|
Commons Net example source code file (TimeStamp.java)
The Commons Net TimeStamp.java source codepackage org.apache.commons.net.ntp; /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Locale; import java.util.TimeZone; /*** * TimeStamp class represents the Network Time Protocol (NTP) timestamp * as defined in RFC-1305 and SNTP (RFC-2030). It is represented as a * 64-bit unsigned fixed-point number in seconds relative to 0-hour on 1-January-1900. * The 32-bit low-order bits are the fractional seconds whose precision is * about 200 picoseconds. Assumes overflow date when date passes MAX_LONG * and reverts back to 0 is 2036 and not 1900. Test for most significant * bit: if MSB=0 then 2036 basis is used otherwise 1900 if MSB=1. * <p> * Methods exist to convert NTP timestamps to and from the equivalent Java date * representation, which is the number of milliseconds since the standard base * time known as "the epoch", namely January 1, 1970, 00:00:00 GMT. * </p> * * @author Jason Mathews, MITRE Corp * @version $Revision: 1084392 $ $Date: 2011-03-22 22:39:08 +0000 (Tue, 22 Mar 2011) $ * @see java.util.Date */ public class TimeStamp implements java.io.Serializable, Comparable<TimeStamp> { private static final long serialVersionUID = 8139806907588338737L; /** * baseline NTP time if bit-0=0 -> 7-Feb-2036 @ 06:28:16 UTC */ protected static final long msb0baseTime = 2085978496000L; /** * baseline NTP time if bit-0=1 -> 1-Jan-1900 @ 01:00:00 UTC */ protected static final long msb1baseTime = -2208988800000L; /** * Default NTP date string format. E.g. Fri, Sep 12 2003 21:06:23.860. * See <code>java.text.SimpleDateFormat for code descriptions. */ public final static String NTP_DATE_FORMAT = "EEE, MMM dd yyyy HH:mm:ss.SSS"; /** * NTP timestamp value: 64-bit unsigned fixed-point number as defined in RFC-1305 * with high-order 32 bits the seconds field and the low-order 32-bits the * fractional field. */ private final long ntpTime; private DateFormat simpleFormatter; private DateFormat utcFormatter; // initialization of static time bases /* static { TimeZone utcZone = TimeZone.getTimeZone("UTC"); Calendar calendar = Calendar.getInstance(utcZone); calendar.set(1900, Calendar.JANUARY, 1, 0, 0, 0); calendar.set(Calendar.MILLISECOND, 0); msb1baseTime = calendar.getTime().getTime(); calendar.set(2036, Calendar.FEBRUARY, 7, 6, 28, 16); calendar.set(Calendar.MILLISECOND, 0); msb0baseTime = calendar.getTime().getTime(); } */ /*** * Constructs a newly allocated NTP timestamp object * that represents the native 64-bit long argument. */ public TimeStamp(long ntpTime) { this.ntpTime = ntpTime; } /*** * Constructs a newly allocated NTP timestamp object * that represents the value represented by the string * in hexdecimal form (e.g. "c1a089bd.fc904f6d"). * * @throws NumberFormatException - if the string does not contain a parsable timestamp. */ public TimeStamp(String s) throws NumberFormatException { ntpTime = decodeNtpHexString(s); } /*** * Constructs a newly allocated NTP timestamp object * that represents the Java Date argument. * * @param d - the Date to be represented by the Timestamp object. */ public TimeStamp(Date d) { ntpTime = (d == null) ? 0 : toNtpTime(d.getTime()); } /*** * Returns the value of this Timestamp as a long value. * * @return the 64-bit long value represented by this object. */ public long ntpValue() { return ntpTime; } /*** * Returns high-order 32-bits representing the seconds of this NTP timestamp. * * @return seconds represented by this NTP timestamp. */ public long getSeconds() { return (ntpTime >>> 32) & 0xffffffffL; } /*** * Returns low-order 32-bits representing the fractional seconds. * * @return fractional seconds represented by this NTP timestamp. */ public long getFraction() { return ntpTime & 0xffffffffL; } /*** * Convert NTP timestamp to Java standard time. * * @return NTP Timestamp in Java time */ public long getTime() { return getTime(ntpTime); } /*** * Convert NTP timestamp to Java Date object. * * @return NTP Timestamp in Java Date */ public Date getDate() { long time = getTime(ntpTime); return new Date(time); } /*** * Convert 64-bit NTP timestamp to Java standard time. * * Note that java time (milliseconds) by definition has less precision * then NTP time (picoseconds) so converting NTP timestamp to java time and back * to NTP timestamp loses precision. For example, Tue, Dec 17 2002 09:07:24.810 EST * is represented by a single Java-based time value of f22cd1fc8a, but its * NTP equivalent