home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Circle.java)

This example Java source code file (Circle.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

arc, arcsset, circle, circletransform, embedding, hyperplane, rotation, s1point, s2point, sphere1d, sphericalpolygonsset, subcircle, subhyperplane, vector3d

The Circle.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.spherical.twod;

import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.euclidean.threed.Rotation;
import org.apache.commons.math3.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math3.geometry.partitioning.Embedding;
import org.apache.commons.math3.geometry.partitioning.Hyperplane;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.geometry.partitioning.Transform;
import org.apache.commons.math3.geometry.spherical.oned.Arc;
import org.apache.commons.math3.geometry.spherical.oned.ArcsSet;
import org.apache.commons.math3.geometry.spherical.oned.S1Point;
import org.apache.commons.math3.geometry.spherical.oned.Sphere1D;
import org.apache.commons.math3.util.FastMath;

/** This class represents an oriented great circle on the 2-sphere.

 * <p>An oriented circle can be defined by a center point. The circle
 * is the the set of points that are in the normal plan the center.</p>

 * <p>Since it is oriented the two spherical caps at its two sides are
 * unambiguously identified as a left cap and a right cap. This can be
 * used to identify the interior and the exterior in a simple way by
 * local properties only when part of a line is used to define part of
 * a spherical polygon boundary.</p>

 * @since 3.3
 */
public class Circle implements Hyperplane<Sphere2D>, Embedding {

    /** Pole or circle center. */
    private Vector3D pole;

    /** First axis in the equator plane, origin of the phase angles. */
    private Vector3D x;

    /** Second axis in the equator plane, in quadrature with respect to x. */
    private Vector3D y;

    /** Tolerance below which close sub-arcs are merged together. */
    private final double tolerance;

    /** Build a great circle from its pole.
     * <p>The circle is oriented in the trigonometric direction around pole.

* @param pole circle pole * @param tolerance tolerance below which close sub-arcs are merged together */ public Circle(final Vector3D pole, final double tolerance) { reset(pole); this.tolerance = tolerance; } /** Build a great circle from two non-aligned points. * <p>The circle is oriented from first to second point using the path smaller than \( \pi \).

* @param first first point contained in the great circle * @param second second point contained in the great circle * @param tolerance tolerance below which close sub-arcs are merged together */ public Circle(final S2Point first, final S2Point second, final double tolerance) { reset(first.getVector().crossProduct(second.getVector())); this.tolerance = tolerance; } /** Build a circle from its internal components. * <p>The circle is oriented in the trigonometric direction around center.

* @param pole circle pole * @param x first axis in the equator plane * @param y second axis in the equator plane * @param tolerance tolerance below which close sub-arcs are merged together */ private Circle(final Vector3D pole, final Vector3D x, final Vector3D y, final double tolerance) { this.pole = pole; this.x = x; this.y = y; this.tolerance = tolerance; } /** Copy constructor. * <p>The created instance is completely independent from the * original instance, it is a deep copy.</p> * @param circle circle to copy */ public Circle(final Circle circle) { this(circle.pole, circle.x, circle.y, circle.tolerance); } /** {@inheritDoc} */ public Circle copySelf() { return new Circle(this); } /** Reset the instance as if built from a pole. * <p>The circle is oriented in the trigonometric direction around pole.

