home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (SphericalCoordinates.java)

This example Java source code file (SphericalCoordinates.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

datatransferobject, object, serializable, sphericalcoordinates, vector3d

The SphericalCoordinates.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.threed;


import java.io.Serializable;

import org.apache.commons.math3.util.FastMath;

/** This class provides conversions related to <a
 * href="http://mathworld.wolfram.com/SphericalCoordinates.html">spherical coordinates</a>.
 * <p>
 * The conventions used here are the mathematical ones, i.e. spherical coordinates are
 * related to Cartesian coordinates as follows:
 * </p>
 * <ul>
 *   <li>x = r cos(θ) sin(Φ)
 *   <li>y = r sin(θ) sin(Φ)
 *   <li>z = r cos(Φ)
 * </ul>
 * <ul>
 *   <li>r       = √(x2+y2+z2)
 *   <li>θ = atan2(y, x)
 *   <li>Φ   = acos(z/r)
 * </ul>
 * <p>
 * r is the radius, θ is the azimuthal angle in the x-y plane and Φ is the polar
 * (co-latitude) angle. These conventions are <em>different from the conventions used
 * in physics (and in particular in spherical harmonics) where the meanings of θ and
 * Φ are reversed.
 * </p>
 * <p>
 * This class provides conversion of coordinates and also of gradient and Hessian
 * between spherical and Cartesian coordinates.
 * </p>
 * @since 3.2
 */
public class SphericalCoordinates implements Serializable {

    /** Serializable UID. */
    private static final long serialVersionUID = 20130206L;

    /** Cartesian coordinates. */
    private final Vector3D v;

    /** Radius. */
    private final double r;

    /** Azimuthal angle in the x-y plane θ. */
    private final double theta;

    /** Polar angle (co-latitude) Φ. */
    private final double phi;

    /** Jacobian of (r, θ &Phi). */
    private double[][] jacobian;

    /** Hessian of radius. */
    private double[][] rHessian;

    /** Hessian of azimuthal angle in the x-y plane θ. */
    private double[][] thetaHessian;

    /** Hessian of polar (co-latitude) angle Φ. */
    private double[][] phiHessian;

    /** Build a spherical coordinates transformer from Cartesian coordinates.
     * @param v Cartesian coordinates
     */
    public SphericalCoordinates(final Vector3D v) {

        // Cartesian coordinates
        this.v = v;

        // remaining spherical coordinates
        this.r     = v.getNorm();
        this.theta = v.getAlpha();
        this.phi   = FastMath.acos(v.getZ() / r);

    }

    /** Build a spherical coordinates transformer from spherical coordinates.
     * @param r radius
     * @param theta azimuthal angle in x-y plane
     * @param phi polar (co-latitude) angle
     */
    public SphericalCoordinates(final double r, final double theta, final double phi) {

        final double cosTheta = FastMath.cos(theta);
        final double sinTheta = FastMath.sin(theta);
        final double cosPhi   = FastMath.cos(phi);
        final double sinPhi   = FastMath.sin(phi);

        // spherical coordinates
        this.r     = r;
        this.theta = theta;
        this.phi   = phi;

        // Cartesian coordinates
        this.v  = new Vector3D(r * cosTheta * sinPhi,
                               r * sinTheta * sinPhi,
                               r * cosPhi);

    }

    /** Get the Cartesian coordinates.
     * @return Cartesian coordinates
     */
    public Vector3D getCartesian() {
        return v;
    }

    /** Get the radius.
     * @return radius r
     * @see #getTheta()
     * @see #getPhi()
     */
    public double getR() {
        return r;
    }

    /** Get the azimuthal angle in x-y plane.
     * @return azimuthal angle in x-y plane θ
     * @see #getR()
     * @see #getPhi()
     */
    public double getTheta() {
        return theta;
    }

    /** Get the polar (co-latitude) angle.
     * @return polar (co-latitude) angle Φ
     * @see #getR()
     * @see #getTheta()
     */
    public double getPhi() {
        return phi;
    }

    /** Convert a gradient with respect to spherical coordinates into a gradient
     * with respect to Cartesian coordinates.
     * @param sGradient gradient with respect to spherical coordinates
     * {df/dr, df/dθ, df/dΦ}
     * @return gradient with respect to Cartesian coordinates
     * {df/dx, df/dy, df/dz}
     */
    public double[] toCartesianGradient(final double[] sGradient) {

        // lazy evaluation of Jacobian
        computeJacobian();

        // compose derivatives as gradient^T . J
        // the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
        return new double[] {
            sGradient[0] * jacobian[0][0] + sGradient[1] * jacobian[1][0] + sGradient[2] * jacobian[2][0],
            sGradient[0] * jacobian[0][1] + sGradient[1] * jacobian[1][1] + sGradient[2] * jacobian[2][1],
            sGradient[0] * jacobian[0][2]                                 + sGradient[2] * jacobian[2][2]
        };

