alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (RungeKuttaFieldIntegratorAbstractTest.java)

This example Java source code file (RungeKuttaFieldIntegratorAbstractTest.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

derivativestructure, dimensionmismatchexception, fieldexpandableode, firstorderfielddifferentialequations, maxcountexceededexception, nobracketingexception, numberistoosmallexception, realfieldelement, reflection, rungekuttafieldintegrator, test, testfieldproblem1, testfieldproblem3, testfieldproblemhandler

The RungeKuttaFieldIntegratorAbstractTest.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;


import java.lang.reflect.Array;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ode.FieldExpandableODE;
import org.apache.commons.math3.ode.FirstOrderFieldDifferentialEquations;
import org.apache.commons.math3.ode.FieldODEState;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.ode.TestFieldProblem1;
import org.apache.commons.math3.ode.TestFieldProblem2;
import org.apache.commons.math3.ode.TestFieldProblem3;
import org.apache.commons.math3.ode.TestFieldProblem4;
import org.apache.commons.math3.ode.TestFieldProblem5;
import org.apache.commons.math3.ode.TestFieldProblem6;
import org.apache.commons.math3.ode.TestFieldProblemAbstract;
import org.apache.commons.math3.ode.TestFieldProblemHandler;
import org.apache.commons.math3.ode.events.Action;
import org.apache.commons.math3.ode.events.FieldEventHandler;
import org.apache.commons.math3.ode.sampling.FieldStepHandler;
import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
import org.apache.commons.math3.ode.sampling.StepInterpolatorTestUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.junit.Assert;
import org.junit.Test;

public abstract class RungeKuttaFieldIntegratorAbstractTest {

    protected abstract <T extends RealFieldElement RungeKuttaFieldIntegrator
        createIntegrator(Field<T> field, T step);

    @Test
    public abstract void testNonFieldIntegratorConsistency();

    protected <T extends RealFieldElement void doTestNonFieldIntegratorConsistency(final Field field) {
        try {

            // get the Butcher arrays from the field integrator
            RungeKuttaFieldIntegrator<T> fieldIntegrator = createIntegrator(field, field.getZero().add(1));
            T[][] fieldA = fieldIntegrator.getA();
            T[]   fieldB = fieldIntegrator.getB();
            T[]   fieldC = fieldIntegrator.getC();

            String fieldName   = fieldIntegrator.getClass().getName();
            String regularName = fieldName.replaceAll("Field", "");

            // get the Butcher arrays from the regular integrator
            @SuppressWarnings("unchecked")
            Class<RungeKuttaIntegrator> c = (Class) Class.forName(regularName);
            java.lang.reflect.Field jlrFieldA = c.getDeclaredField("STATIC_A");
            jlrFieldA.setAccessible(true);
            double[][] regularA = (double[][]) jlrFieldA.get(null);
            java.lang.reflect.Field jlrFieldB = c.getDeclaredField("STATIC_B");
            jlrFieldB.setAccessible(true);
            double[]   regularB = (double[])   jlrFieldB.get(null);
            java.lang.reflect.Field jlrFieldC = c.getDeclaredField("STATIC_C");
            jlrFieldC.setAccessible(true);
            double[]   regularC = (double[])   jlrFieldC.get(null);

            Assert.assertEquals(regularA.length, fieldA.length);
            for (int i = 0; i < regularA.length; ++i) {
                checkArray(regularA[i], fieldA[i]);
            }
            checkArray(regularB, fieldB);
            checkArray(regularC, fieldC);

        } catch (ClassNotFoundException cnfe) {
            Assert.fail(cnfe.getLocalizedMessage());
        } catch (IllegalAccessException iae) {
            Assert.fail(iae.getLocalizedMessage());
        } catch (IllegalArgumentException iae) {
            Assert.fail(iae.getLocalizedMessage());
        } catch (SecurityException se) {
            Assert.fail(se.getLocalizedMessage());
        } catch (NoSuchFieldException nsfe) {
            Assert.fail(nsfe.getLocalizedMessage());
        }
    }

    private <T extends RealFieldElement void checkArray(double[] regularArray, T[] fieldArray) {
        Assert.assertEquals(regularArray.length, fieldArray.length);
        for (int i = 0; i < regularArray.length; ++i) {
            if (regularArray[i] == 0) {
                Assert.assertTrue(0.0 == fieldArray[i].getReal());
            } else {
                Assert.assertEquals(regularArray[i], fieldArray[i].getReal(), FastMath.ulp(regularArray[i]));
            }
        }
    }

