home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (TestUtils.java)

This example Java source code file (TestUtils.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bytearrayoutputstream, chisquaretest, complex, fieldelement, object, objectinputstream, objectoutputstream, observed, realmatrix, realvector, string, stringbuilder, testutils, text, unable

The TestUtils.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.text.DecimalFormat;


import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.complex.ComplexFormat;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.linear.FieldMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.stat.inference.ChiSquareTest;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;
import org.junit.Assert;

/**
 */
public class TestUtils {
    /**
     * Collection of static methods used in math unit tests.
     */
    private TestUtils() {
        super();
    }

    /**
     * Verifies that expected and actual are within delta, or are both NaN or
     * infinities of the same sign.
     */
    public static void assertEquals(double expected, double actual, double delta) {
        Assert.assertEquals(null, expected, actual, delta);
    }

    /**
     * Verifies that expected and actual are within delta, or are both NaN or
     * infinities of the same sign.
     */
    public static void assertEquals(String msg, double expected, double actual, double delta) {
        // check for NaN
        if(Double.isNaN(expected)){
            Assert.assertTrue("" + actual + " is not NaN.",
                Double.isNaN(actual));
        } else {
            Assert.assertEquals(msg, expected, actual, delta);
        }
    }

    /**
     * Verifies that the two arguments are exactly the same, either
     * both NaN or infinities of same sign, or identical floating point values.
     */
    public static void assertSame(double expected, double actual) {
     Assert.assertEquals(expected, actual, 0);
    }

    /**
     * Verifies that real and imaginary parts of the two complex arguments
     * are exactly the same.  Also ensures that NaN / infinite components match.
     */
    public static void assertSame(Complex expected, Complex actual) {
        assertSame(expected.getReal(), actual.getReal());
        assertSame(expected.getImaginary(), actual.getImaginary());
    }

    /**
     * Verifies that real and imaginary parts of the two complex arguments
     * differ by at most delta.  Also ensures that NaN / infinite components match.
     */
    public static void assertEquals(Complex expected, Complex actual, double delta) {
        Assert.assertEquals(expected.getReal(), actual.getReal(), delta);
        Assert.assertEquals(expected.getImaginary(), actual.getImaginary(), delta);
    }

    /**
     * Verifies that two double arrays have equal entries, up to tolerance
     */
    public static void assertEquals(double expected[], double observed[], double tolerance) {
        assertEquals("Array comparison failure", expected, observed, tolerance);
    }

    /**
     * Serializes an object to a bytes array and then recovers the object from the bytes array.
     * Returns the deserialized object.
     *
     * @param o  object to serialize and recover
     * @return  the recovered, deserialized object
     */
    public static Object serializeAndRecover(Object o) {
        try {
            // serialize the Object
            ByteArrayOutputStream bos = new ByteArrayOutputStream();
            ObjectOutputStream so = new ObjectOutputStream(bos);
            so.writeObject(o);

            // deserialize the Object
            ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
            ObjectInputStream si = new ObjectInputStream(bis);
            return si.readObject();
        } catch (IOException ioe) {
            return null;
        } catch (ClassNotFoundException cnfe) {
            return null;
        }
    }

    /**
     * Verifies that serialization preserves equals and hashCode.
     * Serializes the object, then recovers it and checks equals and hash code.
     *
     * @param object  the object to serialize and recover
     */
    public static void checkSerializedEquality(Object object) {
        Object object2 = serializeAndRecover(object);
        Assert.assertEquals("Equals check", object, object2);
        Assert.assertEquals("HashCode check", object.hashCode(), object2.hashCode());
    }

    /**
     * Verifies that the relative error in actual vs. expected is less than or
     * equal to relativeError.  If expected is infinite or NaN, actual must be
     * the same (NaN or infinity of the same sign).
     *
     * @param expected expected value
     * @param actual  observed value
     * @param relativeError  maximum allowable relative error
     */
    public static void assertRelativelyEquals(double expected, double actual,
            double relativeError) {
        assertRelativelyEquals(null, expected, actual, relativeError);
    }

