home | career | drupal | java | mac | mysql | perl | scala | uml | unix  
* <tr> * </table> * @author Argonne National Laboratory. MINPACK project. March 1980 (original fortran minpack tests) * @author Burton S. Garbow (original fortran minpack tests) * @author Kenneth E. Hillstrom (original fortran minpack tests) * @author Jorge J. More (original fortran minpack tests) * @author Luc Maisonobe (non-minpack tests and minpack tests Java translation) */ @Deprecated public class MinpackTest { @Test public void testMinpackLinearFullRank() { minpackTest(new LinearFullRankFunction(10, 5, 1.0, 5.0, 2.23606797749979), false); minpackTest(new LinearFullRankFunction(50, 5, 1.0, 8.06225774829855, 6.70820393249937), false); } @Test public void testMinpackLinearRank1() { minpackTest(new LinearRank1Function(10, 5, 1.0, 291.521868819476, 1.4638501094228), false); minpackTest(new LinearRank1Function(50, 5, 1.0, 3101.60039334535, 3.48263016573496), false); } @Test public void testMinpackLinearRank1ZeroColsAndRows() { minpackTest(new LinearRank1ZeroColsAndRowsFunction(10, 5, 1.0), false); minpackTest(new LinearRank1ZeroColsAndRowsFunction(50, 5, 1.0), false); } @Test public void testMinpackRosenbrok() { minpackTest(new RosenbrockFunction(new double[] { -1.2, 1.0 }, FastMath.sqrt(24.2)), false); minpackTest(new RosenbrockFunction(new double[] { -12.0, 10.0 }, FastMath.sqrt(1795769.0)), false); minpackTest(new RosenbrockFunction(new double[] { -120.0, 100.0 }, 11.0 * FastMath.sqrt(169000121.0)), false); } @Test public void testMinpackHelicalValley() { minpackTest(new HelicalValleyFunction(new double[] { -1.0, 0.0, 0.0 }, 50.0), false); minpackTest(new HelicalValleyFunction(new double[] { -10.0, 0.0, 0.0 }, 102.95630140987), false); minpackTest(new HelicalValleyFunction(new double[] { -100.0, 0.0, 0.0}, 991.261822123701), false); } @Test public void testMinpackPowellSingular() { minpackTest(new PowellSingularFunction(new double[] { 3.0, -1.0, 0.0, 1.0 }, 14.6628782986152), false); minpackTest(new PowellSingularFunction(new double[] { 30.0, -10.0, 0.0, 10.0 }, 1270.9838708654), false); minpackTest(new PowellSingularFunction(new double[] { 300.0, -100.0, 0.0, 100.0 }, 126887.903284750), false); } @Test public void testMinpackFreudensteinRoth() { minpackTest(new FreudensteinRothFunction(new double[] { 0.5, -2.0 }, 20.0124960961895, 6.99887517584575, new double[] { 11.4124844654993, -0.896827913731509 }), false); minpackTest(new FreudensteinRothFunction(new double[] { 5.0, -20.0 }, 12432.833948863, 6.9988751744895, new double[] { 11.41300466147456, -0.896796038685959 }), false); minpackTest(new FreudensteinRothFunction(new double[] { 50.0, -200.0 }, 11426454.595762, 6.99887517242903, new double[] { 11.412781785788564, -0.8968051074920405 }), false); } @Test public void testMinpackBard() { minpackTest(new BardFunction(1.0, 6.45613629515967, 0.0906359603390466, new double[] { 0.0824105765758334, 1.1330366534715, 2.34369463894115 }), false); minpackTest(new BardFunction(10.0, 36.1418531596785, 4.17476870138539, new double[] { 0.840666673818329, -158848033.259565, -164378671.653535 }), false); minpackTest(new BardFunction(100.0, 384.114678637399, 4.17476870135969, new double[] { 0.840666673867645, -158946167.205518, -164464906.857771 }), false); } @Test public void testMinpackKowalikOsborne() { minpackTest(new KowalikOsborneFunction(new double[] { 0.25, 0.39, 0.415, 0.39 }, 0.0728915102882945, 0.017535837721129, new double[] { 0.192807810476249, 0.191262653354071, 0.123052801046931, 0.136053221150517 }), false); minpackTest(new KowalikOsborneFunction(new double[] { 2.5, 3.9, 4.15, 3.9 }, 2.97937007555202, 0.032052192917937, new double[] { 728675.473768287, -14.0758803129393, -32977797.7841797, -20571594.1977912 }), false); minpackTest(new