    @Test
    public abstract void testMissedEndEvent();

    protected <T extends RealFieldElement void doTestMissedEndEvent(final Field field,
                                                                        final double epsilonT, final double epsilonY)
        throws DimensionMismatchException, NumberIsTooSmallException,
            MaxCountExceededException, NoBracketingException {
        final T   t0     = field.getZero().add(1878250320.0000029);
        final T   tEvent = field.getZero().add(1878250379.9999986);
        final T[] k      = MathArrays.buildArray(field, 3);
        k[0] = field.getZero().add(1.0e-4);
        k[1] = field.getZero().add(1.0e-5);
        k[2] = field.getZero().add(1.0e-6);
        FirstOrderFieldDifferentialEquations<T> ode = new FirstOrderFieldDifferentialEquations() {

            public int getDimension() {
                return k.length;
            }

            public void init(T t0, T[] y0, T t) {
            }

            public T[] computeDerivatives(T t, T[] y) {
                T[] yDot = MathArrays.buildArray(field, k.length);
                for (int i = 0; i < y.length; ++i) {
                    yDot[i] = k[i].multiply(y[i]);
                }
                return yDot;
            }
        };

        RungeKuttaFieldIntegrator<T> integrator = createIntegrator(field, field.getZero().add(60.0));

        T[] y0   = MathArrays.buildArray(field, k.length);
        for (int i = 0; i < y0.length; ++i) {
            y0[i] = field.getOne().add(i);
        }

        FieldODEStateAndDerivative<T> result = integrator.integrate(new FieldExpandableODE(ode),
                                                                    new FieldODEState<T>(t0, y0),
                                                                    tEvent);
        Assert.assertEquals(tEvent.getReal(), result.getTime().getReal(), epsilonT);
        T[] y = result.getState();
        for (int i = 0; i < y.length; ++i) {
            Assert.assertEquals(y0[i].multiply(k[i].multiply(result.getTime().subtract(t0)).exp()).getReal(),
                                y[i].getReal(),
                                epsilonY);
        }

        integrator.addEventHandler(new FieldEventHandler<T>() {

            public void init(FieldODEStateAndDerivative<T> state0, T t) {
            }

            public FieldODEState<T> resetState(FieldODEStateAndDerivative state) {
                return state;
            }

            public T g(FieldODEStateAndDerivative<T> state) {
                return state.getTime().subtract(tEvent);
            }

            public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
                Assert.assertEquals(tEvent.getReal(), state.getTime().getReal(), epsilonT);
                return Action.CONTINUE;
            }
        }, Double.POSITIVE_INFINITY, 1.0e-20, 100);
        result = integrator.integrate(new FieldExpandableODE<T>(ode),
                                      new FieldODEState<T>(t0, y0),
                                      tEvent.add(120));
        Assert.assertEquals(tEvent.add(120).getReal(), result.getTime().getReal(), epsilonT);
        y = result.getState();
        for (int i = 0; i < y.length; ++i) {
            Assert.assertEquals(y0[i].multiply(k[i].multiply(result.getTime().subtract(t0)).exp()).getReal(),
                                y[i].getReal(),
                                epsilonY);
        }

    }

    @Test
    public abstract void testSanityChecks();

    protected <T extends RealFieldElement void doTestSanityChecks(Field field)
        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {
        RungeKuttaFieldIntegrator<T> integrator = createIntegrator(field, field.getZero().add(0.01));
        try  {
            TestFieldProblem1<T> pb = new TestFieldProblem1(field);
            integrator.integrate(new FieldExpandableODE<T>(pb),
                                 new FieldODEState<T>(field.getZero(), MathArrays.buildArray(field, pb.getDimension() + 10)),
                                 field.getOne());
            Assert.fail("an exception should have been thrown");
        } catch(DimensionMismatchException ie) {
        }
        try  {
            TestFieldProblem1<T> pb = new TestFieldProblem1(field);
            integrator.integrate(new FieldExpandableODE<T>(pb),
                                 new FieldODEState<T>(field.getZero(), MathArrays.buildArray(field, pb.getDimension())),
                                 field.getZero());
            Assert.fail("an exception should have been thrown");
        } catch(NumberIsTooSmallException ie) {
        }
    }