    /**
     * Verifies that the relative error in actual vs. expected is less than or
     * equal to relativeError.  If expected is infinite or NaN, actual must be
     * the same (NaN or infinity of the same sign).
     *
     * @param msg  message to return with failure
     * @param expected expected value
     * @param actual  observed value
     * @param relativeError  maximum allowable relative error
     */
    public static void assertRelativelyEquals(String msg, double expected,
            double actual, double relativeError) {
        if (Double.isNaN(expected)) {
            Assert.assertTrue(msg, Double.isNaN(actual));
        } else if (Double.isNaN(actual)) {
            Assert.assertTrue(msg, Double.isNaN(expected));
        } else if (Double.isInfinite(actual) || Double.isInfinite(expected)) {
            Assert.assertEquals(expected, actual, relativeError);
        } else if (expected == 0.0) {
            Assert.assertEquals(msg, actual, expected, relativeError);
        } else {
            double absError = FastMath.abs(expected) * relativeError;
            Assert.assertEquals(msg, expected, actual, absError);
        }
    }

    /**
     * Fails iff values does not contain a number within epsilon of z.
     *
     * @param msg  message to return with failure
     * @param values complex array to search
     * @param z  value sought
     * @param epsilon  tolerance
     */
    public static void assertContains(String msg, Complex[] values,
                                      Complex z, double epsilon) {
        for (Complex value : values) {
            if (Precision.equals(value.getReal(), z.getReal(), epsilon) &&
                Precision.equals(value.getImaginary(), z.getImaginary(), epsilon)) {
                return;
            }
        }
        Assert.fail(msg + " Unable to find " + (new ComplexFormat()).format(z));
    }

    /**
     * Fails iff values does not contain a number within epsilon of z.
     *
     * @param values complex array to search
     * @param z  value sought
     * @param epsilon  tolerance
     */
    public static void assertContains(Complex[] values,
            Complex z, double epsilon) {
        assertContains(null, values, z, epsilon);
    }

    /**
     * Fails iff values does not contain a number within epsilon of x.
     *
     * @param msg  message to return with failure
     * @param values double array to search
     * @param x value sought
     * @param epsilon  tolerance
     */
    public static void assertContains(String msg, double[] values,
            double x, double epsilon) {
        for (double value : values) {
            if (Precision.equals(value, x, epsilon)) {
                return;
            }
        }
        Assert.fail(msg + " Unable to find " + x);
    }

    /**
     * Fails iff values does not contain a number within epsilon of x.
     *
     * @param values double array to search
     * @param x value sought
     * @param epsilon  tolerance
     */
    public static void assertContains(double[] values, double x,
            double epsilon) {
       assertContains(null, values, x, epsilon);
    }

    /**
     * Asserts that all entries of the specified vectors are equal to within a
     * positive {@code delta}.
     *
     * @param message the identifying message for the assertion error (can be
     * {@code null})
     * @param expected expected value
     * @param actual actual value
     * @param delta the maximum difference between the entries of the expected
     * and actual vectors for which both entries are still considered equal
     */
    public static void assertEquals(final String message,
        final double[] expected, final RealVector actual, final double delta) {
        final String msgAndSep = message.equals("") ? "" : message + ", ";
        Assert.assertEquals(msgAndSep + "dimension", expected.length,
            actual.getDimension());
        for (int i = 0; i < expected.length; i++) {
            Assert.assertEquals(msgAndSep + "entry #" + i, expected[i],
                actual.getEntry(i), delta);
        }
    }

    /**
     * Asserts that all entries of the specified vectors are equal to within a
     * positive {@code delta}.
     *
     * @param message the identifying message for the assertion error (can be
     * {@code null})
     * @param expected expected value
     * @param actual actual value
     * @param delta the maximum difference between the entries of the expected
     * and actual vectors for which both entries are still considered equal
     */
    public static void assertEquals(final String message,
        final RealVector expected, final RealVector actual, final double delta) {
        final String msgAndSep = message.equals("") ? "" : message + ", ";
        Assert.assertEquals(msgAndSep + "dimension", expected.getDimension(),
            actual.getDimension());
        final int dim = expected.getDimension();
        for (int i = 0; i < dim; i++) {
            Assert.assertEquals(msgAndSep + "entry #" + i,
                expected.getEntry(i), actual.getEntry(i), delta);
        }
    }

    /** verifies that two matrices are close (1-norm) */
    public static void assertEquals(String msg, RealMatrix expected, RealMatrix observed, double tolerance) {

