alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Vector2D.java)

This example Java source code file (Vector2D.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

dimensionmismatchexception, matharithmeticexception, nan, negative_infinity, numberformat, override, positive_infinity, space, string, text, vector, vector2d, zero

The Vector2D.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.twod;

import java.text.NumberFormat;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.Space;
import org.apache.commons.math3.geometry.Vector;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;

/** This class represents a 2D vector.
 * <p>Instances of this class are guaranteed to be immutable.

* @since 3.0 */ public class Vector2D implements Vector<Euclidean2D> { /** Origin (coordinates: 0, 0). */ public static final Vector2D ZERO = new Vector2D(0, 0); // CHECKSTYLE: stop ConstantName /** A vector with all coordinates set to NaN. */ public static final Vector2D NaN = new Vector2D(Double.NaN, Double.NaN); // CHECKSTYLE: resume ConstantName /** A vector with all coordinates set to positive infinity. */ public static final Vector2D POSITIVE_INFINITY = new Vector2D(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A vector with all coordinates set to negative infinity. */ public static final Vector2D NEGATIVE_INFINITY = new Vector2D(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY); /** Serializable UID. */ private static final long serialVersionUID = 266938651998679754L; /** Abscissa. */ private final double x; /** Ordinate. */ private final double y; /** Simple constructor. * Build a vector from its coordinates * @param x abscissa * @param y ordinate * @see #getX() * @see #getY() */ public Vector2D(double x, double y) { this.x = x; this.y = y; } /** Simple constructor. * Build a vector from its coordinates * @param v coordinates array * @exception DimensionMismatchException if array does not have 2 elements * @see #toArray() */ public Vector2D(double[] v) throws DimensionMismatchException { if (v.length != 2) { throw new DimensionMismatchException(v.length, 2); } this.x = v[0]; this.y = v[1]; } /** Multiplicative constructor * Build a vector from another one and a scale factor. * The vector built will be a * u * @param a scale factor * @param u base (unscaled) vector */ public Vector2D(double a, Vector2D u) { this.x = a * u.x; this.y = a * u.y; } /** Linear constructor * Build a vector from two other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector */ public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2) { this.x = a1 * u1.x + a2 * u2.x; this.y = a1 * u1.y + a2 * u2.y; } /** Linear constructor * Build a vector from three other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector */ public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2, double a3, Vector2D u3) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x; this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y; } /** Linear constructor * Build a vector from four other ones and corresponding scale factors. * The vector built will be a1 * u1 + a2 * u2 + a3 * u3 + a4 * u4 * @param a1 first scale factor * @param u1 first base (unscaled) vector * @param a2 second scale factor * @param u2 second base (unscaled) vector * @param a3 third scale factor * @param u3 third base (unscaled) vector * @param a4 fourth scale factor * @param u4 fourth base (unscaled) vector */ public Vector2D(double a1, Vector2D u1, double a2, Vector2D u2, double a3, Vector2D u3, double a4, Vector2D u4) { this.x = a1 * u1.x + a2 * u2.x + a3 * u3.x + a4 * u4.x; this.y = a1 * u1.y + a2 * u2.y + a3 * u3.y + a4 * u4.y; } /** Get the abscissa of the vector. * @return abscissa of the vector * @see #Vector2D(double, double) */ public double getX() { return x; } /** Get the ordinate of the vector. * @return ordinate of the vector * @see #Vector2D(double, double) */ public double getY() { return y; } /** Get the vector coordinates as a