    @Test
    public abstract void testDecreasingSteps();

    protected <T extends RealFieldElement void doTestDecreasingSteps(Field field,
                                                                         final double safetyValueFactor,
                                                                         final double safetyTimeFactor,
                                                                         final double epsilonT)
        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {

        @SuppressWarnings("unchecked")
        TestFieldProblemAbstract<T>[] allProblems =
                        (TestFieldProblemAbstract<T>[]) Array.newInstance(TestFieldProblemAbstract.class, 6);
        allProblems[0] = new TestFieldProblem1<T>(field);
        allProblems[1] = new TestFieldProblem2<T>(field);
        allProblems[2] = new TestFieldProblem3<T>(field);
        allProblems[3] = new TestFieldProblem4<T>(field);
        allProblems[4] = new TestFieldProblem5<T>(field);
        allProblems[5] = new TestFieldProblem6<T>(field);
        for (TestFieldProblemAbstract<T> pb :  allProblems) {

            T previousValueError = null;
            T previousTimeError  = null;
            for (int i = 4; i < 10; ++i) {

                T step = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(FastMath.pow(2.0, -i));

                RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
                TestFieldProblemHandler<T> handler = new TestFieldProblemHandler(pb, integ);
                integ.addStepHandler(handler);
                FieldEventHandler<T>[] functions = pb.getEventsHandlers();
                for (int l = 0; l < functions.length; ++l) {
                    integ.addEventHandler(functions[l],
                                          Double.POSITIVE_INFINITY, 1.0e-6 * step.getReal(), 1000);
                }
                Assert.assertEquals(functions.length, integ.getEventHandlers().size());
                FieldODEStateAndDerivative<T> stop = integ.integrate(new FieldExpandableODE(pb),
                                                                     pb.getInitialState(),
                                                                     pb.getFinalTime());
                if (functions.length == 0) {
                    Assert.assertEquals(pb.getFinalTime().getReal(), stop.getTime().getReal(), epsilonT);
                }

                T error = handler.getMaximalValueError();
                if (i > 4) {
                    Assert.assertTrue(error.subtract(previousValueError.abs().multiply(safetyValueFactor)).getReal() < 0);
                }
                previousValueError = error;

                T timeError = handler.getMaximalTimeError();
                if (i > 4) {
                    Assert.assertTrue(timeError.subtract(previousTimeError.abs().multiply(safetyTimeFactor)).getReal() <= 0);
                }
                previousTimeError = timeError;

                integ.clearEventHandlers();
                Assert.assertEquals(0, integ.getEventHandlers().size());
            }

        }

    }

    @Test
    public abstract void testSmallStep();

    protected <T extends RealFieldElement void doTestSmallStep(Field field,
                                                                   final double epsilonLast,
                                                                   final double epsilonMaxValue,
                                                                   final double epsilonMaxTime,
                                                                   final String name)
         throws DimensionMismatchException, NumberIsTooSmallException,
                MaxCountExceededException, NoBracketingException {

        TestFieldProblem1<T> pb = new TestFieldProblem1(field);
        T step = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.001);

        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
        TestFieldProblemHandler<T> handler = new TestFieldProblemHandler(pb, integ);
        integ.addStepHandler(handler);
        integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());

        Assert.assertEquals(0, handler.getLastError().getReal(),         epsilonLast);
        Assert.assertEquals(0, handler.getMaximalValueError().getReal(), epsilonMaxValue);
        Assert.assertEquals(0, handler.getMaximalTimeError().getReal(),  epsilonMaxTime);
        Assert.assertEquals(name, integ.getName());

    }

    @Test
    public abstract void testBigStep();

    protected <T extends RealFieldElement void doTestBigStep(Field field,
                                                                 final double belowLast,
                                                                 final double belowMaxValue,
                                                                 final double epsilonMaxTime,
                                                                 final String name)
        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {

        TestFieldProblem1<T> pb = new TestFieldProblem1(field);
        T step = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.2);

        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
        TestFieldProblemHandler<T> handler = new TestFieldProblemHandler(pb, integ);
        integ.addStepHandler(handler);
        integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());