        Assert.assertNotNull(msg + "\nObserved should not be null",observed);

        if (expected.getColumnDimension() != observed.getColumnDimension() ||
                expected.getRowDimension() != observed.getRowDimension()) {
            StringBuilder messageBuffer = new StringBuilder(msg);
            messageBuffer.append("\nObserved has incorrect dimensions.");
            messageBuffer.append("\nobserved is " + observed.getRowDimension() +
                    " x " + observed.getColumnDimension());
            messageBuffer.append("\nexpected " + expected.getRowDimension() +
                    " x " + expected.getColumnDimension());
            Assert.fail(messageBuffer.toString());
        }

        RealMatrix delta = expected.subtract(observed);
        if (delta.getNorm() >= tolerance) {
            StringBuilder messageBuffer = new StringBuilder(msg);
            messageBuffer.append("\nExpected: " + expected);
            messageBuffer.append("\nObserved: " + observed);
            messageBuffer.append("\nexpected - observed: " + delta);
            Assert.fail(messageBuffer.toString());
        }
    }

    /** verifies that two matrices are equal */
    public static void assertEquals(FieldMatrix<? extends FieldElement expected,
                                    FieldMatrix<? extends FieldElement observed) {

        Assert.assertNotNull("Observed should not be null",observed);

        if (expected.getColumnDimension() != observed.getColumnDimension() ||
                expected.getRowDimension() != observed.getRowDimension()) {
            StringBuilder messageBuffer = new StringBuilder();
            messageBuffer.append("Observed has incorrect dimensions.");
            messageBuffer.append("\nobserved is " + observed.getRowDimension() +
                    " x " + observed.getColumnDimension());
            messageBuffer.append("\nexpected " + expected.getRowDimension() +
                    " x " + expected.getColumnDimension());
            Assert.fail(messageBuffer.toString());
        }

        for (int i = 0; i < expected.getRowDimension(); ++i) {
            for (int j = 0; j < expected.getColumnDimension(); ++j) {
                FieldElement<?> eij = expected.getEntry(i, j);
                FieldElement<?> oij = observed.getEntry(i, j);
                Assert.assertEquals(eij, oij);
            }
        }
    }

    /** verifies that two arrays are close (sup norm) */
    public static void assertEquals(String msg, double[] expected, double[] observed, double tolerance) {
        StringBuilder out = new StringBuilder(msg);
        if (expected.length != observed.length) {
            out.append("\n Arrays not same length. \n");
            out.append("expected has length ");
            out.append(expected.length);
            out.append(" observed length = ");
            out.append(observed.length);
            Assert.fail(out.toString());
        }
        boolean failure = false;
        for (int i=0; i < expected.length; i++) {
            if (!Precision.equalsIncludingNaN(expected[i], observed[i], tolerance)) {
                failure = true;
                out.append("\n Elements at index ");
                out.append(i);
                out.append(" differ. ");
                out.append(" expected = ");
                out.append(expected[i]);
                out.append(" observed = ");
                out.append(observed[i]);
            }
        }
        if (failure) {
            Assert.fail(out.toString());
        }
    }

    /** verifies that two arrays are equal */
    public static <T extends FieldElement void assertEquals(T[] m, T[] n) {
        if (m.length != n.length) {
            Assert.fail("vectors not same length");
        }
        for (int i = 0; i < m.length; i++) {
            Assert.assertEquals(m[i],n[i]);
        }
    }

    /**
     * Computes the sum of squared deviations of <values> from 
     * @param values array of deviates
     * @param target value to compute deviations from
     *
     * @return sum of squared deviations
     */
    public static double sumSquareDev(double[] values, double target) {
        double sumsq = 0d;
        for (int i = 0; i < values.length; i++) {
            final double dev = values[i] - target;
            sumsq += (dev * dev);
        }
        return sumsq;
    }

    /**
     * Asserts the null hypothesis for a ChiSquare test.  Fails and dumps arguments and test
     * statistics if the null hypothesis can be rejected with confidence 100 * (1 - alpha)%
     *
     * @param valueLabels labels for the values of the discrete distribution under test
     * @param expected expected counts
     * @param observed observed counts
     * @param alpha significance level of the test
     */
    public static void assertChiSquareAccept(String[] valueLabels, double[] expected, long[] observed, double alpha) {
        ChiSquareTest chiSquareTest = new ChiSquareTest();