KowalikOsborneFunction(new double[] { 25.0, 39.0, 41.5, 39.0 }, 29.9590617016037, 0.0175364017658228, new double[] { 0.192948328597594, 0.188053165007911, 0.122430604321144, 0.134575665392506 }), false); } @Test public void testMinpackMeyer() { minpackTest(new MeyerFunction(new double[] { 0.02, 4000.0, 250.0 }, 41153.4665543031, 9.37794514651874, new double[] { 0.00560963647102661, 6181.34634628659, 345.223634624144 }), false); minpackTest(new MeyerFunction(new double[] { 0.2, 40000.0, 2500.0 }, 4168216.89130846, 792.917871779501, new double[] { 1.42367074157994e-11, 33695.7133432541, 901.268527953801 }), true); } @Test public void testMinpackWatson() { minpackTest(new WatsonFunction(6, 0.0, 5.47722557505166, 0.0478295939097601, new double[] { -0.0157249615083782, 1.01243488232965, -0.232991722387673, 1.26043101102818, -1.51373031394421, 0.99299727291842 }), false); minpackTest(new WatsonFunction(6, 10.0, 6433.12578950026, 0.0478295939096951, new double[] { -0.0157251901386677, 1.01243485860105, -0.232991545843829, 1.26042932089163, -1.51372776706575, 0.99299573426328 }), false); minpackTest(new WatsonFunction(6, 100.0, 674256.040605213, 0.047829593911544, new double[] { -0.0157247019712586, 1.01243490925658, -0.232991922761641, 1.26043292929555, -1.51373320452707, 0.99299901922322 }), false); minpackTest(new WatsonFunction(9, 0.0, 5.47722557505166, 0.00118311459212420, new double[] { -0.153070644166722e-4, 0.999789703934597, 0.0147639634910978, 0.146342330145992, 1.00082109454817, -2.61773112070507, 4.10440313943354, -3.14361226236241, 1.05262640378759 }), false); minpackTest(new WatsonFunction(9, 10.0, 12088.127069307, 0.00118311459212513, new double[] { -0.153071334849279e-4, 0.999789703941234, 0.0147639629786217, 0.146342334818836, 1.00082107321386, -2.61773107084722, 4.10440307655564, -3.14361222178686, 1.05262639322589 }), false); minpackTest(new WatsonFunction(9, 100.0, 1269109.29043834, 0.00118311459212384, new double[] { -0.153069523352176e-4, 0.999789703958371, 0.0147639625185392, 0.146342341096326, 1.00082104729164, -2.61773101573645, 4.10440301427286, -3.14361218602503, 1.05262638516774 }), false); minpackTest(new WatsonFunction(12, 0.0, 5.47722557505166, 0.217310402535861e-4, new double[] { -0.660266001396382e-8, 1.00000164411833, -0.000563932146980154, 0.347820540050756, -0.156731500244233, 1.05281515825593, -3.24727109519451, 7.2884347837505, -10.271848098614, 9.07411353715783, -4.54137541918194, 1.01201187975044 }), false); minpackTest(new WatsonFunction(12, 10.0, 19220.7589790951, 0.217310402518509e-4, new double[] { -0.663710223017410e-8, 1.00000164411787, -0.000563932208347327, 0.347820540486998, -0.156731503955652, 1.05281517654573, -3.2472711515214, 7.28843489430665, -10.2718482369638, 9.07411364383733, -4.54137546533666, 1.01201188830857 }), false); minpackTest(new WatsonFunction(12, 100.0, 2018918.04462367, 0.217310402539845e-4, new double[] { -0.663806046485249e-8, 1.00000164411786, -0.000563932210324959, 0.347820540503588, -0.156731504091375, 1.05281517718031, -3.24727115337025, 7.28843489775302, -10.2718482410813, 9.07411364688464, -4.54137546660822, 1.0120118885369 }), false); } @Test public void testMinpackBox3Dimensional() { minpackTest(new Box3DimensionalFunction(10, new double[] { 0.0, 10.0, 20.0 }, 32.1115837449572), false); } @Test public void testMinpackJennrichSampson() { minpackTest(new JennrichSampsonFunction(10, new double[] { 0.3, 0.4 }, 64.5856498144943, 11.1517793413499, new double[] { // 0.2578330049, 0.257829976764542 0.2578199266368004, 0.25782997676455244 }), false); } @Test public void testMinpackBrownDennis() { minpackTest(new BrownDennisFunction(20, new double[] { 25.0, 5.0, -5.0, -1.0 }, 2815.43839161816, 292.954288244866, new double[] { -11.59125141003, 