        Assert.assertTrue(handler.getLastError().getReal()         > belowLast);
        Assert.assertTrue(handler.getMaximalValueError().getReal() > belowMaxValue);
        Assert.assertEquals(0, handler.getMaximalTimeError().getReal(),  epsilonMaxTime);
        Assert.assertEquals(name, integ.getName());

    }

    @Test
    public abstract void testBackward();

    protected <T extends RealFieldElement void doTestBackward(Field field,
                                                                  final double epsilonLast,
                                                                  final double epsilonMaxValue,
                                                                  final double epsilonMaxTime,
                                                                  final String name)
        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {

        TestFieldProblem5<T> pb = new TestFieldProblem5(field);
        T step = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.001).abs();

        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
        TestFieldProblemHandler<T> handler = new TestFieldProblemHandler(pb, integ);
        integ.addStepHandler(handler);
        integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());

        Assert.assertEquals(0, handler.getLastError().getReal(),         epsilonLast);
        Assert.assertEquals(0, handler.getMaximalValueError().getReal(), epsilonMaxValue);
        Assert.assertEquals(0, handler.getMaximalTimeError().getReal(),  epsilonMaxTime);
        Assert.assertEquals(name, integ.getName());

    }

    @Test
    public abstract void testKepler();

    protected <T extends RealFieldElement void doTestKepler(Field field, double expectedMaxError, double epsilon)
        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {

        final TestFieldProblem3<T> pb  = new TestFieldProblem3(field, field.getZero().add(0.9));
        T step = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.0003);

        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
        integ.addStepHandler(new KeplerHandler<T>(pb, expectedMaxError, epsilon));
        integ.integrate(new FieldExpandableODE<T>(pb), pb.getInitialState(), pb.getFinalTime());
    }

    private static class KeplerHandler<T extends RealFieldElement implements FieldStepHandler {
        private T maxError;
        private final TestFieldProblem3<T> pb;
        private final double expectedMaxError;
        private final double epsilon;
        public KeplerHandler(TestFieldProblem3<T> pb, double expectedMaxError, double epsilon) {
            this.pb               = pb;
            this.expectedMaxError = expectedMaxError;
            this.epsilon          = epsilon;
            maxError = pb.getField().getZero();
        }
        public void init(FieldODEStateAndDerivative<T> state0, T t) {
            maxError = pb.getField().getZero();
        }
        public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
                        throws MaxCountExceededException {

            FieldODEStateAndDerivative<T> current = interpolator.getCurrentState();
            T[] theoreticalY  = pb.computeTheoreticalState(current.getTime());
            T dx = current.getState()[0].subtract(theoreticalY[0]);
            T dy = current.getState()[1].subtract(theoreticalY[1]);
            T error = dx.multiply(dx).add(dy.multiply(dy));
            if (error.subtract(maxError).getReal() > 0) {
                maxError = error;
            }
            if (isLast) {
                Assert.assertEquals(expectedMaxError, maxError.getReal(), epsilon);
            }
        }
    }

    @Test
    public abstract void testStepSize();

    protected <T extends RealFieldElement void doTestStepSize(final Field field, final double epsilon)
        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {
        final T step = field.getZero().add(1.23456);
        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
        integ.addStepHandler(new FieldStepHandler<T>() {
            public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast) {
                if (! isLast) {
                    Assert.assertEquals(step.getReal(),
                                        interpolator.getCurrentState().getTime().subtract(interpolator.getPreviousState().getTime()).getReal(),
                                        epsilon);
                }
            }
            public void init(FieldODEStateAndDerivative<T> s0, T t) {
            }
        });
        integ.integrate(new FieldExpandableODE<T>(new FirstOrderFieldDifferentialEquations() {
            public void init(T t0, T[] y0, T t) {
            }
            public T[] computeDerivatives(T t, T[] y) {
                T[] dot = MathArrays.buildArray(t.getField(), 1);
                dot[0] = t.getField().getOne();
                return dot;
            }
            public int getDimension() {
                return 1;
            }
        }), new FieldODEState<T>(field.getZero(), MathArrays.buildArray(field, 1)), field.getZero().add(5.0));
    }

    @Test
    public abstract void testSingleStep();

    protected <T extends RealFieldElement void doTestSingleStep(final Field field, final double epsilon) {

        final TestFieldProblem3<T> pb  = new TestFieldProblem3(field, field.getZero().add(0.9));
        T h = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.0003);

