for (int i = 0; i < singularValues.length; ++i) {
                final double a;
                if (singularValues[i]>0) {
                 a=1.0 / singularValues[i];
                } else {
                 a=0.0;
                }
                final double[] suTi = suT[i];
                for (int j = 0; j < suTi.length; ++j) {
                    suTi[j] *= a;
                }
            }
            pseudoInverse = v.multiply(new Array2DRowRealMatrix(suT, false));
            this.nonSingular = nonSingular;
        }

        /**
         * Solve the linear equation A × X = B in least square sense.
         * <p>
         * The m×n matrix A may not be square, the solution X is such that
         * ||A × X - B|| is minimal.
         * </p>
         * @param b
         *            right-hand side of the equation A × X = B
         * @return a vector X that minimizes the two norm of A × X - B
         * @exception IllegalArgumentException
         *                if matrices dimensions don't match
         */
        public double[] solve(final double[] b) throws IllegalArgumentException {
            return pseudoInverse.operate(b);
        }

        /**
         * Solve the linear equation A × X = B in least square sense.
         * <p>
         * The m×n matrix A may not be square, the solution X is such that
         * ||A × X - B|| is minimal.
         * </p>
         * @param b
         *            right-hand side of the equation A × X = B
         * @return a vector X that minimizes the two norm of A × X - B
         * @exception IllegalArgumentException
         *                if matrices dimensions don't match
         */
        public RealVector solve(final RealVector b)
                throws IllegalArgumentException {
            return pseudoInverse.operate(b);
        }

        /**
         * Solve the linear equation A × X = B in least square sense.
         * <p>
         * The m×n matrix A may not be square, the solution X is such that
         * ||A × X - B|| is minimal.
         * </p>
         * @param b
         *            right-hand side of the equation A × X = B
         * @return a matrix X that minimizes the two norm of A × X - B
         * @exception IllegalArgumentException
         *                if matrices dimensions don't match
         */
        public RealMatrix solve(final RealMatrix b)
                throws IllegalArgumentException {
            return pseudoInverse.multiply(b);
        }

        /**
         * Check if the decomposed matrix is non-singular.
         * @return true if the decomposed matrix is non-singular
         */
        public boolean isNonSingular() {
            return nonSingular;
        }

        /**
         * Get the pseudo-inverse of the decomposed matrix.
         * @return inverse matrix
         */
        public RealMatrix getInverse() {
            return pseudoInverse;
        }

    }

}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math SingularValueDecompositionImpl.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.