home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (package-info.java)

This example Java source code file (package-info.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

The package-info.java Java example source code

 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *      http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * <h2>All classes and sub-packages of this package are deprecated.
 * <h3>Please use their replacements, to be found under
 *  <ul>
 *   <li>{@link org.apache.commons.math3.optim}
 *   <li>{@link org.apache.commons.math3.fitting}
 *  </ul>
 * </h3>
 * <p>
 * This package provides common interfaces for the optimization algorithms
 * provided in sub-packages. The main interfaces defines optimizers and convergence
 * checkers. The functions that are optimized by the algorithms provided by this
 * package and its sub-packages are a subset of the one defined in the <code>analysis
 * package, namely the real and vector valued functions. These functions are called
 * objective function here. When the goal is to minimize, the functions are often called
 * cost function, this name is not used in this package.
 * </p>
 * <p>
 * Optimizers are the algorithms that will either minimize or maximize, the objective function
 * by changing its input variables set until an optimal set is found. There are only four
 * interfaces defining the common behavior of optimizers, one for each supported type of objective
 * function:
 * <ul>
 *  <li>{@link org.apache.commons.math3.optimization.univariate.UnivariateOptimizer
 *      UnivariateOptimizer} for {@link org.apache.commons.math3.analysis.UnivariateFunction
 *      univariate real functions}</li>
 *  <li>{@link org.apache.commons.math3.optimization.MultivariateOptimizer
 *      MultivariateOptimizer} for {@link org.apache.commons.math3.analysis.MultivariateFunction
 *      multivariate real functions}</li>
 *  <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableOptimizer
 *      MultivariateDifferentiableOptimizer} for {@link
 *      org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction
 *      multivariate differentiable real functions}</li>
 *  <li>{@link org.apache.commons.math3.optimization.MultivariateDifferentiableVectorOptimizer
 *      MultivariateDifferentiableVectorOptimizer} for {@link
 *      org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction
 *      multivariate differentiable vectorial functions}</li>
 * </ul>
 * </p>
 * <p>
 * Despite there are only four types of supported optimizers, it is possible to optimize a
 * transform a {@link org.apache.commons.math3.analysis.MultivariateVectorFunction
 * non-differentiable multivariate vectorial function} by converting it to a {@link
 * org.apache.commons.math3.analysis.MultivariateFunction non-differentiable multivariate
 * real function} thanks to the {@link
 * org.apache.commons.math3.optimization.LeastSquaresConverter LeastSquaresConverter} helper class.
 * The transformed function can be optimized using any implementation of the {@link
 * org.apache.commons.math3.optimization.MultivariateOptimizer MultivariateOptimizer} interface.
 * </p>
 * <p>
 * For each of the four types of supported optimizers, there is a special implementation which
 * wraps a classical optimizer in order to add it a multi-start feature. This feature call the
 * underlying optimizer several times in sequence with different starting points and returns
 * the best optimum found or all optima if desired. This is a classical way to prevent being
 * trapped into a local extremum when looking for a global one.
 * </p>
package org.apache.commons.math3.optimization;

Other Java examples (source code examples)

Here is a short list of links related to this Java package-info.java source code file:

my book on functional programming


new blog posts


Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.