        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, field.getZero().add(Double.NaN));
        T   t = pb.getInitialState().getTime();
        T[] y = pb.getInitialState().getState();
        for (int i = 0; i < 100; ++i) {
            y = integ.singleStep(pb, t, y, t.add(h));
            t = t.add(h);
        }
        T[] yth = pb.computeTheoreticalState(t);
        T dx = y[0].subtract(yth[0]);
        T dy = y[1].subtract(yth[1]);
        T error = dx.multiply(dx).add(dy.multiply(dy));
        Assert.assertEquals(0.0, error.getReal(), epsilon);
    }

    @Test
    public abstract void testTooLargeFirstStep();

    protected <T extends RealFieldElement void doTestTooLargeFirstStep(final Field field) {

        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, field.getZero().add(0.5));
        final T t0 = field.getZero();
        final T[] y0 = MathArrays.buildArray(field, 1);
        y0[0] = field.getOne();
        final T t   = field.getZero().add(0.001);
        FirstOrderFieldDifferentialEquations<T> equations = new FirstOrderFieldDifferentialEquations() {

            public int getDimension() {
                return 1;
            }

            public void init(T t0, T[] y0, T t) {
            }

            public T[] computeDerivatives(T t, T[] y) {
                Assert.assertTrue(t.getReal() >= FastMath.nextAfter(t0.getReal(), Double.NEGATIVE_INFINITY));
                Assert.assertTrue(t.getReal() <= FastMath.nextAfter(t.getReal(),   Double.POSITIVE_INFINITY));
                T[] yDot = MathArrays.buildArray(field, 1);
                yDot[0] = y[0].multiply(-100.0);
                return yDot;
            }

        };

        integ.integrate(new FieldExpandableODE<T>(equations), new FieldODEState(t0, y0), t);

    }

    @Test
    public abstract void testUnstableDerivative();

    protected <T extends RealFieldElement void doTestUnstableDerivative(Field field, double epsilon) {
      final StepFieldProblem<T> stepProblem = new StepFieldProblem(field,
                                                                      field.getZero().add(0.0),
                                                                      field.getZero().add(1.0),
                                                                      field.getZero().add(2.0));
      RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, field.getZero().add(0.3));
      integ.addEventHandler(stepProblem, 1.0, 1.0e-12, 1000);
      FieldODEStateAndDerivative<T> result = integ.integrate(new FieldExpandableODE(stepProblem),
                                                             new FieldODEState<T>(field.getZero(), MathArrays.buildArray(field, 1)),
                                                             field.getZero().add(10.0));
      Assert.assertEquals(8.0, result.getState()[0].getReal(), epsilon);
    }

    @Test
    public abstract void testDerivativesConsistency();

    protected <T extends RealFieldElement void doTestDerivativesConsistency(final Field field, double epsilon) {
        TestFieldProblem3<T> pb = new TestFieldProblem3(field);
        T step = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.001);
        RungeKuttaFieldIntegrator<T> integ = createIntegrator(field, step);
        StepInterpolatorTestUtils.checkDerivativesConsistency(integ, pb, 1.0e-10);
    }

    @Test
    public abstract void testPartialDerivatives();

    protected void doTestPartialDerivatives(final double epsilonY,
                                            final double[] epsilonPartials) {

        // parameters indices
        final int parameters = 5;
        final int order      = 1;
        final int parOmega   = 0;
        final int parTO      = 1;
        final int parY00     = 2;
        final int parY01     = 3;
        final int parT       = 4;

        DerivativeStructure omega = new DerivativeStructure(parameters, order, parOmega, 1.3);
        DerivativeStructure t0    = new DerivativeStructure(parameters, order, parTO, 1.3);
        DerivativeStructure[] y0  = new DerivativeStructure[] {
            new DerivativeStructure(parameters, order, parY00, 3.0),
            new DerivativeStructure(parameters, order, parY01, 4.0)
        };
        DerivativeStructure t     = new DerivativeStructure(parameters, order, parT, 6.0);
        SinCos sinCos = new SinCos(omega);

        RungeKuttaFieldIntegrator<DerivativeStructure> integrator =
                        createIntegrator(omega.getField(), t.subtract(t0).multiply(0.001));
        FieldODEStateAndDerivative<DerivativeStructure> result =
                        integrator.integrate(new FieldExpandableODE<DerivativeStructure>(sinCos),
                                             new FieldODEState<DerivativeStructure>(t0, y0),
                                             t);