are all values ranging from c1a9ae1c.cf5c28f5 to c1a9ae1c.cf9db22c. * * @param ntpTimeValue * @return the number of milliseconds since January 1, 1970, 00:00:00 GMT * represented by this NTP timestamp value. */ public static long getTime(long ntpTimeValue) { long seconds = (ntpTimeValue >>> 32) & 0xffffffffL; // high-order 32-bits long fraction = ntpTimeValue & 0xffffffffL; // low-order 32-bits // Use round-off on fractional part to preserve going to lower precision fraction = Math.round(1000D * fraction / 0x100000000L); /* * If the most significant bit (MSB) on the seconds field is set we use * a different time base. The following text is a quote from RFC-2030 (SNTP v4): * * If bit 0 is set, the UTC time is in the range 1968-2036 and UTC time * is reckoned from 0h 0m 0s UTC on 1 January 1900. If bit 0 is not set, * the time is in the range 2036-2104 and UTC time is reckoned from * 6h 28m 16s UTC on 7 February 2036. */ long msb = seconds & 0x80000000L; if (msb == 0) { // use base: 7-Feb-2036 @ 06:28:16 UTC return msb0baseTime + (seconds * 1000) + fraction; } else { // use base: 1-Jan-1900 @ 01:00:00 UTC return msb1baseTime + (seconds * 1000) + fraction; } } /*** * Helper method to convert Java time to NTP timestamp object. * Note that Java time (milliseconds) by definition has less precision * then NTP time (picoseconds) so converting Ntptime to Javatime and back * to Ntptime loses precision. For example, Tue, Dec 17 2002 09:07:24.810 * is represented by a single Java-based time value of f22cd1fc8a, but its * NTP equivalent are all values from c1a9ae1c.cf5c28f5 to c1a9ae1c.cf9db22c. * @param date the milliseconds since January 1, 1970, 00:00:00 GMT. * @return NTP timestamp object at the specified date. */ public static TimeStamp getNtpTime(long date) { return new TimeStamp(toNtpTime(date)); } /*** * Constructs a NTP timestamp object and initializes it so that * it represents the time at which it was allocated, measured to the * nearest millisecond. * @return NTP timestamp object set to the current time. * @see java.lang.System#currentTimeMillis() */ public static TimeStamp getCurrentTime() { return getNtpTime(System.currentTimeMillis()); } /*** * Convert NTP timestamp hexstring (e.g. "c1a089bd.fc904f6d") to the NTP * 64-bit unsigned fixed-point number. * * @return NTP 64-bit timestamp value. * @throws NumberFormatException - if the string does not contain a parsable timestamp. */ protected static long decodeNtpHexString(String s) throws NumberFormatException { if (s == null) { throw new NumberFormatException("null"); } int ind = s.indexOf('.'); if (ind == -1) { if (s.length() == 0) return 0; return Long.parseLong(s, 16) << 32; // no decimal } return Long.parseLong(s.substring(0, ind), 16) << 32 | Long.parseLong(s.substring(ind + 1), 16); } /*** * Parses the string argument as a NTP hexidecimal timestamp representation string * (e.g. "c1a089bd.fc904f6d"). * * @param s - hexstring. * @return the Timestamp represented by the argument in hexidecimal. * @throws NumberFormatException - if the string does not contain a parsable timestamp. */ public static TimeStamp parseNtpString(String s) throws NumberFormatException { return new TimeStamp(decodeNtpHexString(s)); } /*** * Converts Java time to 64-bit NTP time representation. * * @param t Java time * @return NTP timestamp representation of Java time value. */ protected static long toNtpTime(long t) { boolean useBase1 = t < msb0baseTime; // time < Feb-2036 long baseTime; if (useBase1) { baseTime = t - msb1baseTime; // dates <= Feb-2036 } else { // if base0 needed for dates >= Feb-2036 baseTime = t - msb0baseTime; } long seconds = baseTime / 1000; long fraction = ((baseTime % 1000) * 0x100000000L) / 1000; if (useBase1) { seconds |= 0x80000000L; // set high-order bit if msb1baseTime 1900 used } long time = seconds << 32 | fraction; return time; } /*** * Computes a hashcode for this Timestamp. The result is the exclusive * OR of the two halves of the primitive <code>long value * represented by this <code>TimeStamp object. That is, the hashcode * is the value of the expression: * <blockquote>* (int)(this.ntpValue()^(this.ntpValue() >>> 32)) * </pre> * * @return a hash code value for this object. */ @Override public int hashCode() { return (int) (ntpTime ^ (ntpTime >>> 32)); } /*** * Compares this object against the specified object. * The result is <code>true if and only if the argument is * not <code>null and is a |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.