dimension 2 array. * @return vector coordinates * @see #Vector2D(double[]) */ public double[] toArray() { return new double[] { x, y }; } /** {@inheritDoc} */ public Space getSpace() { return Euclidean2D.getInstance(); } /** {@inheritDoc} */ public Vector2D getZero() { return ZERO; } /** {@inheritDoc} */ public double getNorm1() { return FastMath.abs(x) + FastMath.abs(y); } /** {@inheritDoc} */ public double getNorm() { return FastMath.sqrt (x * x + y * y); } /** {@inheritDoc} */ public double getNormSq() { return x * x + y * y; } /** {@inheritDoc} */ public double getNormInf() { return FastMath.max(FastMath.abs(x), FastMath.abs(y)); } /** {@inheritDoc} */ public Vector2D add(Vector<Euclidean2D> v) { Vector2D v2 = (Vector2D) v; return new Vector2D(x + v2.getX(), y + v2.getY()); } /** {@inheritDoc} */ public Vector2D add(double factor, Vector<Euclidean2D> v) { Vector2D v2 = (Vector2D) v; return new Vector2D(x + factor * v2.getX(), y + factor * v2.getY()); } /** {@inheritDoc} */ public Vector2D subtract(Vector<Euclidean2D> p) { Vector2D p3 = (Vector2D) p; return new Vector2D(x - p3.x, y - p3.y); } /** {@inheritDoc} */ public Vector2D subtract(double factor, Vector<Euclidean2D> v) { Vector2D v2 = (Vector2D) v; return new Vector2D(x - factor * v2.getX(), y - factor * v2.getY()); } /** {@inheritDoc} */ public Vector2D normalize() throws MathArithmeticException { double s = getNorm(); if (s == 0) { throw new MathArithmeticException(LocalizedFormats.CANNOT_NORMALIZE_A_ZERO_NORM_VECTOR); } return scalarMultiply(1 / s); } /** Compute the angular separation between two vectors. * <p>This method computes the angular separation between two * vectors using the dot product for well separated vectors and the * cross product for almost aligned vectors. This allows to have a * good accuracy in all cases, even for vectors very close to each * other.</p> * @param v1 first vector * @param v2 second vector * @return angular separation between v1 and v2 * @exception MathArithmeticException if either vector has a null norm */ public static double angle(Vector2D v1, Vector2D v2) throws MathArithmeticException { double normProduct = v1.getNorm() * v2.getNorm(); if (normProduct == 0) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM); } double dot = v1.dotProduct(v2); double threshold = normProduct * 0.9999; if ((dot < -threshold) || (dot > threshold)) { // the vectors are almost aligned, compute using the sine final double n = FastMath.abs(MathArrays.linearCombination(v1.x, v2.y, -v1.y, v2.x)); if (dot >= 0) { return FastMath.asin(n / normProduct); } return FastMath.PI - FastMath.asin(n / normProduct); } // the vectors are sufficiently separated to use the cosine return FastMath.acos(dot / normProduct); } /** {@inheritDoc} */ public Vector2D negate() { return new Vector2D(-x, -y); } /** {@inheritDoc} */ public Vector2D scalarMultiply(double a) { return new Vector2D(a * x, a * y); } /** {@inheritDoc} */ public boolean isNaN() { return Double.isNaN(x) || Double.isNaN(y); } /** {@inheritDoc} */ public boolean isInfinite() { return !isNaN() && (Double.isInfinite(x) || Double.isInfinite(y)); } /** {@inheritDoc} */ public double distance1(Vector<Euclidean2D> p) { Vector2D p3 = (Vector2D) p; final double dx = FastMath.abs(p3.x - x); final double dy = FastMath.abs(p3.y - y); return dx + dy; } /** {@inheritDoc} */ public double distance(Vector<Euclidean2D> p) { return distance((Point<Euclidean2D>) p); } /** {@inheritDoc} */ public double distance(Point<Euclidean2D> p) { Vector2D p3 = (Vector2D) p; final double dx = p3.x - x; final double dy = p3.y - y; return FastMath.sqrt(dx * dx + dy * dy); } /** {@inheritDoc} */ public double distanceInf(Vector<Euclidean2D> p) { Vector2D p3 = (Vector2D) p; final double dx = FastMath.abs(p3.x - x); final double dy = FastMath.abs(p3.y - y); return FastMath.max(dx, dy); } /** {@inheritDoc} */ public double distanceSq(Vector<Euclidean2D> p) { Vector2D p3 = (Vector2D) p; final double dx = p3.x - x; final double dy = p3.y - y; return dx * dx + dy * dy; } /** {@inheritDoc} */ public double dotProduct(final Vector<Euclidean2D> v) { final Vector2D v2 = (Vector2D) v; return MathArrays.linearCombination(x, v2.x, y, v2.y); } /** * Compute the cross-product of the instance and the given points. * <p> * The cross product can be used to determine the location of a point * with regard to the line formed by (p1, p2) and is calculated as: * \[ * P = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) * \] * with \(p3 = (x_3, y_3)\) being this instance. * <p> * If the result is 0, the points are collinear, i.e. lie on a single straight line L; * if it is positive, this point lies to the left, otherwise to the right of the line * formed by (p1, p2). * * @param p1 first point of the line * @param p2 second point of the line * @return the cross-product * * @see <a href="http://en.wikipedia.org/wiki/Cross_product">Cross product (Wikipedia) */ public double crossProduct(final Vector2D p1, final Vector2D p2) { final double x1 = p2.getX() - p1.getX(); final double y1 = getY() - p1.getY(); final double x2 = getX() - p1.getX(); final double y2 = p2.getY() - p1.getY(); return MathArrays.linearCombination(x1, y1, -x2, y2); } /** Compute the distance between two vectors according to the L<sub>2 norm. * <p>Calling this method is equivalent to calling: * <code>p1.subtract(p2).getNorm() except that no intermediate * vector is built</p> * @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L<sub>2 norm */ public static double distance(Vector2D p1, Vector2D p2) { return p1.distance(p2); } /** Compute the distance between two vectors according to the L<sub>? norm. * <p>Calling this method is equivalent to calling: * <code>p1.subtract(p2).getNormInf() except that no intermediate * vector is built</p> * @param p1 first vector * @param p2 second vector * @return the distance between p1 and p2 according to the L<sub>? norm */ public static double distanceInf(Vector2D p1, Vector2D p2) { return p1.distanceInf(p2); } /** Compute the square of the distance between two vectors. * <p>Calling this method is equivalent to calling: * <code>p1.subtract(p2).getNormSq() except that no intermediate * vector is built</p> * @param p1 first vector * @param p2 second vector * @return the square of the distance between p1 and p2 */ public static double distanceSq(Vector2D p1, Vector2D p2) { return p1.distanceSq(p2); } /** * Test for the equality of two 2D vectors. * <p> * If all coordinates of two 2D vectors are exactly the same, and none are * <code>Double.NaN, the two 2D vectors are considered to be equal. * </p> * <p> * <code>NaN coordinates are considered to affect globally the vector * and be equals to each other - i.e, if either (or all) coordinates of the * 2D vector are equal to <code>Double.NaN, the 2D vector is equal to * {@link #NaN}. * </p> * * @param other Object to test for equality to this * @return true if two 2D vector objects are equal, false if * object is null, not an instance of Vector2D, or * not equal to this Vector2D instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Vector2D) { final Vector2D rhs = (Vector2D)other; if (rhs.isNaN()) { return this.isNaN(); } return (x == rhs.x) && (y == rhs.y); } return false; } /** * Get a hashCode for the 2D vector. * <p> * All NaN values have the same hash code.</p> * * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN()) { return 542; } return 122 * (76 * MathUtils.hash(x) + MathUtils.hash(y)); } /** Get a string representation of this vector. * @return a string representation of this vector */ @Override public String toString() { return Vector2DFormat.getInstance().format(this); } /** {@inheritDoc} */ public String toString(final NumberFormat format) { return new Vector2DFormat(format).format(this); } }

Other Java examples (source code examples)

Here is a short list of links related to this Java Vector2D.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.