        // check values
        for (int i = 0; i < sinCos.getDimension(); ++i) {
            Assert.assertEquals(sinCos.theoreticalY(t.getReal())[i], result.getState()[i].getValue(), epsilonY);
        }

        // check derivatives
        final double[][] derivatives = sinCos.getDerivatives(t.getReal());
        for (int i = 0; i < sinCos.getDimension(); ++i) {
            for (int parameter = 0; parameter < parameters; ++parameter) {
                Assert.assertEquals(derivatives[i][parameter],
                                    dYdP(result.getState()[i], parameter),
                                    epsilonPartials[parameter]);
            }
        }

    }

    private double dYdP(final DerivativeStructure y, final int parameter) {
        int[] orders = new int[y.getFreeParameters()];
        orders[parameter] = 1;
        return y.getPartialDerivative(orders);
    }

    private static class SinCos implements FirstOrderFieldDifferentialEquations<DerivativeStructure> {

        private final DerivativeStructure omega;
        private       DerivativeStructure r;
        private       DerivativeStructure alpha;

        private double dRdY00;
        private double dRdY01;
        private double dAlphadOmega;
        private double dAlphadT0;
        private double dAlphadY00;
        private double dAlphadY01;

        protected SinCos(final DerivativeStructure omega) {
            this.omega = omega;
        }

        public int getDimension() {
            return 2;
        }

        public void init(final DerivativeStructure t0, final DerivativeStructure[] y0,
                         final DerivativeStructure finalTime) {

            // theoretical solution is y(t) = { r * sin(omega * t + alpha), r * cos(omega * t + alpha) }
            // so we retrieve alpha by identification from the initial state
            final DerivativeStructure r2 = y0[0].multiply(y0[0]).add(y0[1].multiply(y0[1]));

            this.r            = r2.sqrt();
            this.dRdY00       = y0[0].divide(r).getReal();
            this.dRdY01       = y0[1].divide(r).getReal();

            this.alpha        = y0[0].atan2(y0[1]).subtract(t0.multiply(omega));
            this.dAlphadOmega = -t0.getReal();
            this.dAlphadT0    = -omega.getReal();
            this.dAlphadY00   = y0[1].divide(r2).getReal();
            this.dAlphadY01   = y0[0].negate().divide(r2).getReal();

        }

        public DerivativeStructure[] computeDerivatives(final DerivativeStructure t, final DerivativeStructure[] y) {
            return new DerivativeStructure[] {
                omega.multiply(y[1]),
                omega.multiply(y[0]).negate()
            };
        }

        public double[] theoreticalY(final double t) {
            final double theta = omega.getReal() * t + alpha.getReal();
            return new double[] {
                r.getReal() * FastMath.sin(theta), r.getReal() * FastMath.cos(theta)
            };
        }

        public double[][] getDerivatives(final double t) {

            // intermediate angle and state
            final double theta        = omega.getReal() * t + alpha.getReal();
            final double sin          = FastMath.sin(theta);
            final double cos          = FastMath.cos(theta);
            final double y0           = r.getReal() * sin;
            final double y1           = r.getReal() * cos;

            // partial derivatives of the state first component
            final double dY0dOmega    =                y1 * (t + dAlphadOmega);
            final double dY0dT0       =                y1 * dAlphadT0;
            final double dY0dY00      = dRdY00 * sin + y1 * dAlphadY00;
            final double dY0dY01      = dRdY01 * sin + y1 * dAlphadY01;
            final double dY0dT        =                y1 * omega.getReal();

            // partial derivatives of the state second component
            final double dY1dOmega    =              - y0 * (t + dAlphadOmega);
            final double dY1dT0       =              - y0 * dAlphadT0;
            final double dY1dY00      = dRdY00 * cos - y0 * dAlphadY00;
            final double dY1dY01      = dRdY01 * cos - y0 * dAlphadY01;
            final double dY1dT        =              - y0 * omega.getReal();

            return new double[][] {
                { dY0dOmega, dY0dT0, dY0dY00, dY0dY01, dY0dT },
                { dY1dOmega, dY1dT0, dY1dY00, dY1dY01, dY1dT }
            };

        }

    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java RungeKuttaFieldIntegratorAbstractTest.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.