alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Vector1D.java)

This example Java source code file (Vector1D.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

deprecated, matharithmeticexception, nan, negative_infinity, numberformat, one, override, positive_infinity, space, string, text, vector, vector1d, zero

The Vector1D.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.oned;

import java.text.NumberFormat;

import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.Vector;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;

/** This class represents a 1D vector.
 * <p>Instances of this class are guaranteed to be immutable.

* @since 3.0 */ public class Vector1D implements Vector<Euclidean1D> { /** Origin (coordinates: 0). */ public static final Vector1D ZERO = new Vector1D(0.0); /** Unit (coordinates: 1). */ public static final Vector1D ONE = new Vector1D(1.0); // CHECKSTYLE: stop ConstantName /** A vector with all coordinates set to NaN. */ public static final Vector1D NaN = new Vector1D(Double.NaN); // CHECKSTYLE: resume ConstantName /** A vector with all coordinates set to positive infinity. */ public static final Vector1D POSITIVE_INFINITY = new Vector1D(Double.POSITIVE_INFINITY); /** A vector with all coordinates set to negative infinity. */ public static final Vector1D NEGATIVE_INFINITY = new Vector1D(Double.NEGATIVE_INFINITY); /** Serializable UID. */ private static final long serialVersionUID = 7556674948671647925L; /** Abscissa. */ private final double x; /** Simple constructor. * Build a vector from its coordinates * @param x abscissa * @see #getX() */ public Vector1D(double x) { this.x = x; } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public Vector1D(double a, Vector1D u) { this.x = a * u.x; } /** Linear constructor * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public Vector1D(double a1, Vector1D u1, double a2, Vector1D u2) { this.x = a1 * u1.x + a2 * u2.x; } /** Linear constructor * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public Vector1D(double a1, Vector1D u1, double a2, Vector1D u2, double a3, Vector1D u3) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x; } /** Linear constructor * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public Vector1D(double a1, Vector1D u1, double a2, Vector1D u2, double a3, Vector1D u3, double a4, Vector1D u4) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x; } /** Get the abscissa of the vector. * @return abscissa of the vector * @see #Vector1D(double) */ public double getX() { return x; } /** {@inheritDoc} */ public Space getSpace() { return Euclidean1D.getInstance(); } /** {@inheritDoc} */ public Vector1D getZero() { return ZERO; } /** {@inheritDoc} */ public double getNorm1() { return FastMath.abs(x); } /** {@inheritDoc} */ public double getNorm() { return FastMath.abs(x); } /** {@inheritDoc} */ public double getNormSq() { return x * x; } /** {@inheritDoc} */ public double getNormInf() { return FastMath.abs(x); } /** {@inheritDoc} */ public Vector1D add(Vector<Euclidean1D> v) { Vector1D v1 = (Vector1D) v; return new Vector1D(x + v1.getX()); } /** {@inheritDoc} */ public Vector1D add(double factor, Vector<Euclidean1D> v) { Vector1D v1 = (Vector1D) v; return new Vector1D(x + factor * v1.getX()); } /** {@inheritDoc} */ public Vector1D subtract(Vector<Euclidean1D> p) { Vector1D p3 = (Vector1D) p; return new Vector1D(x - p3.x); } /** {@inheritDoc} */ public Vector1D subtract(double factor, Vector<Euclidean1D> v) { Vector1D v1 = (Vector1D) v; return new Vector1D(x - factor * v1.getX()); } /** {@inheritDoc} */ public Vector1D normalize() throws MathArithmeticException { double s = getNorm(); if (s == 0) { throw new MathArithmeticException(LocalizedFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR); } return scalarMultiply(1 / s); } /** {@inheritDoc} */ public Vector1D negate() { return new Vector1D(-x); } /** {@inheritDoc} */ public Vector1D scalarMultiply(double a) { return new Vector1D(a * x); } /** {@inheritDoc} */ public boolean isNaN() { return Double.isNaN(x); } /** {@inheritDoc} */ public boolean isInfinite() { return !isNaN() && Double.isInfinite(x); } /** {@inheritDoc} */ public double distance1(Vector<Euclidean1D> p) { Vector1D p3 = (Vector1D) p; final double dx = FastMath.abs(p3.x - x); return dx; } /** {@inheritDoc} * @deprecated as of 3.3, replaced with {@link #distance(Point)} */ @Deprecated public double distance(Vector<Euclidean1D> p) { return distance((Point<Euclidean1D>) p); } /** {@inheritDoc} */ public double distance(Point<Euclidean1D> p) { Vector1D p3 = (Vector1D) p; final double dx = p3.x - x; return FastMath.abs(dx); } /** {@inheritDoc} */ public double distanceInf(Vector<Euclidean1D> p) { Vector1D p3 = (Vector1D) p; final double dx = FastMath.abs(p3.x - x); return dx; } /** {@inheritDoc} */ public double distanceSq(Vector<Euclidean1D> p) { Vector1D p3 = (Vector1D) p; final double dx = p3.x - x; return dx * dx; } /** {@inheritDoc} */ public double dotProduct(final Vector<Euclidean1D> v) { final Vector1D v1 = (Vector1D) v; return x * v1.x; } /** Compute the distance between two vectors according to the L<sub>2 norm. * <p>Calling this method is equivalent to calling: * <code>p1.subtract(p2).getNorm() except that no intermediate * vector is built</p> * @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L<sub>2 norm */ public static double distance(Vector1D p1, Vector1D p2) { return p1.distance(p2); } /** Compute the distance between two vectors according to the L<sub>? norm. * <p>Calling this method is equivalent to calling: * <code>p1.subtract(p2).getNormInf() except that no intermediate * vector is built</p> * @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L<sub>? norm */ public static double distanceInf(Vector1D p1, Vector1D p2) { return p1.distanceInf(p2); } /** Compute the square of the distance between two vectors. * <p>Calling this method is equivalent to calling: * <code>p1.subtract(p2).getNormSq() except that no intermediate * vector is built</p> * @param p1 first vector * @param p2 second vector * @return the square of the distance between p1 and p2 */ public static double distanceSq(Vector1D p1, Vector1D p2) { return p1.distanceSq(p2); } /** * Test for the equality of two 1D vectors. * <p> * If all coordinates of two 1D vectors are exactly the same, and none are * <code>Double.NaN, the two 1D vectors are considered to be equal. * </p> * <p> * <code>NaN coordinates are considered to affect globally the vector * and be equals to each other - i.e, if either (or all) coordinates of the * 1D vector are equal to <code>Double.NaN, the 1D vector is equal to * {@link #NaN}. * </p> * * @param other Object to test for equality to this * @return true if two 1D vector objects are equal, false if * object is null, not an instance of Vector1D, or * not equal to this Vector1D instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Vector1D) { final Vector1D rhs = (Vector1D)other; if (rhs.isNaN()) { return this.isNaN(); } return x == rhs.x; } return false; } /** * Get a hashCode for the 1D vector. * <p> * All NaN values have the same hash code.</p> * * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 7785; } return 997 * MathUtils.hash(x); } /** Get a string representation of this vector. * @return a string representation of this vector */ @Override public String toString() { return Vector1DFormat.getInstance().format(this); } /** {@inheritDoc} */ public String toString(final NumberFormat format) { return new Vector1DFormat(format).format(this); } }

Other Java examples (source code examples)

Here is a short list of links related to this Java Vector1D.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.