13.2024883984741, -0.403574643314272, 0.236736269844604 }), false); minpackTest(new BrownDennisFunction(20, new double[] { 250.0, 50.0, -50.0, -10.0 }, 555073.354173069, 292.954270581415, new double[] { -11.5959274272203, 13.2041866926242, -0.403417362841545, 0.236771143410386 }), false); minpackTest(new BrownDennisFunction(20, new double[] { 2500.0, 500.0, -500.0, -100.0 }, 61211252.2338581, 292.954306151134, new double[] { -11.5902596937374, 13.2020628854665, -0.403688070279258, 0.236665033746463 }), false); } @Test public void testMinpackChebyquad() { minpackTest(new ChebyquadFunction(1, 8, 1.0, 1.88623796907732, 1.88623796907732, new double[] { 0.5 }), false); minpackTest(new ChebyquadFunction(1, 8, 10.0, 5383344372.34005, 1.88424820499951, new double[] { 0.9817314924684 }), false); minpackTest(new ChebyquadFunction(1, 8, 100.0, 0.118088726698392e19, 1.88424820499347, new double[] { 0.9817314852934 }), false); minpackTest(new ChebyquadFunction(8, 8, 1.0, 0.196513862833975, 0.0593032355046727, new double[] { 0.0431536648587336, 0.193091637843267, 0.266328593812698, 0.499999334628884, 0.500000665371116, 0.733671406187302, 0.806908362156733, 0.956846335141266 }), false); minpackTest(new ChebyquadFunction(9, 9, 1.0, 0.16994993465202, 0.0, new double[] { 0.0442053461357828, 0.199490672309881, 0.23561910847106, 0.416046907892598, 0.5, 0.583953092107402, 0.764380891528940, 0.800509327690119, 0.955794653864217 }), false); minpackTest(new ChebyquadFunction(10, 10, 1.0, 0.183747831178711, 0.0806471004038253, new double[] { 0.0596202671753563, 0.166708783805937, 0.239171018813509, 0.398885290346268, 0.398883667870681, 0.601116332129320, 0.60111470965373, 0.760828981186491, 0.833291216194063, 0.940379732824644 }), false); } @Test public void testMinpackBrownAlmostLinear() { minpackTest(new BrownAlmostLinearFunction(10, 0.5, 16.5302162063499, 0.0, new double[] { 0.979430303349862, 0.979430303349862, 0.979430303349862, 0.979430303349862, 0.979430303349862, 0.979430303349862, 0.979430303349862, 0.979430303349862, 0.979430303349862, 1.20569696650138 }), false); minpackTest(new BrownAlmostLinearFunction(10, 5.0, 9765624.00089211, 0.0, new double[] { 0.979430303349865, 0.979430303349865, 0.979430303349865, 0.979430303349865, 0.979430303349865, 0.979430303349865, 0.979430303349865, 0.979430303349865, 0.979430303349865, 1.20569696650135 }), false); minpackTest(new BrownAlmostLinearFunction(10, 50.0, 0.9765625e17, 0.0, new double[] { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }), false); minpackTest(new BrownAlmostLinearFunction(30, 0.5, 83.476044467848, 0.0, new double[] { 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 0.997754216442807, 1.06737350671578 }), false); minpackTest(new BrownAlmostLinearFunction(40, 0.5, 128.026364472323, 0.0, new double[] { 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 1.00000000000002, 0.999999999999121 }), false); } @Test public void testMinpackOsborne1() { minpackTest(new Osborne1Function(new double[] { 0.5, 1.5, -1.0, 0.01, 0.02, }, 0.937564021037838, 0.00739249260904843, new double[] { 0.375410049244025, 1.93584654543108, -1.46468676748716, 0.0128675339110439, 0.0221227011813076 }), false); } @Test public void testMinpackOsborne2() { minpackTest(new Osborne2Function(new double[] { 1.3, 0.65, 0.65, 0.7, 0.6, 3.0, 5.0, 7.0, 2.0, 4.5, 5.5 }, 1.44686540984712, 0.20034404483314, new double[] { 1.30997663810096, 0.43155248076, 0.633661261602859, 0.599428560991695, 0.754179768272449, 0.904300082378518, 1.36579949521007, 4.82373199748107, 2.39868475104871, 4.56887554791452, 5.67534206273052 }), false); } private void minpackTest(MinpackFunction function, boolean exceptionExpected) { LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer(FastMath.sqrt(2.22044604926e-16), FastMath.sqrt(2.22044604926e-16), 