home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (package-info.java)

This example Java source code file (package-info.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

The package-info.java Java example source code

 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *      http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * Decimal floating point library for Java
 * <p>Another floating point class.  This one is built using radix 10000
 * which is 10<sup>4, so its almost decimal.

* * <p>The design goals here are: * <ol> * <li>Decimal math, or close to it * <li>Settable precision (but no mix between numbers using different settings) * <li>Portability. Code should be keep as portable as possible. * <li>Performance * <li>Accuracy - Results should always be +/- 1 ULP for basic * algebraic operation</li> * <li>Comply with IEEE 854-1987 as much as possible. * (See IEEE 854-1987 notes below)</li> * </ol>

* * <p>Trade offs: * <ol> * <li>Memory foot print. I'm using more memory than necessary to * represent numbers to get better performance.</li> * <li>Digits are bigger, so rounding is a greater loss. So, if you * really need 12 decimal digits, better use 4 base 10000 digits * there can be one partially filled.</li> * </ol>

* * <p>Numbers are represented in the following form: * <pre> * n = sign × mant × (radix)<sup>exp;

* </pre> * where sign is ±1, mantissa represents a fractional number between * zero and one. mant[0] is the least significant digit. * exp is in the range of -32767 to 32768</p> * * <p>IEEE 854-1987 Notes and differences

* * <p>IEEE 854 requires the radix to be either 2 or 10. The radix here is * 10000, so that requirement is not met, but it is possible that a * subclassed can be made to make it behave as a radix 10 * number. It is my opinion that if it looks and behaves as a radix * 10 number then it is one and that requirement would be met.</p> * * <p>The radix of 10000 was chosen because it should be faster to operate * on 4 decimal digits at once instead of one at a time. Radix 10 behavior * can be realized by add an additional rounding step to ensure that * the number of decimal digits represented is constant.</p> * * <p>The IEEE standard specifically leaves out internal data encoding, * so it is reasonable to conclude that such a subclass of this radix * 10000 system is merely an encoding of a radix 10 system.</p> * * <p>IEEE 854 also specifies the existence of "sub-normal" numbers. This * class does not contain any such entities. The most significant radix * 10000 digit is always non-zero. Instead, we support "gradual underflow" * by raising the underflow flag for numbers less with exponent less than * expMin, but don't flush to zero until the exponent reaches MIN_EXP-digits. * Thus the smallest number we can represent would be: * 1E(-(MIN_EXP-digits-1)∗4), eg, for digits=5, MIN_EXP=-32767, that would * be 1e-131092.</p> * * <p>IEEE 854 defines that the implied radix point lies just to the right * of the most significant digit and to the left of the remaining digits. * This implementation puts the implied radix point to the left of all * digits including the most significant one. The most significant digit * here is the one just to the right of the radix point. This is a fine * detail and is really only a matter of definition. Any side effects of * this can be rendered invisible by a subclass.</p> * */ package org.apache.commons.math3.dfp;

Other Java examples (source code examples)

Here is a short list of links related to this Java package-info.java source code file:

my book on functional programming


new blog posts


Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.