    }

    /** Convert a Hessian with respect to spherical coordinates into a Hessian
     * with respect to Cartesian coordinates.
     * <p>
     * As Hessian are always symmetric, we use only the lower left part of the provided
     * spherical Hessian, so the upper part may not be initialized. However, we still
     * do fill up the complete array we create, with guaranteed symmetry.
     * </p>
     * @param sHessian Hessian with respect to spherical coordinates
     * {{d<sup>2f/dr2, d2f/drdθ, d2f/drdΦ},
     *  {d<sup>2f/drdθ, d2f/dθ2, d2f/dθdΦ},
     *  {d<sup>2f/drdΦ, d2f/dθdΦ, d2f/dΦ2}
     * @param sGradient gradient with respect to spherical coordinates
     * {df/dr, df/dθ, df/dΦ}
     * @return Hessian with respect to Cartesian coordinates
     * {{d<sup>2f/dx2, d2f/dxdy, d2f/dxdz},
     *  {d<sup>2f/dxdy, d2f/dy2, d2f/dydz},
     *  {d<sup>2f/dxdz, d2f/dydz, d2f/dz2}}
     */
    public double[][] toCartesianHessian(final double[][] sHessian, final double[] sGradient) {

        computeJacobian();
        computeHessians();

        // compose derivative as J^T . H_f . J + df/dr H_r + df/dtheta H_theta + df/dphi H_phi
        // the expressions have been simplified since we know jacobian[1][2] = dTheta/dZ = 0
        // and H_theta is only a 2x2 matrix as it does not depend on z
        final double[][] hj = new double[3][3];
        final double[][] cHessian = new double[3][3];

        // compute H_f . J
        // beware we use ONLY the lower-left part of sHessian
        hj[0][0] = sHessian[0][0] * jacobian[0][0] + sHessian[1][0] * jacobian[1][0] + sHessian[2][0] * jacobian[2][0];
        hj[0][1] = sHessian[0][0] * jacobian[0][1] + sHessian[1][0] * jacobian[1][1] + sHessian[2][0] * jacobian[2][1];
        hj[0][2] = sHessian[0][0] * jacobian[0][2]                                   + sHessian[2][0] * jacobian[2][2];
        hj[1][0] = sHessian[1][0] * jacobian[0][0] + sHessian[1][1] * jacobian[1][0] + sHessian[2][1] * jacobian[2][0];
        hj[1][1] = sHessian[1][0] * jacobian[0][1] + sHessian[1][1] * jacobian[1][1] + sHessian[2][1] * jacobian[2][1];
        // don't compute hj[1][2] as it is not used below
        hj[2][0] = sHessian[2][0] * jacobian[0][0] + sHessian[2][1] * jacobian[1][0] + sHessian[2][2] * jacobian[2][0];
        hj[2][1] = sHessian[2][0] * jacobian[0][1] + sHessian[2][1] * jacobian[1][1] + sHessian[2][2] * jacobian[2][1];
        hj[2][2] = sHessian[2][0] * jacobian[0][2]                                   + sHessian[2][2] * jacobian[2][2];

        // compute lower-left part of J^T . H_f . J
        cHessian[0][0] = jacobian[0][0] * hj[0][0] + jacobian[1][0] * hj[1][0] + jacobian[2][0] * hj[2][0];
        cHessian[1][0] = jacobian[0][1] * hj[0][0] + jacobian[1][1] * hj[1][0] + jacobian[2][1] * hj[2][0];
        cHessian[2][0] = jacobian[0][2] * hj[0][0]                             + jacobian[2][2] * hj[2][0];
        cHessian[1][1] = jacobian[0][1] * hj[0][1] + jacobian[1][1] * hj[1][1] + jacobian[2][1] * hj[2][1];
        cHessian[2][1] = jacobian[0][2] * hj[0][1]                             + jacobian[2][2] * hj[2][1];
        cHessian[2][2] = jacobian[0][2] * hj[0][2]                             + jacobian[2][2] * hj[2][2];

        // add gradient contribution
        cHessian[0][0] += sGradient[0] * rHessian[0][0] + sGradient[1] * thetaHessian[0][0] + sGradient[2] * phiHessian[0][0];
        cHessian[1][0] += sGradient[0] * rHessian[1][0] + sGradient[1] * thetaHessian[1][0] + sGradient[2] * phiHessian[1][0];
        cHessian[2][0] += sGradient[0] * rHessian[2][0]                                     + sGradient[2] * phiHessian[2][0];
        cHessian[1][1] += sGradient[0] * rHessian[1][1] + sGradient[1] * thetaHessian[1][1] + sGradient[2] * phiHessian[1][1];
        cHessian[2][1] += sGradient[0] * rHessian[2][1]                                     + sGradient[2] * phiHessian[2][1];
        cHessian[2][2] += sGradient[0] * rHessian[2][2]                                     + sGradient[2] * phiHessian[2][2];

        // ensure symmetry
        cHessian[0][1] = cHessian[1][0];
        cHessian[0][2] = cHessian[2][0];
        cHessian[1][2] = cHessian[2][1];

        return cHessian;