2.22044604926e-16); // Assert.assertTrue(function.checkTheoreticalStartCost(optimizer.getRMS())); try { PointVectorValuePair optimum = optimizer.optimize(400 * (function.getN() + 1), function, function.getTarget(), function.getWeight(), function.getStartPoint()); Assert.assertFalse(exceptionExpected); function.checkTheoreticalMinCost(optimizer.getRMS()); function.checkTheoreticalMinParams(optimum); } catch (TooManyEvaluationsException e) { Assert.assertTrue(exceptionExpected); } } private static abstract class MinpackFunction implements MultivariateDifferentiableVectorFunction, Serializable { private static final long serialVersionUID = -6209760235478794233L; protected int n; protected int m; protected double[] startParams; protected double theoreticalMinCost; protected double[] theoreticalMinParams; protected double costAccuracy; protected double paramsAccuracy; protected MinpackFunction(int m, double[] startParams, double theoreticalMinCost, double[] theoreticalMinParams) { this.m = m; this.n = startParams.length; this.startParams = startParams.clone(); this.theoreticalMinCost = theoreticalMinCost; this.theoreticalMinParams = theoreticalMinParams; this.costAccuracy = 1.0e-8; this.paramsAccuracy = 1.0e-5; } protected static double[] buildArray(int n, double x) { double[] array = new double[n]; Arrays.fill(array, x); return array; } public double[] getTarget() { return buildArray(m, 0.0); } public double[] getWeight() { return buildArray(m, 1.0); } public double[] getStartPoint() { return startParams.clone(); } protected void setCostAccuracy(double costAccuracy) { this.costAccuracy = costAccuracy; } protected void setParamsAccuracy(double paramsAccuracy) { this.paramsAccuracy = paramsAccuracy; } public int getN() { return startParams.length; } public void checkTheoreticalMinCost(double rms) { double threshold = costAccuracy * (1.0 + theoreticalMinCost); Assert.assertEquals(theoreticalMinCost, FastMath.sqrt(m) * rms, threshold); } public void checkTheoreticalMinParams(PointVectorValuePair optimum) { double[] params = optimum.getPointRef(); if (theoreticalMinParams != null) { for (int i = 0; i < theoreticalMinParams.length; ++i) { double mi = theoreticalMinParams[i]; double vi = params[i]; Assert.assertEquals(mi, vi, paramsAccuracy * (1.0 + FastMath.abs(mi))); } } } public double[] value(double[] variables) { DerivativeStructure[] dsV = new DerivativeStructure[variables.length]; for (int i = 0; i < variables.length; ++i) { dsV[i] = new DerivativeStructure(0, 0, variables[i]); } DerivativeStructure[] dsY = value(dsV); double[] y = new double[dsY.length]; for (int i = 0; i < dsY.length; ++i) { y[i] = dsY[i].getValue(); } return y; } public abstract DerivativeStructure[] value(DerivativeStructure[] variables); } private static class LinearFullRankFunction extends MinpackFunction { private static final long serialVersionUID = -9030323226268039536L; public LinearFullRankFunction(int m, int n, double x0, double theoreticalStartCost, double theoreticalMinCost) { super(m, buildArray(n, x0), theoreticalMinCost, buildArray(n, -1.0)); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure sum = variables[0].getField().getZero(); for (int i = 0; i < n; ++i) { sum = sum.add(variables[i]); } DerivativeStructure t = sum.multiply(2.0 / m).add(1); DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < n; ++i) { f[i] = variables[i].subtract(t); } Arrays.fill(f, n, m, t.negate()); return f; } } private static class LinearRank1Function extends MinpackFunction { private static final long serialVersionUID = 8494863245104608300L; public LinearRank1Function(int m, int n, double x0, double theoreticalStartCost, double theoreticalMinCost) { super(m, buildArray(n, x0), theoreticalMinCost, null); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure[] f = new DerivativeStructure[m]; DerivativeStructure sum = variables[0].getField().getZero(); for (int i = 0; i < n; ++i) { sum = sum.add(variables[i].multiply(i + 1)); } for (int i = 0; i < m; ++i) { f[i] = sum.multiply(i + 1).subtract(1); } return f; } } private static class LinearRank1ZeroColsAndRowsFunction extends MinpackFunction { private static final long serialVersionUID = -3316653043091995018L; public LinearRank1ZeroColsAndRowsFunction(int m, int n, double x0) { super(m, buildArray(n, x0), FastMath.sqrt((m * (m + 3) - 6) / (2.0 * (2 * m - 3))), null); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure[] f = new DerivativeStructure[m]; DerivativeStructure sum = variables[0].getField().getZero(); for (int i = 1; i < (n - 1); ++i) { sum = sum.add(variables[i].multiply(i + 1)); } for (int i = 0; i < (m - 1); ++i) { f[i] = sum.multiply(i).subtract(1); } f[m - 1] = variables[0].getField().getOne().negate(); return f; } } private static class RosenbrockFunction extends MinpackFunction { private static final long serialVersionUID = 2893438180956569134L; public RosenbrockFunction(double[] startParams, double theoreticalStartCost) { super(2, startParams, 0.0, buildArray(2, 1.0)); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; return new DerivativeStructure[] { x2.subtract(x1.multiply(x1)).multiply(10), x1.negate().add(1) }; } } private static class HelicalValleyFunction extends MinpackFunction { private static final long serialVersionUID = 220613787843200102L; public HelicalValleyFunction(double[] startParams, double theoreticalStartCost) { super(3, startParams, 0.0, new double[] { 1.0, 0.0, 0.0 }); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure tmp1 = variables[0].getField().getZero(); if (x1.getValue() == 0) { tmp1 = tmp1.add((x2.getValue() >= 0) ? 0.25 : -0.25); } else { tmp1 = x2.divide(x1).atan().divide(twoPi); if (x1.getValue() < 0) { tmp1 = tmp1.add(0.5); } } DerivativeStructure tmp2 = x1.multiply(x1).add(x2.multiply(x2)).sqrt(); return new DerivativeStructure[] { x3.subtract(tmp1.multiply(10)).multiply(10), tmp2.subtract(1).multiply(10), x3 }; } private static final double twoPi = 2.0 * FastMath.PI; } private static class PowellSingularFunction extends MinpackFunction { private static final long serialVersionUID = 7298364171208142405L; public PowellSingularFunction(double[] startParams, double theoreticalStartCost) { super(4, startParams, 0.0, buildArray(4, 0.0)); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure x4 = variables[3]; return new DerivativeStructure[] { x1.add(x2.multiply(10)), x3.subtract(x4).multiply(sqrt5), x2.subtract(x3.multiply(2)).multiply(x2.subtract(x3.multiply(2))), x1.subtract(x4).multiply(x1.subtract(x4)).multiply(sqrt10) }; } private static final double sqrt5 = FastMath.sqrt( 5.0); private static final double sqrt10 = FastMath.sqrt(10.0); } private static class FreudensteinRothFunction extends MinpackFunction { private static final long serialVersionUID = 2892404999344244214L; public FreudensteinRothFunction(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(2, startParams, theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; return new DerivativeStructure[] { x1.subtract(13.0).add(x2.negate().add(5.0).multiply(x2).subtract(2).multiply(x2)), x1.subtract(29.0).add(x2.add(1).multiply(x2).subtract(14).multiply(x2)) }; } } private static class BardFunction extends MinpackFunction { private static final long serialVersionUID = 5990442612572087668L; public BardFunction(double x0, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(15, buildArray(3, x0), theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { double tmp1 = i + 1; double tmp2 = 15 - i; double tmp3 = (i <= 7) ? tmp1 : tmp2; f[i] = x1.add(x2.multiply(tmp2).add(x3.multiply(tmp3)).reciprocal().multiply(tmp1)).negate().add(y[i]); } return f; } private static final double[] y = { 0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39 }; } private static class KowalikOsborneFunction extends MinpackFunction { private static final long serialVersionUID = -4867445739880495801L; public KowalikOsborneFunction(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(11, startParams, theoreticalMinCost, theoreticalMinParams); if (theoreticalStartCost > 20.0) { setCostAccuracy(2.0e-4); setParamsAccuracy(5.0e-3); } } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure x4 = variables[3]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { f[i] = x1.multiply(x2.add(v[i]).multiply(v[i])).divide(x4.add(x3.add(v[i]).multiply(v[i]))).negate().add(y[i]); } return f; } private static final double[] v = { 4.0, 2.0, 1.0, 0.5, 0.25, 0.167, 0.125, 0.1, 0.0833, 0.0714, 0.0625 }; private static final double[] y = { 0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246 }; } private static class MeyerFunction extends MinpackFunction { private static final long serialVersionUID = -838060619150131027L; public MeyerFunction(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(16, startParams, theoreticalMinCost, theoreticalMinParams); if (theoreticalStartCost > 1.0e6) { setCostAccuracy(7.0e-3); setParamsAccuracy(2.0e-2); } } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { f[i] = x1.multiply(x2.divide(x3.add(5.0 * (i + 1) + 45.0)).exp()).subtract(y[i]); } return f; } private static final double[] y = { 34780.0, 28610.0, 23650.0, 19630.0, 16370.0, 13720.0, 11540.0, 9744.0, 8261.0, 7030.0, 6005.0, 5147.0, 4427.0, 3820.0, 3307.0, 2872.0 }; } private static class WatsonFunction extends MinpackFunction { private static final long serialVersionUID = -9034759294980218927L; public WatsonFunction(int n, double x0, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(31, buildArray(n, x0), theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < (m - 2); ++i) { double div = (i + 1) / 29.0; DerivativeStructure s1 = variables[0].getField().getZero(); DerivativeStructure dx = variables[0].getField().getOne(); for (int j = 1; j < n; ++j) { s1 = s1.add(dx.multiply(j).multiply(variables[j])); dx = dx.multiply(div); } DerivativeStructure s2 = variables[0].getField().getZero(); dx = variables[0].getField().getOne(); for (int j = 0; j < n; ++j) { s2 = s2.add(dx.multiply(variables[j])); dx = dx.multiply(div); } f[i] = s1.subtract(s2.multiply(s2)).subtract(1); } DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; f[m - 2] = x1; f[m - 1] = x2.subtract(x1.multiply(x1)).subtract(1); return f; } } private static class Box3DimensionalFunction extends MinpackFunction { private static final long serialVersionUID = 5511403858142574493L; public Box3DimensionalFunction(int m, double[] startParams, double theoreticalStartCost) { super(m, startParams, 0.0, new double[] { 1.0, 10.0, 1.0 }); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { double tmp = (i + 1) / 10.0; f[i] = x1.multiply(-tmp).exp().subtract(x2.multiply(-tmp).exp()).add( x3.multiply(FastMath.exp(-i - 1) - FastMath.exp(-tmp))); } return f; } } private static class JennrichSampsonFunction extends MinpackFunction { private static final long serialVersionUID = -2489165190443352947L; public JennrichSampsonFunction(int m, double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(m, startParams, theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { double temp = i + 1; f[i] = x1.multiply(temp).exp().add(x2.multiply(temp).exp()).subtract(2 + 2 * temp).negate(); } return f; } } private static class BrownDennisFunction extends MinpackFunction { private static final long serialVersionUID = 