home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (EnumeratedIntegerDistribution.java)

This example Java source code file (EnumeratedIntegerDistribution.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

dimensionmismatchexception, double, enumerateddistribution, enumeratedintegerdistribution, hashmap, integer, list, matharithmeticexception, notanumberexception, notfinitenumberexception, notpositiveexception, pair, randomgenerator, util, well19937c

The EnumeratedIntegerDistribution.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotANumberException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.Pair;

/**
 * <p>Implementation of an integer-valued {@link EnumeratedDistribution}.

* * <p>Values with zero-probability are allowed but they do not extend the * support.<br/> * Duplicate values are allowed. Probabilities of duplicate values are combined * when computing cumulative probabilities and statistics.</p> * * @since 3.2 */ public class EnumeratedIntegerDistribution extends AbstractIntegerDistribution { /** Serializable UID. */ private static final long serialVersionUID = 20130308L; /** * {@link EnumeratedDistribution} instance (using the {@link Integer} wrapper) * used to generate the pmf. */ protected final EnumeratedDistribution<Integer> innerDistribution; /** * Create a discrete distribution using the given probability mass function * definition. * <p> * <b>Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param singletons array of random variable values. * @param probabilities array of probabilities. * @throws DimensionMismatchException if * {@code singletons.length != probabilities.length} * @throws NotPositiveException if any of the probabilities are negative. * @throws NotFiniteNumberException if any of the probabilities are infinite. * @throws NotANumberException if any of the probabilities are NaN. * @throws MathArithmeticException all of the probabilities are 0. */ public EnumeratedIntegerDistribution(final int[] singletons, final double[] probabilities) throws DimensionMismatchException, NotPositiveException, MathArithmeticException, NotFiniteNumberException, NotANumberException{ this(new Well19937c(), singletons, probabilities); } /** * Create a discrete distribution using the given random number generator * and probability mass function definition. * * @param rng random number generator. * @param singletons array of random variable values. * @param probabilities array of probabilities. * @throws DimensionMismatchException if * {@code singletons.length != probabilities.length} * @throws NotPositiveException if any of the probabilities are negative. * @throws NotFiniteNumberException if any of the probabilities are infinite. * @throws NotANumberException if any of the probabilities are NaN. * @throws MathArithmeticException all of the probabilities are 0. */ public EnumeratedIntegerDistribution(final RandomGenerator rng, final int[] singletons, final double[] probabilities) throws DimensionMismatchException, NotPositiveException, MathArithmeticException, NotFiniteNumberException, NotANumberException { super(rng); innerDistribution = new EnumeratedDistribution<Integer>( rng, createDistribution(singletons, probabilities)); } /** * Create a discrete integer-valued distribution from the input data. Values are assigned * mass based on their frequency. * * @param rng random number generator used for sampling * @param data input dataset * @since 3.6 */ public EnumeratedIntegerDistribution(final RandomGenerator rng, final int[] data) { super(rng); final Map<Integer, Integer> dataMap = new HashMap(); for (int value : data) { Integer count = dataMap.get(value); if (count == null) { count = 0; } dataMap.put(value, ++count); } final int massPoints = dataMap.size(); final double denom = data.length; final int[] values = new int[massPoints]; final double[] probabilities = new double[massPoints]; int index = 0; for (Entry<Integer, Integer> entry : dataMap.entrySet()) { values[index] = entry.getKey(); probabilities[index] = entry.getValue().intValue() / denom; index++; } innerDistribution = new EnumeratedDistribution<Integer>(rng, createDistribution(values, probabilities)); } /** * Create a discrete integer-valued distribution from the input data. Values are assigned * mass based on their frequency. For example, [0,1,1,2] as input creates a distribution * with values 0, 1 and 2 having probability masses 0.25, 0.5 and 0.25 respectively, * * @param data input dataset * @since 3.6 */ public EnumeratedIntegerDistribution(final int[] data) { this(new Well19937c(), data); } /** * Create the list of Pairs representing the distribution from singletons and probabilities. * * @param singletons values * @param probabilities probabilities * @return list of value/probability pairs */ private static List<Pair createDistribution(int[] singletons, double[] probabilities) { if (singletons.length != probabilities.length) { throw new DimensionMismatchException(probabilities.length, singletons.length); } final List<Pair samples = new ArrayList>(singletons.length); for (int i = 0; i < singletons.length; i++) { samples.add(new Pair<Integer, Double>(singletons[i], probabilities[i])); } return samples; } /** * {@inheritDoc} */ public double probability(final int x) { return innerDistribution.probability(x); } /** * {@inheritDoc} */ public double cumulativeProbability(final int x) { double probability = 0; for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) { if (sample.getKey() <= x) { probability += sample.getValue(); } } return probability; } /** * {@inheritDoc} * * @return {@code sum(singletons[i] * probabilities[i])} */ public double getNumericalMean() { double mean = 0; for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) { mean += sample.getValue() * sample.getKey(); } return mean; } /** * {@inheritDoc} * * @return {@code sum((singletons[i] - mean) ^ 2 * probabilities[i])} */ public double getNumericalVariance() { double mean = 0; double meanOfSquares = 0; for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) { mean += sample.getValue() * sample.getKey(); meanOfSquares += sample.getValue() * sample.getKey() * sample.getKey(); } return meanOfSquares - mean * mean; } /** * {@inheritDoc} * * Returns the lowest value with non-zero probability. * * @return the lowest value with non-zero probability. */ public int getSupportLowerBound() { int min = Integer.MAX_VALUE; for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) { if (sample.getKey() < min && sample.getValue() > 0) { min = sample.getKey(); } } return min; } /** * {@inheritDoc} * * Returns the highest value with non-zero probability. * * @return the highest value with non-zero probability. */ public int getSupportUpperBound() { int max = Integer.MIN_VALUE; for (final Pair<Integer, Double> sample : innerDistribution.getPmf()) { if (sample.getKey() > max && sample.getValue() > 0) { max = sample.getKey(); } } return max; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** * {@inheritDoc} */ @Override public int sample() { return innerDistribution.sample(); } }

Other Java examples (source code examples)

Here is a short list of links related to this Java EnumeratedIntegerDistribution.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.