    }

    /** Lazy evaluation of (r, θ, φ) Jacobian.
     */
    private void computeJacobian() {
        if (jacobian == null) {

            // intermediate variables
            final double x    = v.getX();
            final double y    = v.getY();
            final double z    = v.getZ();
            final double rho2 = x * x + y * y;
            final double rho  = FastMath.sqrt(rho2);
            final double r2   = rho2 + z * z;

            jacobian = new double[3][3];

            // row representing the gradient of r
            jacobian[0][0] = x / r;
            jacobian[0][1] = y / r;
            jacobian[0][2] = z / r;

            // row representing the gradient of theta
            jacobian[1][0] = -y / rho2;
            jacobian[1][1] =  x / rho2;
            // jacobian[1][2] is already set to 0 at allocation time

            // row representing the gradient of phi
            jacobian[2][0] = x * z / (rho * r2);
            jacobian[2][1] = y * z / (rho * r2);
            jacobian[2][2] = -rho / r2;

        }
    }

    /** Lazy evaluation of Hessians.
     */
    private void computeHessians() {

        if (rHessian == null) {

            // intermediate variables
            final double x      = v.getX();
            final double y      = v.getY();
            final double z      = v.getZ();
            final double x2     = x * x;
            final double y2     = y * y;
            final double z2     = z * z;
            final double rho2   = x2 + y2;
            final double rho    = FastMath.sqrt(rho2);
            final double r2     = rho2 + z2;
            final double xOr    = x / r;
            final double yOr    = y / r;
            final double zOr    = z / r;
            final double xOrho2 = x / rho2;
            final double yOrho2 = y / rho2;
            final double xOr3   = xOr / r2;
            final double yOr3   = yOr / r2;
            final double zOr3   = zOr / r2;

            // lower-left part of Hessian of r
            rHessian = new double[3][3];
            rHessian[0][0] = y * yOr3 + z * zOr3;
            rHessian[1][0] = -x * yOr3;
            rHessian[2][0] = -z * xOr3;
            rHessian[1][1] = x * xOr3 + z * zOr3;
            rHessian[2][1] = -y * zOr3;
            rHessian[2][2] = x * xOr3 + y * yOr3;

            // upper-right part is symmetric
            rHessian[0][1] = rHessian[1][0];
            rHessian[0][2] = rHessian[2][0];
            rHessian[1][2] = rHessian[2][1];

            // lower-left part of Hessian of azimuthal angle theta
            thetaHessian = new double[2][2];
            thetaHessian[0][0] = 2 * xOrho2 * yOrho2;
            thetaHessian[1][0] = yOrho2 * yOrho2 - xOrho2 * xOrho2;
            thetaHessian[1][1] = -2 * xOrho2 * yOrho2;

            // upper-right part is symmetric
            thetaHessian[0][1] = thetaHessian[1][0];

            // lower-left part of Hessian of polar (co-latitude) angle phi
            final double rhor2       = rho * r2;
            final double rho2r2      = rho * rhor2;
            final double rhor4       = rhor2 * r2;
            final double rho3r4      = rhor4 * rho2;
            final double r2P2rho2    = 3 * rho2 + z2;
            phiHessian = new double[3][3];
            phiHessian[0][0] = z * (rho2r2 - x2 * r2P2rho2) / rho3r4;
            phiHessian[1][0] = -x * y * z * r2P2rho2 / rho3r4;
            phiHessian[2][0] = x * (rho2 - z2) / rhor4;
            phiHessian[1][1] = z * (rho2r2 - y2 * r2P2rho2) / rho3r4;
            phiHessian[2][1] = y * (rho2 - z2) / rhor4;
            phiHessian[2][2] = 2 * rho * zOr3 / r;

            // upper-right part is symmetric
            phiHessian[0][1] = phiHessian[1][0];
            phiHessian[0][2] = phiHessian[2][0];
            phiHessian[1][2] = phiHessian[2][1];

        }

    }

    /**
     * Replace the instance with a data transfer object for serialization.
     * @return data transfer object that will be serialized
     */
    private Object writeReplace() {
        return new DataTransferObject(v.getX(), v.getY(), v.getZ());
    }

    /** Internal class used only for serialization. */
    private static class DataTransferObject implements Serializable {

        /** Serializable UID. */
        private static final long serialVersionUID = 20130206L;

        /** Abscissa.
         * @serial
         */
        private final double x;

        /** Ordinate.
         * @serial
         */
        private final double y;

        /** Height.
         * @serial
         */
        private final double z;

        /** Simple constructor.
         * @param x abscissa
         * @param y ordinate
         * @param z height
         */
        DataTransferObject(final double x, final double y, final double z) {
            this.x = x;
            this.y = y;
            this.z = z;
        }

        /** Replace the deserialized data transfer object with a {@link SphericalCoordinates}.
         * @return replacement {@link SphericalCoordinates}
         */
        private Object readResolve() {
            return new SphericalCoordinates(new Vector3D(x, y, z));
        }

    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java SphericalCoordinates.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.