8340018645694243910L; public BrownDennisFunction(int m, double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(m, startParams, theoreticalMinCost, theoreticalMinParams); setCostAccuracy(2.5e-8); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure x4 = variables[3]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { double temp = (i + 1) / 5.0; DerivativeStructure tmp1 = x1.add(x2.multiply(temp)).subtract(FastMath.exp(temp)); DerivativeStructure tmp2 = x3.add(x4.multiply(FastMath.sin(temp))).subtract(FastMath.cos(temp)); f[i] = tmp1.multiply(tmp1).add(tmp2.multiply(tmp2)); } return f; } } private static class ChebyquadFunction extends MinpackFunction { private static final long serialVersionUID = -2394877275028008594L; private static double[] buildChebyquadArray(int n, double factor) { double[] array = new double[n]; double inv = factor / (n + 1); for (int i = 0; i < n; ++i) { array[i] = (i + 1) * inv; } return array; } public ChebyquadFunction(int n, int m, double factor, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(m, buildChebyquadArray(n, factor), theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure[] f = new DerivativeStructure[m]; Arrays.fill(f, variables[0].getField().getZero()); for (int j = 0; j < n; ++j) { DerivativeStructure tmp1 = variables[0].getField().getOne(); DerivativeStructure tmp2 = variables[j].multiply(2).subtract(1); DerivativeStructure temp = tmp2.multiply(2); for (int i = 0; i < m; ++i) { f[i] = f[i].add(tmp2); DerivativeStructure ti = temp.multiply(tmp2).subtract(tmp1); tmp1 = tmp2; tmp2 = ti; } } double dx = 1.0 / n; boolean iev = false; for (int i = 0; i < m; ++i) { f[i] = f[i].multiply(dx); if (iev) { f[i] = f[i].add(1.0 / (i * (i + 2))); } iev = ! iev; } return f; } } private static class BrownAlmostLinearFunction extends MinpackFunction { private static final long serialVersionUID = 8239594490466964725L; public BrownAlmostLinearFunction(int m, double factor, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(m, buildArray(m, factor), theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure[] f = new DerivativeStructure[m]; DerivativeStructure sum = variables[0].getField().getZero().subtract(n + 1); DerivativeStructure prod = variables[0].getField().getOne(); for (int j = 0; j < n; ++j) { sum = sum.add(variables[j]); prod = prod.multiply(variables[j]); } for (int i = 0; i < n; ++i) { f[i] = variables[i].add(sum); } f[n - 1] = prod.subtract(1); return f; } } private static class Osborne1Function extends MinpackFunction { private static final long serialVersionUID = 4006743521149849494L; public Osborne1Function(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(33, startParams, theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x1 = variables[0]; DerivativeStructure x2 = variables[1]; DerivativeStructure x3 = variables[2]; DerivativeStructure x4 = variables[3]; DerivativeStructure x5 = variables[4]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { double temp = 10.0 * i; DerivativeStructure tmp1 = x4.multiply(-temp).exp(); DerivativeStructure tmp2 = x5.multiply(-temp).exp(); f[i] = x1.add(x2.multiply(tmp1)).add(x3.multiply(tmp2)).negate().add(y[i]); } return f; } private static final double[] y = { 0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881, 0.850, 0.818, 0.784, 0.751, 0.718, 0.685, 0.658, 0.628, 0.603, 0.580, 0.558, 0.538, 0.522, 0.506, 0.490, 0.478, 0.467, 0.457, 0.448, 0.438, 0.431, 0.424, 0.420, 0.414, 0.411, 0.406 }; } private static class Osborne2Function extends MinpackFunction { private static final long serialVersionUID = -8418268780389858746L; public Osborne2Function(double[] startParams, double theoreticalStartCost, double theoreticalMinCost, double[] theoreticalMinParams) { super(65, startParams, theoreticalMinCost, theoreticalMinParams); } @Override