alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (NelderMead.java)

This example Commons Math source code file (NelderMead.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

comparator, comparator, directsearchoptimizer, functionevaluationexception, neldermead, neldermead, optimizationexception, optimizationexception, override, realpointvaluepair, realpointvaluepair, util

The Commons Math NelderMead.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.direct;

import java.util.Comparator;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealPointValuePair;

/**
 * This class implements the Nelder-Mead direct search method.
 *
 * @version $Revision: 811685 $ $Date: 2009-09-05 13:36:48 -0400 (Sat, 05 Sep 2009) $
 * @see MultiDirectional
 * @since 1.2
 */
public class NelderMead extends DirectSearchOptimizer {

    /** Reflection coefficient. */
    private final double rho;

    /** Expansion coefficient. */
    private final double khi;

    /** Contraction coefficient. */
    private final double gamma;

    /** Shrinkage coefficient. */
    private final double sigma;

    /** Build a Nelder-Mead optimizer with default coefficients.
     * <p>The default coefficients are 1.0 for rho, 2.0 for khi and 0.5
     * for both gamma and sigma.</p>
     */
    public NelderMead() {
        this.rho   = 1.0;
        this.khi   = 2.0;
        this.gamma = 0.5;
        this.sigma = 0.5;
    }

    /** Build a Nelder-Mead optimizer with specified coefficients.
     * @param rho reflection coefficient
     * @param khi expansion coefficient
     * @param gamma contraction coefficient
     * @param sigma shrinkage coefficient
     */
    public NelderMead(final double rho, final double khi,
                      final double gamma, final double sigma) {
        this.rho   = rho;
        this.khi   = khi;
        this.gamma = gamma;
        this.sigma = sigma;
    }

    /** {@inheritDoc} */
    @Override
    protected void iterateSimplex(final Comparator<RealPointValuePair> comparator)
        throws FunctionEvaluationException, OptimizationException {

        incrementIterationsCounter();

        // the simplex has n+1 point if dimension is n
        final int n = simplex.length - 1;

        // interesting values
        final RealPointValuePair best       = simplex[0];
        final RealPointValuePair secondBest = simplex[n-1];
        final RealPointValuePair worst      = simplex[n];
        final double[] xWorst = worst.getPointRef();

        // compute the centroid of the best vertices
        // (dismissing the worst point at index n)
        final double[] centroid = new double[n];
        for (int i = 0; i < n; ++i) {
            final double[] x = simplex[i].getPointRef();
            for (int j = 0; j < n; ++j) {
                centroid[j] += x[j];
            }
        }
        final double scaling = 1.0 / n;
        for (int j = 0; j < n; ++j) {
            centroid[j] *= scaling;
        }

        // compute the reflection point
        final double[] xR = new double[n];
        for (int j = 0; j < n; ++j) {
            xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]);
        }
        final RealPointValuePair reflected = new RealPointValuePair(xR, evaluate(xR), false);

        if ((comparator.compare(best, reflected) <= 0) &&
            (comparator.compare(reflected, secondBest) < 0)) {

            // accept the reflected point
            replaceWorstPoint(reflected, comparator);

        } else if (comparator.compare(reflected, best) < 0) {

            // compute the expansion point
            final double[] xE = new double[n];
            for (int j = 0; j < n; ++j) {
                xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
            }
            final RealPointValuePair expanded = new RealPointValuePair(xE, evaluate(xE), false);

            if (comparator.compare(expanded, reflected) < 0) {
                // accept the expansion point
                replaceWorstPoint(expanded, comparator);
            } else {
                // accept the reflected point
                replaceWorstPoint(reflected, comparator);
            }

        } else {

            if (comparator.compare(reflected, worst) < 0) {

                // perform an outside contraction
                final double[] xC = new double[n];
                for (int j = 0; j < n; ++j) {
                    xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
                }
                final RealPointValuePair outContracted = new RealPointValuePair(xC, evaluate(xC), false);

                if (comparator.compare(outContracted, reflected) <= 0) {
                    // accept the contraction point
                    replaceWorstPoint(outContracted, comparator);
                    return;
                }

            } else {

                // perform an inside contraction
                final double[] xC = new double[n];
                for (int j = 0; j < n; ++j) {
                    xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
                }
                final RealPointValuePair inContracted = new RealPointValuePair(xC, evaluate(xC), false);

                if (comparator.compare(inContracted, worst) < 0) {
                    // accept the contraction point
                    replaceWorstPoint(inContracted, comparator);
                    return;
                }

            }

            // perform a shrink
            final double[] xSmallest = simplex[0].getPointRef();
            for (int i = 1; i < simplex.length; ++i) {
                final double[] x = simplex[i].getPoint();
                for (int j = 0; j < n; ++j) {
                    x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
                }
                simplex[i] = new RealPointValuePair(x, Double.NaN, false);
            }
            evaluateSimplex(comparator);

        }

    }

}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math NelderMead.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.