home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (MultivariateDifferentiableMultiStartOptimizerTest.java)

This example Java source code file (MultivariateDifferentiableMultiStartOptimizerTest.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

circlescalar, convergencechecker, deprecated, gaussianrandomgenerator, goaltype, jdkrandomgenerator, multivariatedifferentiablefunction, multivariatedifferentiablemultistartoptimizer, multivariatedifferentiablemultistartoptimizertest, multivariatedifferentiableoptimizer, nonlinearconjugategradientoptimizer, pointvaluepair, uncorrelatedrandomvectorgenerator, vector2d

The MultivariateDifferentiableMultiStartOptimizerTest.java Java example source code

 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *      http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * See the License for the specific language governing permissions and
 * limitations under the License.

package org.apache.commons.math3.optimization;

import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableFunction;
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
import org.apache.commons.math3.optimization.general.CircleScalar;
import org.apache.commons.math3.optimization.general.ConjugateGradientFormula;
import org.apache.commons.math3.optimization.general.NonLinearConjugateGradientOptimizer;
import org.apache.commons.math3.random.GaussianRandomGenerator;
import org.apache.commons.math3.random.JDKRandomGenerator;
import org.apache.commons.math3.random.RandomVectorGenerator;
import org.apache.commons.math3.random.UncorrelatedRandomVectorGenerator;
import org.junit.Assert;
import org.junit.Test;

public class MultivariateDifferentiableMultiStartOptimizerTest {

    public void testCircleFitting() {
        CircleScalar circle = new CircleScalar();
        circle.addPoint( 30.0,  68.0);
        circle.addPoint( 50.0,  -6.0);
        circle.addPoint(110.0, -20.0);
        circle.addPoint( 35.0,  15.0);
        circle.addPoint( 45.0,  97.0);
        // TODO: the wrapper around NonLinearConjugateGradientOptimizer is a temporary hack for
        // version 3.1 of the library. It should be removed when NonLinearConjugateGradientOptimizer
        // will officially be declared as implementing MultivariateDifferentiableOptimizer
        MultivariateDifferentiableOptimizer underlying =
                new MultivariateDifferentiableOptimizer() {

            private final NonLinearConjugateGradientOptimizer cg =
                    new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                            new SimpleValueChecker(1.0e-10, 1.0e-10));
            public PointValuePair optimize(int maxEval,
                                           MultivariateDifferentiableFunction f,
                                           GoalType goalType,
                                           double[] startPoint) {
                return cg.optimize(maxEval, f, goalType, startPoint);

            public int getMaxEvaluations() {
                return cg.getMaxEvaluations();

            public int getEvaluations() {
                return cg.getEvaluations();

            public ConvergenceChecker<PointValuePair> getConvergenceChecker() {
                return cg.getConvergenceChecker();
        JDKRandomGenerator g = new JDKRandomGenerator();
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(new double[] { 50.0, 50.0 }, new double[] { 10.0, 10.0 },
                                                  new GaussianRandomGenerator(g));
        MultivariateDifferentiableMultiStartOptimizer optimizer =
            new MultivariateDifferentiableMultiStartOptimizer(underlying, 10, generator);
        PointValuePair optimum =
            optimizer.optimize(200, circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 });
        Assert.assertEquals(200, optimizer.getMaxEvaluations());
        PointValuePair[] optima = optimizer.getOptima();
        for (PointValuePair o : optima) {
            Vector2D center = new Vector2D(o.getPointRef()[0], o.getPointRef()[1]);
            Assert.assertEquals(69.960161753, circle.getRadius(center), 1.0e-8);
            Assert.assertEquals(96.075902096, center.getX(), 1.0e-8);
            Assert.assertEquals(48.135167894, center.getY(), 1.0e-8);
        Assert.assertTrue(optimizer.getEvaluations() > 70);
        Assert.assertTrue(optimizer.getEvaluations() < 90);
        Assert.assertEquals(3.1267527, optimum.getValue(), 1.0e-8);


Other Java examples (source code examples)

Here is a short list of links related to this Java MultivariateDifferentiableMultiStartOptimizerTest.java source code file:

my book on functional programming


new blog posts


Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.