public DerivativeStructure[] value(DerivativeStructure[] variables) { DerivativeStructure x01 = variables[0]; DerivativeStructure x02 = variables[1]; DerivativeStructure x03 = variables[2]; DerivativeStructure x04 = variables[3]; DerivativeStructure x05 = variables[4]; DerivativeStructure x06 = variables[5]; DerivativeStructure x07 = variables[6]; DerivativeStructure x08 = variables[7]; DerivativeStructure x09 = variables[8]; DerivativeStructure x10 = variables[9]; DerivativeStructure x11 = variables[10]; DerivativeStructure[] f = new DerivativeStructure[m]; for (int i = 0; i < m; ++i) { double temp = i / 10.0; DerivativeStructure tmp1 = x05.multiply(-temp).exp(); DerivativeStructure tmp2 = x06.negate().multiply(x09.subtract(temp).multiply(x09.subtract(temp))).exp(); DerivativeStructure tmp3 = x07.negate().multiply(x10.subtract(temp).multiply(x10.subtract(temp))).exp(); DerivativeStructure tmp4 = x08.negate().multiply(x11.subtract(temp).multiply(x11.subtract(temp))).exp(); f[i] = x01.multiply(tmp1).add(x02.multiply(tmp2)).add(x03.multiply(tmp3)).add(x04.multiply(tmp4)).negate().add(y[i]); } return f; } private static final double[] y = { 1.366, 1.191, 1.112, 1.013, 0.991, 0.885, 0.831, 0.847, 0.786, 0.725, 0.746, 0.679, 0.608, 0.655, 0.616, 0.606, 0.602, 0.626, 0.651, 0.724, 0.649, 0.649, 0.694, 0.644, 0.624, 0.661, 0.612, 0.558, 0.533, 0.495, 0.500, 0.423, 0.395, 0.375, 0.372, 0.391, 0.396, 0.405, 0.428, 0.429, 0.523, 0.562, 0.607, 0.653, 0.672, 0.708, 0.633, 0.668, 0.645, 0.632, 0.591, 0.559, 0.597, 0.625, 0.739, 0.710, 0.729, 0.720, 0.636, 0.581, 0.428, 0.292, 0.162, 0.098, 0.054 }; } }

Other Java examples (source code examples)

Here is a short list of links related to this Java MinpackTest.java source code file:

Java example source code file (MinpackTest.java)

This example Java source code file (MinpackTest.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

brownalmostlinearfunction, browndennisfunction, chebyquadfunction, derivativestructure, freudensteinrothfunction, helicalvalleyfunction, kowalikosbornefunction, meyerfunction, minpackfunction, override, powellsingularfunction, rosenbrockfunction, test, util, watsonfunction

The MinpackTest.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.general;

import java.io.Serializable;
import java.util.Arrays;

import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
import org.apache.commons.math3.optimization.PointVectorValuePair;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;

/**
 * <p>Some of the unit tests are re-implementations of the MINPACK  and  test files.
 * The redistribution policy for MINPACK is available <a
 * href="http://www.netlib.org/minpack/disclaimer">here</a>, for
 * convenience, it is reproduced below.</p>

 * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
 * <tr>
* Minpack Copyright Notice (1999) University of Chicago. * All rights reserved * </td>
* Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * <ol> * <li>Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer.</li> * <li>Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution.</li> * <li>The end-user documentation included with the redistribution, if any, * must include the following acknowledgment: * <code>This product includes software developed by the University of * Chicago, as Operator of Argonne National Laboratory.</code> * Alternately, this acknowledgment may appear in the software itself, * if and wherever such third-party acknowledgments normally appear.</li> * <li>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL * BE CORRECTED.</strong> * <li>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong> * <ol>


my book on functional programming

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.