        // Fail if we can reject null hypothesis that distributions are the same
        if (chiSquareTest.chiSquareTest(expected, observed, alpha)) {
            StringBuilder msgBuffer = new StringBuilder();
            DecimalFormat df = new DecimalFormat("#.##");
            msgBuffer.append("Chisquare test failed");
            msgBuffer.append(" p-value = ");
            msgBuffer.append(chiSquareTest.chiSquareTest(expected, observed));
            msgBuffer.append(" chisquare statistic = ");
            msgBuffer.append(chiSquareTest.chiSquare(expected, observed));
            msgBuffer.append(". \n");
            msgBuffer.append("value\texpected\tobserved\n");
            for (int i = 0; i < expected.length; i++) {
                msgBuffer.append(valueLabels[i]);
                msgBuffer.append("\t");
                msgBuffer.append(df.format(expected[i]));
                msgBuffer.append("\t\t");
                msgBuffer.append(observed[i]);
                msgBuffer.append("\n");
            }
            msgBuffer.append("This test can fail randomly due to sampling error with probability ");
            msgBuffer.append(alpha);
            msgBuffer.append(".");
            Assert.fail(msgBuffer.toString());
        }
    }

    /**
     * Asserts the null hypothesis for a ChiSquare test.  Fails and dumps arguments and test
     * statistics if the null hypothesis can be rejected with confidence 100 * (1 - alpha)%
     *
     * @param values integer values whose observed and expected counts are being compared
     * @param expected expected counts
     * @param observed observed counts
     * @param alpha significance level of the test
     */
    public static void assertChiSquareAccept(int[] values, double[] expected, long[] observed, double alpha) {
        String[] labels = new String[values.length];
        for (int i = 0; i < values.length; i++) {
            labels[i] = Integer.toString(values[i]);
        }
        assertChiSquareAccept(labels, expected, observed, alpha);
    }

    /**
     * Asserts the null hypothesis for a ChiSquare test.  Fails and dumps arguments and test
     * statistics if the null hypothesis can be rejected with confidence 100 * (1 - alpha)%
     *
     * @param expected expected counts
     * @param observed observed counts
     * @param alpha significance level of the test
     */
    public static void assertChiSquareAccept(double[] expected, long[] observed, double alpha) {
        String[] labels = new String[expected.length];
        for (int i = 0; i < labels.length; i++) {
            labels[i] = Integer.toString(i + 1);
        }
        assertChiSquareAccept(labels, expected, observed, alpha);
    }

    /**
     * Computes the 25th, 50th and 75th percentiles of the given distribution and returns
     * these values in an array.
     */
    public static double[] getDistributionQuartiles(RealDistribution distribution) {
        double[] quantiles = new double[3];
        quantiles[0] = distribution.inverseCumulativeProbability(0.25d);
        quantiles[1] = distribution.inverseCumulativeProbability(0.5d);
        quantiles[2] = distribution.inverseCumulativeProbability(0.75d);
        return quantiles;
    }

    /**
     * Updates observed counts of values in quartiles.
     * counts[0] <-> 1st quartile ... counts[3] <-> top quartile
     */
    public static void updateCounts(double value, long[] counts, double[] quartiles) {
        if (value < quartiles[0]) {
            counts[0]++;
        } else if (value > quartiles[2]) {
            counts[3]++;
        } else if (value > quartiles[1]) {
            counts[2]++;
        } else {
            counts[1]++;
        }
    }

    /**
     * Eliminates points with zero mass from densityPoints and densityValues parallel
     * arrays.  Returns the number of positive mass points and collapses the arrays so
     * that the first <returned value> elements of the input arrays represent the positive
     * mass points.
     */
    public static int eliminateZeroMassPoints(int[] densityPoints, double[] densityValues) {
        int positiveMassCount = 0;
        for (int i = 0; i < densityValues.length; i++) {
            if (densityValues[i] > 0) {
                positiveMassCount++;
            }
        }
        if (positiveMassCount < densityValues.length) {
            int[] newPoints = new int[positiveMassCount];
            double[] newValues = new double[positiveMassCount];
            int j = 0;
            for (int i = 0; i < densityValues.length; i++) {
                if (densityValues[i] > 0) {
                    newPoints[j] = densityPoints[i];
                    newValues[j] = densityValues[i];
                    j++;
                }
            }
            System.arraycopy(newPoints,0,densityPoints,0,positiveMassCount);
            System.arraycopy(newValues,0,densityValues,0,positiveMassCount);
        }
        return positiveMassCount;
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java TestUtils.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.