* @param newPole circle pole */ public void reset(final Vector3D newPole) { this.pole = newPole.normalize(); this.x = newPole.orthogonal(); this.y = Vector3D.crossProduct(newPole, x).normalize(); } /** Revert the instance. */ public void revertSelf() { // x remains the same y = y.negate(); pole = pole.negate(); } /** Get the reverse of the instance. * <p>Get a circle with reversed orientation with respect to the * instance. A new object is built, the instance is untouched.</p> * @return a new circle, with orientation opposite to the instance orientation */ public Circle getReverse() { return new Circle(pole.negate(), x, y.negate(), tolerance); } /** {@inheritDoc} */ public Point<Sphere2D> project(Point point) { return toSpace(toSubSpace(point)); } /** {@inheritDoc} */ public double getTolerance() { return tolerance; } /** {@inheritDoc} * @see #getPhase(Vector3D) */ public S1Point toSubSpace(final Point<Sphere2D> point) { return new S1Point(getPhase(((S2Point) point).getVector())); } /** Get the phase angle of a direction. * <p> * The direction may not belong to the circle as the * phase is computed for the meridian plane between the circle * pole and the direction. * </p> * @param direction direction for which phase is requested * @return phase angle of the direction around the circle * @see #toSubSpace(Point) */ public double getPhase(final Vector3D direction) { return FastMath.PI + FastMath.atan2(-direction.dotProduct(y), -direction.dotProduct(x)); } /** {@inheritDoc} * @see #getPointAt(double) */ public S2Point toSpace(final Point<Sphere1D> point) { return new S2Point(getPointAt(((S1Point) point).getAlpha())); } /** Get a circle point from its phase around the circle. * @param alpha phase around the circle * @return circle point on the sphere * @see #toSpace(Point) * @see #getXAxis() * @see #getYAxis() */ public Vector3D getPointAt(final double alpha) { return new Vector3D(FastMath.cos(alpha), x, FastMath.sin(alpha), y); } /** Get the X axis of the circle. * <p> * This method returns the same value as {@link #getPointAt(double) * getPointAt(0.0)} but it does not do any computation and always * return the same instance. * </p> * @return an arbitrary x axis on the circle * @see #getPointAt(double) * @see #getYAxis() * @see #getPole() */ public Vector3D getXAxis() { return x; } /** Get the Y axis of the circle. * <p> * This method returns the same value as {@link #getPointAt(double) * getPointAt(0.5 * FastMath.PI)} but it does not do any computation and always * return the same instance. * </p> * @return an arbitrary y axis point on the circle * @see #getPointAt(double) * @see #getXAxis() * @see #getPole() */ public Vector3D getYAxis() { return y; } /** Get the pole of the circle. * <p> * As the circle is a great circle, the pole does <em>not * belong to it. * </p> * @return pole of the circle * @see #getXAxis() * @see #getYAxis() */ public Vector3D getPole() { return pole; } /** Get the arc of the instance that lies inside the other circle. * @param other other circle * @return arc of the instance that lies inside the other circle */ public Arc getInsideArc(final Circle other) { final double alpha = getPhase(other.pole); final double halfPi = 0.5 * FastMath.PI; return new Arc(alpha - halfPi, alpha + halfPi, tolerance); } /** {@inheritDoc} */ public SubCircle wholeHyperplane() { return new SubCircle(this, new ArcsSet(tolerance)); } /** Build a region covering the whole space. * @return a region containing the instance (really a {@link * SphericalPolygonsSet SphericalPolygonsSet} instance) */ public SphericalPolygonsSet wholeSpace() { return new SphericalPolygonsSet(tolerance); } /** {@inheritDoc} * @see #getOffset(Vector3D) */ public double getOffset(final Point<Sphere2D> point) { return getOffset(((S2Point) point).getVector()); } /** Get the offset (oriented distance) of a direction. * <p>The offset is defined as the angular distance between the * circle center and the direction minus the circle radius. It * is therefore 0 on the circle, positive for directions outside of * the cone delimited by the circle, and negative inside the cone.</p> * @param direction direction to check * @return offset of the direction * @see #getOffset(Point) */ public double getOffset(final Vector3D direction) { return Vector3D.angle(pole, direction) - 0.5 * FastMath.PI; } /** {@inheritDoc} */ public boolean sameOrientationAs(final Hyperplane<Sphere2D> other) { final Circle otherC = (Circle) other; return Vector3D.dotProduct(pole, otherC.pole) >= 0.0; } /** Get a {@link org.apache.commons.math3.geometry.partitioning.Transform * Transform} embedding a 3D rotation. * @param rotation rotation to use * @return a new transform that can be applied to either {@link * Point Point}, {@link Circle Line} or {@link * org.apache.commons.math3.geometry.partitioning.SubHyperplane * SubHyperplane} instances */ public static Transform<Sphere2D, Sphere1D> getTransform(final Rotation rotation) { return new CircleTransform(rotation); } /** Class embedding a 3D rotation. */ private static class CircleTransform implements Transform<Sphere2D, Sphere1D> { /** Underlying rotation. */ private final Rotation rotation; /** Build a transform from a {@code Rotation}. * @param rotation rotation to use */ CircleTransform(final Rotation rotation) { this.rotation = rotation; } /** {@inheritDoc} */ public S2Point apply(final Point<Sphere2D> point) { return new S2Point(rotation.applyTo(((S2Point) point).getVector())); } /** {@inheritDoc} */ public Circle apply(final Hyperplane<Sphere2D> hyperplane) { final Circle circle = (Circle) hyperplane; return new Circle(rotation.applyTo(circle.pole), rotation.applyTo(circle.x), rotation.applyTo(circle.y), circle.tolerance); } /** {@inheritDoc} */ public SubHyperplane<Sphere1D> apply(final SubHyperplane sub, final Hyperplane<Sphere2D> original, final Hyperplane<Sphere2D> transformed) { // as the circle is rotated, the limit angles are rotated too return sub; } } }

Other Java examples (source code examples)

Here is a short list of links related to this Java Circle.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.